Programowanie Genetyczne
|
|
- Czesław Wiśniewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Wrocławska Wydział Elektroniki Kierunek Informatyka Damian Kowalczyk Programowanie Genetyczne Informatyka Systemów Autonomicznych Praca zaliczeniowa Wrocław 2007
2 Spis treści Wprowadzenie Konwencjonalne Programowanie Genetyczne Problemy z rekombinacją Perspektywy Literatura
3 1. Wprowadzenie Programowanie genetyczne (GP) to metoda automatycznego generowania rozwiązania programistycznego, dla problemu zadanego definicją wysokiego poziomu. Programowanie Genetyczne zaczyna od problemu zadanego w formie co ma być zrobione i automatycznie tworzy program komputerowy, który rozwiązuje problem. Istnieje już 36 instancji dla których dzięki programowaniu genetycznemu udało się osiągnąć wynik konkurencyjny dla wydajności ludzkiej, włączając w to 15 instancji gdzie programowanie genetyczne utworzyło rozwiązanie które poprawia lub powtarza funkcjonalność opatentowanych rozwiązań XX wieku, 6 instancji gdzie programowanie genetyczne osiągnęło podobny wynik do osiągnięcia 21 wieku i 2 instancje, które zostały uznane za innowację GP gotową do opatentowania. Biorąc pod uwagę te wyniki mówimy, że Genetic programming now routinely delivers high-return human-competitive machine intelligence. To twierdzenie jest podstawowym wnioskiem książki z 2003 roku: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. 2. Konwencjonalne Programowanie Genetyczne Programowanie Genetyczne (GP) to uogólnione określenie znaczące zazwyczaj ewolucyjny system przetwarzający, służący rozwiązywaniu problemów. Wczesne formy GP można znaleźć już u Friedberg a [1958] i Cramer a [1985]. Pierwszy raz jednak nazwa Programowanie Genetyczne została użyta przez Koza [1992] i ze względu na pierwsze w historii udane i uznane w szerokim gronie, praktyczne zastosowanie GP, staje się podstawą konwencjonalnych systemów programowania genetycznego. Konwencjonalne Programowanie Genetyczne Koza y zakłada reprezentację programów przez drzewa parsujące. Drzewo parsujące jest strukturą drzewiastą, która ujmuje kolejność wykonywania komponentów funkcjonalnych wewnątrz programu, w ten sposób, że wyjście program występuje w postaci korzenia; funkcje występują pod postacią węzłów a a argumenty funkcji dane są w węzłach potomnych; symbole terminalne natomiast możemy odnaleźć w liściach. Drzewo parsujące oryginalnie było wyborem naturalnej struktury dla reprezentacji programów w języku LISP, używanym przez Koza e na początku programowania genetycznego. To tylko jeden z powodów wyboru tej reprezentacji.
4 Problem w programowaniu genetycznym jest charakteryzowany przez funkcję dopasowania, zbiór komponentów funkcjonalnych i wyrażeń terminalnych. Zbiór funkcji i terminali determinuje z jakich komponentów program może się składać a funkcja dopasowania mierzy jak wyjście danego programu jest bliskie oczekiwanemu wyjściu (wynikowi). Inicjująca populacja składa się z osobników o losowej kombinacji komponentów funkcjonalnych I terminalnych w obrębie dopuszczalnych zbiorów, wspomnianych powyżej. Rys 2: Krzyżowanie poddrzew tworzy zupełnie nowe program. Poddrzewa są wybierane losowo z dwóch istniejących drzew poddawanych krzyżowaniu i zamieniane by wyprodukować drzewopotomka. Konwencjonalne programowanie genetyczne dziedziczy nowe programy z istniejących na trzy różne sposoby. Punktowa mutacja losowo zamienia funkcje albo znaki terminalne w wybranej części drzewa z innym w obrębie tego samego drzewa.
5 Liczba węzłów poddawanych mutacji jest określana parametrem prawdopodobieństwa zwanym stopniem mutacji. Mutacja poddrzewa, dla porównania, losowo zmienia całe poddrzewa; budując nowe z nowych funkcji lub symboli terminalnych. Krzyżowanie poddrzew, które jest tradycyjnie uznanawane za najważniejszy operator wariacji Programowania Genetycznego, tworzy nowe drzewa przez zamianę losowo wybranych poddrzew pomiędzy istniejącymi drzewami zilustrowano tą operację na rysunku powyżej. Programowanie genetyczne zostało zastosowane wśród ogromnej rzeczy różnorodnych problemów. Część z nich jest używana w celu porównania wydajności poszczególnych podejść genetycznego programowania: algebraiczna regresja dla przykładu. Inną grupą są użycia ukierunkowane na odkrycie na nowo rozwiązań zaproponowanych wcześniej przez człowieka, jak również odkrywanie zupełnie nowych rozwiązań po porównywalnej (konkurencyjnej przyp. Damian Kowalczyk) wydajności (przykład [Miller et al., 2000]). Istnieją również domeny, w których PG wyewoluowało, rozwiązania do problemów, które nie zostały wcześniej rozwiązane przez człowieka. Do tej grupy zaliczają się poszczególne algorytmy komputerów kwantowych i problemy poznawcze w biologii. (e.g. [Koza, 2001]). 3. Problemy z rekombinacją Pomimo sukcesów, GP jest znany z problemów behawioralnych ograniczających jego zastosowanie i wydajność. Najważniejszym z nich jest sposób, w jaki krzyżowanie poddrzew wpływa na drzewa parsujące. Na początku kłócono się, czy krzyżowanie poddrzew ma jakiekolwiek znaczące znaczenie w rekombinacji I przez to wpływ na wydajność poszukiwania. Po drugie krzyżowanie poddrzew jest uważane za generujące sporą nadmiarowość kodu. Przyjrzymy się bliżej obu kwestiom w tym rozdziale. W [Koza, 1992] kwestią sporną jest czy krzyżowanie poddrzew jest operatorem dominującym w programowaniu genetycznym: odpowiedzialnym za eksploatowanie istniejącego materiału genetycznego w poszukiwaniu coraz to lepszych rozwiązań. Niemniej jednak eksperymentalne wyniki [Angeline, 1997,Luke and Spector, 1997,Luke and Spector, 1998] sugerują inaczej. W [Angeline, 1997], autor porównuje wydajność krzyżowania poddrzew z wydajnością krzyżowania bezgłowego kurczaka
6 które przypomina krzyżowanie, ale które zachowaniem swym przystaje raczej do poddrzewnej mutacji. Działanie tego operatora polega na przeprowadzaniu zamiany poddrzew pomiędzy istniejącym drzewem parsującym I losowo generowanym drzewem podobnych rozmiarów. Wśród trzech domen, czy przestrzeni problemowych, różnica pomiędzy wydajnością samego krzyżowania poddrzew i samego krzyżowania bezgłowej kury jest statystycznie nieznaczące: sugerując, że zachowanie krzyżowania poddrzewnego nie jest wcale lepsze niż makro mutacji. Wciąż jednak (pomijając sugestie autora) zachowanie krzyżowania poddrzew nie jest ekwiwalentem krzyżowania bezgłowej kury ; biorąc pod uwagę, że krzyżowanie poddrzew ma do dyspozycji wyłącznie materiał genetyczny istniejący w danej populacji. Można się również spierać, czy oryginalne krzyżowanie nie dawało złych wyników w tych eksperymentach ze względu na brak mutacji, dzięki której mogłoby pozostawać przy przedstawianiu wciąż nowego materiału genetycznego i dywersyfikacji wewnątrz populacji. Poza tym nowsze prace Luke and Spector [1997],Luke and Spector [1998] również sugerują, że krzyżowanie poddrzew sprawdza się trochę lepiej niż makro mutacja. Luke i Spector porównują przebiegi z 90% krzyżowaniem poddrzew i 10% mutacją poddrzew z przebiegami 10% krzyżowania poddrzew i 90% mutacją poddrzew na różnych płaszczyznach problemowych i z różnymi wartościami parametrów. Ich wyniki wykazują, że podczas gdy krzyżowanie faktycznie sprawdza się lepiej niż mutacja poddrzew, korzyść jest wciąż delikatna i w większości przypadków różnica w wydajności jest statystycznie nieznaczna. Autorzy również zauważają, że dla niektórych problemów (włączając regresję symboliczną), krzyżowanie sprawdza się lepiej dla większych populacji I mniejszej liczby pokoleń, podczas gdy mutacja poddrzew sprawdza się lepiej dla małych populacji I dużej liczby pokoleń. Jednak nie dotyczy to wszystkich problemów. Słaba wydajność ma całkiem możliwe mniej wspólnego z krzyżowaniem niż ma do wspólnego z reprezentacją drzewiastą. Zostało niemal bezsprzecznie przyjętym, że krzyżowanie poprawia wydajność dla domen problemów o rozsądnie niskiej epistazie i z rozsądną aranżacją genów w obrębie chromosomu. W końcu rekombinacja jest logicznie użyteczną operacją umożliwia ewolucyjną współpracę przez umożliwienie wymiany informacji w obrębie populacji. Ponadto, wydaje się odgrywać pierwszą rolę w ewolucji eukariotycznej.
7 Rys 3: Utrata kontekstu następująca po krzyżowaniu poddrzew. Krzyżowanie poddrzew to naturalny operator rekombinacji dla drzew parsujących. Jednakże poprzez wymianę losowo wybranych poddrzew między programami, trudno jest zachować logiczną poprawność operacji. Zilustrowane jest to na rysunku powyżej. W tym przykładzie, losowe poddrzewo jest wybierane z istniejącego drzewa parsującego i zastępowane przez poddrzewo losowo wybierane z innego drzewa. Te drzewa parsujące mają ważne wspólne zachowanie: oba przyporządkowują funkcje AND do wyjść funkcji OR I XOR i oba mają lewostronną gałąź która oblicza funkcję OR dla liczby wejściowych terminali, więc w zasadzie wyglądałoby na to, że mają zgodną ze sobą informację do współdzielenia. Jednakże, ponieważ wymieniane podgałęzie są wybierane z różnych pozycji i mają różny rozmiar, kształt i funkcjonalność, zachowanie potomnego rozwiązania posiada mało wspólnego z którymkolwiek z rodziców! (porównanie z nogą, doktorze przyp. DK) Zachowanie każdego z tych programów jest zdeterminowane przez wyjście funkcji AND u szczytu programu. Wyjście funkcji zależy zarówno od funkcji, której dotyczy, jak również od jej wejściowego: wejść, którym przydzielona jest ta funkcja. Tak więc, jeżeli jej kontekst wejściowy zmienia się znacząco, równie znacząco zmienia się jej wyjście. Biorąc pod uwagę, że większość programów będzie generowała bardzo słabe rozwiązanie
8 problemu, I że rodzicielskie program są prawdopodobnie relatywnie dobre w rozwiązywaniu go, niemal oczywistym jest, że słaby potomek został mocno zmieniony. W ilustrowanym przykładzie, jedno z wejść funkcji AND zmienia się z funkcji OR trzech wejść na funkcję AND jednego wejścia niej samej: prowadzi to do znaczących zmian w zachowaniu wyjściowym. Ponieważ jest niebywałym, żeby krzyżowanie poddrzew wymieniało poddrzewa z podobną pozycją, rozmiarem, kształtem I zachowaniem, większość krzyżowań poddrzew w Programowaniu genetycznym będzie prowadziło do potomnych programów mniej dopasowanych niż ich rodzice. Tak naprawdę to się dzieje, ponieważ kontekst komponentów jest zapisany w symbolach terminalnych ich pozycji wewnątrz drzewa parsującego i ponieważ krzyżowanie poddrzew nie zachowuje pozycji komponentów. Później w ramach tej tezy kwestią sporną będzie, iż jest to wina w takim samym stopniu reprezentacji program jak I operatora krzyżowania poddrzew. 4. Perspektywy Aplikacje Programowania Genetycznego Istnieją liczne aplikacje programowania genetycznego, włączając w nie: Problemy black art, tak jak analogowa synteza obwodów elektrycznych, kontrolerów, anten, sieci i reakcji chemicznych, i innych obszarów projektowych programowanie nieprogramowalnego (PTU) włączając w to tworzenie programów komputerowych dla niekonwencjonalnych urządzeń obliczeniowych takich jak automaty komórkowe, systemy wieloagentowe, systemy równoległe, field programmable gate arrays (FPGA), field programmable analog arrays, kolonii mrówkowych, inteligencję mrowiskową, systemy rozproszone, i tym podobne nowe wynalazki komercyjnie użyteczne (CUNI) dotyczące użycia programowania genetycznego jako automatycznej maszyny wynalazczej dla tworzenia nowych, komercyjnie wykorzystywanych inwencji
9 Poszukiwania nad coraz to nowymi obszarami i domenami w których podejście programowania genetycznego byłoby aplikowalne, w celu osiągnięcia inteligencji maszynowej, o konkurencyjnej wydajności dla człowieka trwają nadal i trwają bez przerwy. 5. Literatura
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 07 - Genetyka i automaty (uzupełnienie wykładu 06) Jarosław Miszczak IITiS PAN Gliwice 21/04/2016 1 / 21 1 Wprowadzenie 2 3 2 / 21 Wprowadzenie 1 Wprowadzenie 2 3 3
Programowanie genetyczne
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Programowanie genetyczne jest rozszerzeniem klasycznego algorytmu genetycznego i jest wykorzystywane do automatycznego generowania programów
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Programowanie genetyczne (ang. genetic programming)
Programowanie genetyczne (ang. genetic programming) 1 2 Wstęp Spopularyzowane przez Johna Kozę na początku lat 90-tych. Polega na zastosowaniu paradygmatu obliczeń ewolucyjnych do generowania programów
Programowanie genetyczne - gra SNAKE
PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Algorytmy ewolucyjne (3)
Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
1. Problem badawczy i jego znaczenie. Warszawa,
Prof. dr hab. inż. Franciszek Seredyński Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy.SNŚ Instytut Informatyki f.seredynski@uksw.edu.pl Warszawa, 22.11.2018
Sortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Definicje. Algorytm to:
Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
M T E O T D O ZI Z E E A LG L O G R O Y R TM
O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
XQTav - reprezentacja diagramów przepływu prac w formacie SCUFL przy pomocy XQuery
http://xqtav.sourceforge.net XQTav - reprezentacja diagramów przepływu prac w formacie SCUFL przy pomocy XQuery dr hab. Jerzy Tyszkiewicz dr Andrzej Kierzek mgr Jacek Sroka Grzegorz Kaczor praca mgr pod
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Problem Komiwojażera - algorytmy metaheurystyczne
Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman
Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła
Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
PROGRAMOWALNE STEROWNIKI LOGICZNE
PROGRAMOWALNE STEROWNIKI LOGICZNE I. Wprowadzenie Klasyczna synteza kombinacyjnych i sekwencyjnych układów sterowania stosowana do automatyzacji dyskretnych procesów produkcyjnych polega na zaprojektowaniu
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
Grupy pytań na egzamin inżynierski na kierunku Informatyka
Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Podstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Język ludzki kod maszynowy
Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym
POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?
Autorski program nauczania
Grzegorz Kaczorowski Innowacja pedagogiczna: Algorytmika i programowanie Typ innowacji: programowa Autorski program nauczania poziom edukacyjny: PONADGIMNAZJALNY Realizatorzy innowacji: uczniowie klas
5. Algorytm genetyczny przykład zastosowania
5. Algorytm genetyczny przykład zastosowania Zagadnienie magicznych kwadratów Opis działania algorytmu Zagadnienie magicznych kwadratów polega na wygenerowaniu kwadratu n n, w którym elementami są liczby
Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski
Genomika Porównawcza Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski 1 Plan prezentacji 1. Rodzaje i budowa drzew filogenetycznych 2. Metody ukorzeniania drzewa
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...
MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera
Programowanie czas zacząć
Programowanie czas zacząć Nowa kształt edukacji informatycznej w szkołach dr inż. Zbigniew Ledóchowski Akademia Pomorska w Słupsku członek Rady ds. Informatyzacji przy Ministrze Edukacji Narodowej 1 Istota
O REDUKCJI U-INFORMACJI
O REDUKCJI U-INFORMACJI DO DANYCH Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki o komunikacji KOMPUTER informatyka elektronika
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 INFORMATYKA
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 INFORMATYKA POZIOM ROZSZERZONY FORMUŁA OD 2015 ( NOWA MATURA ) ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1,R2 MAJ 2018 Uwaga: Akceptowane są wszystkie odpowiedzi
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Urszula Poziomek, doradca metodyczny w zakresie biologii Materiał dydaktyczny przygotowany na konferencję z cyklu Na miarę Nobla, 14 stycznia 2010 r.
Ćwiczenie 1 1 Wstęp Rozważając możliwe powiązania filogenetyczne gatunków, systematyka porównuje dane molekularne. Najskuteczniejszym sposobem badania i weryfikacji różnych hipotez filogenetycznych jest
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
ALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
Algorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym
Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku
Program "FLiNN-GA" wersja 2.10.β
POLSKIE TOWARZYSTWO SIECI NEURONOWYCH POLITECHNIKA CZĘSTOCHOWSKA Zakład Elektroniki, Informatyki i Automatyki Maciej Piliński Robert Nowicki - GA Program "FLiNN-GA" wersja 2.10.β Podręcznik użytkownika
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach
Ewolucjonizm NEODARWINIZM Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Główne paradygmaty biologii Wspólne początki życia Komórka jako podstawowo jednostka funkcjonalna
Metody Kompilacji Wykład 7 Analiza Syntaktyczna
Metody Kompilacji Wykład 7 Analiza Syntaktyczna Parsowanie Parsowanie jest to proces określenia jak ciąg terminali może być generowany przez gramatykę. Włodzimierz Bielecki WI ZUT 2/57 Parsowanie Dla każdej
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover