PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ
|
|
- Bogumił Czyż
- 9 lat temu
- Przeglądów:
Transkrypt
1 PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ I KLASA LICEUM OGÓLNOKSZTAŁCĄCE Opracowała : Izabella śółtaszek 1
2 WSTĘP Kierunki kształcenia matematycznego, jakie wyznaczają przyjęte cele i zadania, mają pomóc uczniowi w poznawaniu i zrozumieniu świata oraz w podejmowaniu zadań w róŝnorodnych dziedzinach działania. Podczas długoletniej pracy jako nauczycielka matematyki zaobserwowałam, Ŝe indywidualizacja procesu nauczania w pracy z uczniem o szczególnych potrzebach edukacyjnych jest niezbędna. Dostosowanie kształcenia matematycznego do indywidualnych zainteresowań, potrzeb, a przede wszystkim moŝliwości ucznia moŝe przynieść wymierne korzyści. Uczestnictwo w dodatkowych zajęciach da im moŝliwość uzupełnienia ewentualnych braków w wiadomościach, pozwoli utrwalić zdobyte na lekcjach umiejętności przewidywane Podstawą Programową, a poprzez stopniowe pokonywanie niepowodzeń szkolnych zwiększy poczucie własnej wartości. Napisałam program z myślą o uczniach I klasy liceum ogólnokształcącego, ze szczególnymi potrzebami edukacyjnymi, mającymi trudności z opanowaniem podstawowych wiadomości i umiejętności matematycznych podczas planowych zajęć szkolnych. W czasie zajęć będę zwracać szczególną uwagę na dostosowanie wymagań edukacyjnych do indywidualnych moŝliwości uczestników w zakresie: - tempa pracy, - stopniowania trudności, - stosowanych metod nauczania ( zwłaszcza metody aktywizujące), - wprowadzania róŝnorodnych środków dydaktycznych, pobudzających aktywność uczniów i uczących logicznego myślenia. Realizacja programu uwzględnia głównie umiejętności konieczne, które są niezbędne do kontynuowania nauki w klasie wyŝszej. Podczas zajęć zamierzam angaŝować uczniów w ich przebieg i podkreślać drobne nawet sukcesy, wzmacniając w ten sposób ich motywację do uczenia się. Mam nadzieję, Ŝe miła i pełna Ŝyczliwości atmosfera zapewni uczniom i prowadzącej efektywne warunki pracy. Na realizację programu przeznaczono 2 godzinę tygodniowo. 2
3 CELE Cele ogólne: 1. wyrównanie umiejętności i utrwalenie bieŝącego materiału tak, aby uczeń aktywnie uczestniczył w lekcjach matematyki; 2. przygotowanie uczniów do wykorzystania wiedzy matematycznej w rozwiązywaniu problemów z Ŝycia codziennego; 3. wykształcenie umiejętności umoŝliwiających kontynuowanie nauki w klasach programowo wyŝszych lub umoŝliwiających ukończenie szkoły. Cele szczegółowe: 1. Wykształcenie umiejętności posługiwania się obiektami abstrakcyjnymi Uporządkowanie i uzupełnienie wiadomości i umiejętności dotyczących działań na liczbach rzeczywistych oraz wyraŝeniach algebraicznych Uporządkowanie i uzupełnienie wiadomości i umiejętności dotyczących geometrii elementarnej 2. Wykształcenie umiejętności budowania modeli matematycznych Powtórzenie i uzupełnienie wiadomości i umiejętności dotyczących zastosowania równań, nierówności i układów równań liniowych do rozwiązywania róŝnorodnych problemów. Wykształcenie umiejętności rozwiązywania równań i nierówności 3
4 kwadratowych oraz ich stosowania. Wykształcenie umiejętności dostrzegania związków i zaleŝności. Wykształcenie umiejętności opisu sytuacji za pomocą funkcji i rozumienia zaleŝności pomiędzy własnościami funkcji a własnościami opisywanej przez nią sytuacji. Wykształcenie umiejętności rozwiązywania problemów prowadzących do poszukiwania ekstremum funkcji kwadratowej. Wykształcenie umiejętności stosowania pojęć i twierdzeń planimetrii do róŝnorodnych problemów. Wykształcenie umiejętności zastosowania funkcji trygonometrycznych kąta ostrego w sytuacjach praktycznych. 3. Wykształcenie umiejętności projektowania i wykonywania obliczeń Powtórzenie i uzupełnienie umiejętności z zakresu gimnazjum. Rozszerzenie działania potęgowania na potęgi o wykładniku wymiernym. Utrwalenie umiejętności działań z uŝyciem procentów. Doskonalenie umiejętności szacowania wartości liczbowych. Zapoznanie z zapisem liczb w notacji wykładniczej i działaniami na takich liczbach. Zapoznanie z pojęciem logarytmu i kształcenie umiejętności obliczania logarytmów. Zapoznanie z wykorzystaniem kalkulatora do obliczeń dotyczących takŝe funkcji trygonometrycznych kąta ostrego. Zapoznanie z wykorzystaniem kalkulatora graficznego i komputera do rysowania wykresów funkcji (w miarę moŝliwości technicznych). 4. Zapoznanie z elementami myślenia matematycznego Wykształcenie umiejętności odróŝniania twierdzenia od hipotezy, podawania przykładów i kontrprzykładów Kształtowanie ścisłości języka matematycznego. 4
5 Zapoznanie z prostymi dowodami geometrii elementarnej. Wykształcenie umiejętności samodzielnego dowodzenia prostych twierdzeń geometrycznych. TREŚCI NAUCZANIA LICZBY RZECZYWISTE Zbiory liczbowe Działania na liczbach Obliczenia praktyczne Liczby: naturalne, całkowite, wymierne, niewymierne. Liczby pierwsze i złoŝone. Przedziały liczbowe. Działania na liczbach wymiernych, potęga o wykładniku wymiernym, działania na potęgach i pierwiastkach. Wartość bezwzględna liczby. Szacowanie i przybliŝenia, błąd przybliŝenia, działania na procentach, notacja wykładnicza. ALGEBRA Powtórzenie WyraŜenia algebraiczne, równania i nierówności liniowe, układy równań liniowych; ich zastosowanie; wartość bezwzględna w równaniach i nierównościach; przekształca- nie wzorów. 5
6 Równania i nierówności kwadratowe Rozwiązywanie równań i nierówności kwadratowych, zastosowanie ich do rozwiązywania zadań. Zadania z parametrem, wykorzystanie wzorów Viete'a. FUNKCJE Własności funkcji Pojęcie funkcji, przykłady, odczytywanie własności z wykresu, parzystość, nieparzystość, okresowość, róŝnowartościowość funkcji. Zastosowanie funkcji do opisu róŝnorodnych zaleŝności. Przesuwanie wykresu funkcji. Funkcja liniowa Wykres i własności. Wyznaczanie wzoru. Funkcja kwadratowa PLANIMETRIA I TRYGONOMETRIA Podstawowe figury geometryczne RóŜne postaci funkcji kwadratowej, rysowanie wykresów, znajdowanie współrzędnych wierzchołka i miejsc zerowych. Wykorzystanie do rozwiązywania prostych zadań na ekstrema Punkty, proste, odcinki, kąty, trójkąty, wielokąty, wielokąty foremne, okręgi, kąty w kole, pola i obwody figur. Okręgi i proste Funkcje trygonometryczne kąta ostrego Funkcje trygonometryczne kąta ostrego. 6
7 Zastosowanie do sytuacji praktycznych, wartości funkcji dla szczególnych kątów, wykorzystanie kalkulatora do obliczeń. ToŜsamości trygonometryczne. PRZEWIDYWANE OSIĄGNIĘCIA UCZNIÓW Uczeń uczęszczający na zajęcia powinien: umieć podać przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych; pierwszych i złoŝonych, zakwalifikować daną liczbę do jednego z tych rodzajów znać pojęcie osi liczbowej zamienić skończone rozwinięcie dziesiętne na ułamek zwykły i na odwrót rozumieć pojęcie rozwinięcia okresowego, znajduje rozwinięcia dziesiętne ułamków zwykłych wiedzieć, Ŝe suma, róŝnica, iloczyn i iloraz liczb wymiernych są liczbami wymiernymi umieć pokazać na przykładach, Ŝe suma (róŝnica, iloczyn i iloraz) liczb niewymiernych moŝe być zarówno liczbą wymierną, jak i niewymierną wykonać działania na liczbach wymiernych: cztery działania arytmetyczne, potęgi o wykładniku całkowitym i postaci 1/n; takŝe z uŝyciem kalkulatora znaleźć wartość bezwzględną liczby upraszczać pierwiastki i znajdować ich przybliŝone wartości za pomocą kalkulatora upraszczać wyraŝenia zawierające potęgi o wykładniku wymiernym i pierwiastki usuwać niewymierności z mianownika zapisywać i odczytywać liczby w notacji wykładniczej posługiwać się notacją wykładniczą w obliczeniach obliczać procent danej liczby znać pojęcie punktu procentowego zwiększać i zmniejszać liczbę o dany procent, porównywać liczby, uŝywając procentów 7
8 rozwiązywać zadania z procentami dotyczące m.in. płac, cen, podatków, lokat i kredytów, takŝe z uŝyciem równań i układów równań liniowych zaokrąglać liczby z podaną dokładnością szacować wyniki działań i wielkości ze świata rzeczywistego znać twierdzenie o rozkładzie liczby naturalnej na czynniki pierwsze znać twierdzenie o niewymierności pierwiastka kwadratowego z liczby 2 obliczyć wartość liczbową wyraŝenia algebraicznego przekształcać sumy i róŝnice wielomianów znać wzory skróconego mnoŝenia rozwiązywać równania i nierówności liniowe oraz układy równań liniowych i zadania z treścią prowadzące do takich równań, nierówności i układów rozwiązywać równania niepełne kwadratowe rozwiązywać równania niepełne kwadratowe rozwiązywać zadania prowadzące do równań niepełnych kwadratowych rozwiązywać równania kwadratowe rozwiązywać nierówności kwadratowe sprawdzać w prostych wypadkach zaleŝność liczby rozwiązań równania kwadratowego z parametrem rozwiązywać równania kwadratowe z parametrem obliczać sumę i iloczyn pierwiastków równania kwadratowego rozwiązywać proste zadania z parametrem z zastosowaniem wzorów Viete'a odczytywać z wykresu wartości funkcji, argumenty, dla których funkcja przyjmuje daną wartość, miejsca zerowe i przedziały, dla których funkcja przyjmuje wartości dodatnie i ujemne odczytywać z wykresu dziedzinę, zbiór wartości, wartość najmniejszą i największą, przedziały monotoniczności podać przykłady funkcji rozpoznawać funkcje parzyste, nieparzyste i okresowe na podstawie wykresów uzupełniać wykres funkcji wiedząc, Ŝe jest ona parzysta, nieparzysta lub okresowa rysować wykres funkcji liniowej wyznaczać wzór funkcji liniowej, której wykres spełnia dane warunki rozwiązywać proste zadania dotyczące funkcji liniowej i jej zastosowań z wykresu funkcji f uzyskiwać wykres funkcji: f (x) + a f (x a) f (x a) + b rysować wykres funkcji kwadratowej postaci: af (x) f (ax) y = ax 2 + q y = a (x p 2) + q 8
9 y = ax 2 + bx + c (szkic bez wyznaczenia współrzędnych wierzchołka) znać i rozumieć pojęcia, zna własności figur: punkt, prosta, odcinek, półprosta równoległość, prostopadłość punkty współliniowe, symetralna odcinka kąty przyległe, wierzchołkowe, naprzemianległe trójkąt równoboczny, równoramienny ostrokątny, prostokątny, rozwartokątny kwadrat, prostokąt, równoległobok, romb, trapez promień, cięciwa, średnica, łuk kąt środkowy kąt wpisany oś symetrii, środek symetrii figura symetryczna do danej wiedzieć, ile wynosi suma kątów trójkąta i czworokąta i wykorzystywać ten fakt do rozwiązywania zadań obliczać pola i obwody: trójkąta i równoległoboku, koła trapezu, rombu o danych przekątnych wycinka koła nazywać wzajemne połoŝenie okręgów oraz prostej i okręgu, wykorzystuje te pojęcia w rozwiązywaniu zadań rozwiązywać proste zadania, wykorzystując: twierdzenie Pitagorasa twierdzenie o kącie wpisanym i środkowym pola i obwody figur potrafić uzasadniać proste fakty geometryczne, np. twierdzenie o sumie kątów trójkąta dowodzić prostych twierdzeń geometrycznych rozumieć pojęcie twierdzenia, odróŝniać twierdzenie proste od odwrotnego znając długości boków trójkąta prostokątnego, obliczyć funkcje trygonometryczne jego kątów wykonywać proste rachunki z zastosowaniem funkcji trygonometrycznych, takŝe z zastosowaniem kalkulatora stosuje funkcje trygonometryczne kąta ostrego do: prostych zadań geometrycznych prostych sytuacji Ŝycia codziennego korzystać z podanych wartości funkcji kątów 30º, 45º, 60º do rozwiązywania prostych zadań znać wartości funkcji tych kątów i wykorzystywać je do rozwiązywania prostych zadań znać jedynkę trygonometryczną" i korzystać z niej do wyznaczenia wartości jednej z funkcji, gdy dana jest inna 9
10 PROCEDURY OSIĄGANIA CELÓW Na prowadzonych zajęciach będą obowiązywały zasady: stopniowania trudności, poglądowości, indywidualności, celowości, wszechstronności i Ŝyczliwości. Uczestnicy będą uwaŝnie obserwowani, ich reakcje, zainteresowanie matematyką i stopień rozumienia przez nich poszczególnych zagadnień. Uczniowie będą aktywizowani oraz umiejętnie motywowani do zdobywania określonych umiejętności. Jak najwięcej czasu naleŝy poświęcać na ćwiczenie podstawowych umiejętności. Szczególną uwagę naleŝy zwrócić na umiejętności praktyczne, jak szacowanie, przybliŝenia czy obliczenia procentowe. W kształtowaniu umiejętności posługiwania się obiektami geometrycznymi, zwłaszcza w wypadku stereometrii, naleŝy posługiwać się modelami figur. Sposób i tempo realizacji programu oraz stopień trudności i liczba rozwiązywanych zadań będą dostosowane do moŝliwości uczniów. Motywację do pracy i uczenia się będzie podnoszona poprzez czynne angaŝowanie dzieci w przebieg zajęć i częste nagradzanie i stanie się okazją do odnoszenia drobnych sukcesów przez uczniów, a to z kolei na poprawę ich funkcjonowania społecznego oraz wyeliminowanie przejawów odrzucenia. Metody pracy podczas realizacji powyŝszego programu będą uzaleŝnione od postawionych wcześniej celów, treści i zadań dydaktycznych. METODY I FORMY PRACY METODY : wykład dyskusja pogadanka heurystyczna poprzedzona wysunięciem problemu do rozwiązania wyjaśnienie przez nauczyciela lub wskazanego ucznia sposobu rozwiązania ćwiczenie praktyczne mini zawody w rozwiązywaniu zadań FORMY : 10
11 zbiorowa, indywidualna ŚRODKI DYDAKTYCZNE przygotowane przez nauczyciela pomoce do zajęć (karty pracy, testy), rzutnik multimedialny pomoce dydaktyczne dostępne w placówce, zbiory zadań, poradniki, materiały zakupione na zajęcia KONTROLA OSIĄGNIĘĆ UCZNIÓW Praca uczniów i praca nauczyciela będzie podlegała kontroli i ocenie. Ocenianie dostarczało będzie informacji o postępach uczniów oraz ich pracy, umoŝliwi śledzenie postępów uczestników zajęć w nauce i wykrywanie luk w nabytych umiejętnościach oraz pomagało w ustaleniu stopnia opanowania poszczególnych umiejętności nabytych przez uczniów. Dzięki temu będzie moŝna korygować tempo pracy w prowadzenia zajęć, stosować właściwe metody, formy i środki dydaktyczne. Podczas zajęć wyrównawczych uczniowie nie będą otrzymywali ocen szkolnych. Na podstawie odpowiedzi ustnych, rozwiązanych zadań i prac praktycznych, wypełnionych kart pracy oraz pracy uczniów na zajęciach będzie moŝna (wspólnie z uczestnikami) określać luki i braki w opanowaniu przez nich podstawowych wiadomości i typowych umiejętności oraz będzie moŝna poszukiwać odpowiedzi na pytanie, jak jeszcze sprawniej poradzić sobie z trudnościami. Aby zachęcić uczniów do systematycznej pracy i pokonywania trudności będą stosowane częste pochwały oraz premiowanie kaŝdego ich intelektualnego i czynnego wysiłku. EWALUACJA Ewaluacja programu polega na: 11
12 zbieraniu danych na temat tego, jak udział w zajęciach wpływa na oceny szkolne, modyfikowaniu programu w trakcie realizacji. BIBLIOGRAFIA Podręczniki, zbiory zadań, rozkłady materiału dla klasy I LO i szkół ponadgimnazjalnych: - Matematyka 1 Matematyka z plusem -wyd.gwo - Matematyka 1 Sprawdziany - wyd.gwo - Matematyka w szkole średniej, powtórzenie i zbiór zadań Wydawnictwa Naukowo Techniczne - Matematyka 1 Poznać zrozumieć -wyd WSiP - Matematyka 1 wyd. Oficyna Wydawnicza *Krzysztof Pazdro - Matematyka 1 wyd.nowa Era - Matematyka 1 wyd.operon 12
13 13
14 14
PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ
PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ Opracowała : Dorota Kochańska 1 WSTĘP Indywidualizacja procesu nauczania w pracy z uczniem o szczególnych potrzebach edukacyjnych
PLAN WYNIKOWY Z MATEMATYKI
ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH im. ZBIGNIEWA HERBERTA w TRZEBIATOWIE PLAN WYNIKOWY Z MATEMATYKI Klasa pierwsza liceum ogólnokształcącego i liceum profilowanego Praca zbiorowa 03 lutego 2003r. Publikacja
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz
Z DYSLEKSJĄ BEZ BARIER
Z DYSLEKSJĄ BEZ BARIER PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ IV KLASA SZKOŁY PODSTAWOWEJ Opracowały : Izabella śółtaszek Barbara Skoczylas WSTĘP Podczas długoletniej pracy jako nauczycielki
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
Matematyka wykaz umiejętności wymaganych na poszczególne oceny
Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste
CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO
Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,
usuwa niewymierność z mianownika wyrażenia typu
Klasa pierwsza zakres rozszerzony. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje liczbę do odpowiedniego zbioru
Wymagania edukacyjne dla klasy 1 Liceum zakres podstawowy i rozszerzony
Wymagania edukacyjne dla klasy Liceum zakres podstawowy i rozszerzony Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca (K) ocena dostateczna (K) i (P) ocena
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
Plan wynikowy z matematyki kl.i LO
Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
PLAN WYNIKOWY NAUCZANIA MATEMATYKI W LICEUM PLASTYCZNYM ZAKRES PODSTAWOWY 2017/2018
PLAN WYNIKOWY NAUCZANIA MATEMATYKI W LICEUM PLASTYCZNYM ZAKRES PODSTAWOWY 2017/2018 Wstęp Plan wynikowy kształcenia matematycznego jest opracowany na podstawie programu nauczania matematyki w liceach i
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Marian Łuniewski MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH
1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI
OCENĘ CELUJĄCĄ otrzymuje uczeń który: posiadł wiedzę i umiejętności znacznie wykraczające poza program nauczania; biegle posługuje się zdobytymi wiadomościami w rozwiązywaniu problemów teoretycznych lub
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM (założone osiągnięcia ucznia w klasach I III gimnazjum zgodnie z programem nauczania Matematyka z plusem (DPN-5002-17/08) realizującym
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15
Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste
Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:
Zakres tematyczny - PINGWIN Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania: zapisywanie i porównywanie liczb rachunki pamięciowe porównywanie
MATeMAtyka zakres rozszerzony
MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2018/2019. Kryteria oceny
Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 018/019 Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era Kryteria oceny Znajomość pojęć, definicji, własności oraz wzorów objętych
PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ
PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony
MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna:
Ewa Koralewska LP... OGÓLNA PODSTA- WA PROGRA MOWA b c PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Liczby.
rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności
KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie
Wymagania na poszczególne oceny szkolne Klasa 7
1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Klasa 1 wymagania edukacyjne
Klasa wymagania edukacyjne Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program
Dział programowy: Liczby i działania ( 1 )
1 S t r o n a Dział programowy: Liczby i działania ( 1 ) 14-20 Liczby. Rozwinięcia liczb dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. MnoŜenie
MATEMATYKA KL I LO zakres podstawowy i rozszerzony
MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
I. LICZBY RZECZYWISTE I/1 1 Liczby naturalne, całkowite, wymierne i niewymierne.
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: I 80 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości
PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY. I. Liczby (20 godz.) ( b ) 2
PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY I. Liczby (0 godz.) TEMAT ZAJĘĆ Zapis dziesiętny liczby rzeczywistej Wzory skróconego mnoŝenia Nierówności liniowe Przedziały liczbowe Powtórzenie przedstawiać
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Plan wynikowy z matematyki dla klasy I liceum ogólnokształcącego, liceum profilowanego i technikum
Kształcenie ogólne w zakresie podstawowym Program nauczania:dkos-4015-21/02 Liczby i ich zbiory Plan wynikowy z matematyki dla klasy I liceum ogólnokształcącego, liceum profilowanego i technikum Pojęcie
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Plan wynikowy z rozkładem materiału
Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
klasa I Dział Główne wymagania edukacyjne Forma kontroli
semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 1 UWAGI: 1. Zakłada się,
MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej
MATeMAtyka wymagania edukacyjne Zakres podstawowy i rozszerzony Autorzy Dorota Ponczek, Karolina Wej Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych
Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające
12 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu tworzyć teksty w stylu wykorzystywać
konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
rozszerzające (ocena dobra) podstawowe (ocena dostateczna)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci