Zagadnienia sztucznej inteligencji
|
|
- Kacper Baran
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zagadnienia sztucznej inteligencji Kierunek: informatyka wykład 2 h, laboratorium 1 h Laboratorium Dr B.Mrozek Prof. dr hab.inŝ. Tadeusz Burczyński, czł. koresp. PAN Kierownik Zakładu Inteligencji Obliczeniowej Instytut Informatyki Politechniki Krakowskiej tburczyn@pk.edu.pl 1
2 Tematyka wykładu (1) WSI Pojęcie inteligencji i jej struktura. Biologiczne koncepcje inteligencji Podstawowe pojęcia sztucznej inteligencji i jej struktura. Kryteria sztucznej inteligencji (test Turinga, inteligentne czynności, racjonalne sprawstwo). Sztuczne Ŝycie. Podstawowe pojęcia inŝynierii wiedzy. Wiedza i rozumowanie, wybrane metody reprezentacji wiedzy. Bazy wiedzy, heurystyki i metody przeszukiwania, metody wnioskowania, pozyskiwanie wiedzy, planowanie.
3 Tematyka wykładu (2) WSI Systemy ekspertowe. Podstawowe koncepcje i właściwości systemów ekspertowych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Sztuczne sieci neuronowe. Uczenie sieci neuronowych i ich zastosowania Rodzaje niepewności, zbiory rozmyte i wnioskowanie rozmyte Obliczenia na słowach i przekonaniach Obliczenia ziarniste Inteligentne systemy obliczeniowe Kierunki rozwoju metod sztucznej inteligencji
4 Laboratorium WSI InŜynieria wiedzy InŜynieria wiedzy, systemy ekspertowe Algorytmy ewolucyjne I Algorytmy ewolucyjne II Sieci neuronowe Sieci neuronowe Systemy rozmyte Kolokwium
5 Literatura (1) Arabas J., Wykłady z algorytmów ewolucyjnych. WNT Warszawa Bargiela A., Pedrycz W., Granular Computing: An Introduction. Kluwer Cholewa W., Pedrycz W., Systemy doradcze. Wyd. Pol. Śl. Gliwice Goldberg D.E., Algorytmy genetyczne i ich zastosowania. WNT Warszawa 1995.
6 Literatura (2) Kasperski M.J., Sztuczna inteligencja. Helion Korbicz J., Obuchowicz A., Uciński D., Sztuczne sieci neuronowe. Podstawy i zastosowania. Akademicka Oficyna Wydawnicza PLJ, Warszawa Mulawka A., Systemy ekspertowe. WNT Warszawa Nęcka E., Inteligencja. Gdańskie Wydawnictwo Psychologiczne, Gdańsk 2003.
7 Literatura (3) Michalewicz Z., Algorytmy genetyczne + struktury danych = programy ewolucyjne. WNT, Warszawa Osowski S., Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza Pol. Warszawskiej, Warszawa Piegat A., Modelowanie i sterowanie rozmyte. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2003.
8 Literatura (4) Russel S., Norvig P., Artificial Intelligence: A Modern Approach. Prentice Hall, Rutkowska D., Piliński M, Rutkowski L., Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. PWN, Warszawa Tadeusiewicz R., Elementarne wprowadzenie do techniki sieci neuronowych z przykładowymi programami. Akademicka Oficyna Wydawnicza PLJ, Warszawa 1999.
9 Zasady zaliczenia przedmiotu Kolokwium zaliczeniowe w postaci testu, obejmujące zarówno wiedzę teoretyczną (wykład) jak i praktyczną (laboratorium). Kolokwium odbędzie się pod koniec semestru, w czerwcu 2006.
10 Inteligencja Intelekt całokształt wiedzy, ogół doświadczenia i zdolności umysłowych człowieka (przysługuje tylko człowiekowi) Inteligencja termin definiowany niejednolicie i często utoŝsamiany z pojęciem intelekt. Oznacza swoisty zespół zdolności umoŝliwiający jednostce na korzystanie z nabytej wiedzy oraz skuteczne zachowanie się wobec nowych zadań i warunków.
11 Inteligencja Za najistotniejszy składnik wszelkich zdolności, wchodzący w zakres inteligencji jest zdolność do analizy i uogólniania stosunków zachodzących w dziedzinie, której dotyczy rozpatrywana zdolność.
12 Sztuczna Inteligencja - AI Pojęcie sztucznej inteligencji (ang. Artificial Intelligence - AI) pojawiło się w połowie lat pięćdziesiątych ubiegłego wieku w pracach McCarthy ego: McCarthy J., Programs with commonsense. In: Mechanization of Thought Processes. HMSO, London 1950, pp Dotyczyło nowego kierunku zastosowań komputerów do rozwiązywania problemów, których formułowanie i rozwiązywanie uznawane było wcześniej za wyłączną domenę człowieka.
13 Definicje sztucznej inteligencji (1) Dziedzina informatyki dotycząca metod i technik wnioskowania symbolicznego przez komputer oraz symbolicznej reprezentacji wiedzy stosowanej podczas takiego wnioskowania. E.A.Feigebaum, P.McCorduck
14 Definicje sztucznej inteligencji (2) Rozwój systematycznej teorii procesów intelektualnych. D.Michie Nauka o maszynach realizujących zadania, które wymagają inteligencji wtedy, gdy są wykonywane przez człowieka. M.Minsky
15 Rys historyczny (1) Etap pierwszy: lata Powstanie fundamentalnych prac z zakresu cybernetyki (m.in. prekursorska praca N.Wienera Cybernetics ). Koncepcja uczenia maszynowego. Sformułowany został przez Turinga tzw. test nierozróŝnialności (ang. indistinguishability test)
16 Rys historyczny (2) Etap drugi: lata Okres rozwoju podstawowych koncepcji sztucznej inteligencji, określania zakresu jej zastosowań, tworzenia podstawowych narzędzi programowych. Opracowano wiele programów do rozwiązywania zadań gier oraz automatycznego dowodzenia twierdzeń. - Program do gry w szachy (Samuel 1959). - Program Logic Theorist słuŝący do automatycznego dowodzenia twierdzeń. - Program General Problem Solver GPS słuŝący do rozwiązywania problemów ogólnych.
17 Rys historyczny (3) Cd. etapu drugiego ( ) Ogólna tendencja: poszukiwanie systemów rozwiązujących ogólne problemy, przy czym celem było uzyskanie najwyŝszego poziomu ogólności. Język przetwarzania struktur listowych LISP (List Processing Language), McCarthy 1960.
18 Rys historyczny (4) Etap trzeci: lata Ostra krytyka całej dziedziny badań wynikająca ze zbyt duŝych oczekiwań, jakie wiązano ze sztuczną inteligencją. Zaczęto traktować sztuczną inteligencję jako interesujący choć mało uŝyteczny kierunek badań. ZauwaŜono, Ŝe błędem było ograniczanie badań wyłącznie do metod wnioskowania. Stwierdzono potrzebę uwzględnienia wiedzy tej dziedziny, której dotyczyć będą zastosowania.
19 Rys historyczny (5) Cd. Etapu trzeciego ( ) Pierwsze badania ukierunkowane na rozwiązywanie bardziej wyspecjalizowanych problemów. Badania nad skonstruowaniem pierwszych systemów ekspertowych, takich jak MYCIN, LADDER, DENDRAL (Stanford, Rutgers, Carnegie Mellon MIT). Stworzenie języka programowania słuŝącego dla potrzeb sztucznej inteligencji PROLOG (Programming in Logic).
20 Rys historyczny (6) Cd.etapu trzeciego ( ) Nowy kierunek w sztucznej inteligencji inŝynieria wiedzy (ang. Knowledge Engineering) zajmujący się: - pozyskiwanie i strukturalizacja wiedzy pochodzącej od ekspertów, - dopasowanie i wybór odpowiednich technik wnioskowania i wyjaśniania dla zagadnień rozwiązywania problemów, - projektowanie układów pośredniczących (interfejsów) między uŝytkownikiem a komputerem. DuŜa liczba systemów ekspertowych budowanych w ośrodkach uniwersyteckich, ukierunkowanych na szczegółowe zadania.
21 Rys historyczny (7) Etap czwarty: lata Badania ukierunkowane na bezpośrednie zastosowania sztucznej inteligencji. Rozwój metod opartych na symulacji procesów biologicznych zachodzących w organizmach Ŝywych: - Sztuczne sieci neuronowe, - Algorytmy genetyczne i ewolucyjne, - Sztuczne systemy immunologiczne.
22 Rys historyczny (8) Cd etapu czwartego (1980- Zastosowanie zbiorów rozmytych do wnioskowania Koncepcja obliczeń inteligentnych (ang. Computational Intelligence - CI) Sztuczne sieci neuronowe + algorytmy ewolucyjne + zbiory rozmyte = CI
23 Dziedzina AI (1) rozwiązywanie problemów i strategie przeszukiwań, teoria gier, sztuczne sieci neuronowe, algorytmy ewolucyjne, automatyczne dowodzenie twierdzeń, przetwarzanie języka naturalnego, systemy ekspertowe, procesy percepcji, uczenie maszynowe, wyszukiwanie informacji (inteligentne bazy danych), programowanie automatyczne.
24 Dziedzina AI (2) W metodach sztucznej inteligencji następuje przejście od przetwarzania danych do przetwarzania wiedzy. Systemy te określa się jako systemy oparte na wiedzy (knowledge-based systems). Metody algorytmiczne charakterystyczne dla przetwarzania proceduralnego w sztucznej inteligencji zostają zastąpione przeszukiwaniem inteligentnym (intelligent search).
25 Współczesne definicje inteligencji (1) Współcześnie inteligencja określana jest zwykłe jako zdolność umysłowa lub grupa zdolności. Nie ma jednak ogólnej zgody na rozumienie terminu zdolność. UŜywa się tego pojęcia w trzech znaczeniach: potencjalne zdolności jednostki (capasities) określają do czego człowiek byłby zdolny, gdyby zostały spełnione warunki jego rozwoju (środowiskowe, zdrowotne, społeczne, osobiste itp.), zdolności rzeczywiście przejawiane (abilities) do czego człowiek jest faktycznie zdolny, jeśli spełnione są optymalne warunki ekspresji jego moŝliwości (dobry stan psychofizyczny organizmu, sprzyjające warunki otoczenia, brak stresu, itp.), poziom wykonania określonych czynności lub zadań (performance) co moŝna zmierzyć lub zaobserwować w konkretnej sytuacji.
26 Współczesne definicje inteligencji (2) KaŜdy człowiek rozwija tylko część swoich potencjalnych zdolności, a z tego jedynie część ujawnia się w pomiarach i obserwacjach. W 1986 odbyło się specjalne sympozjum zorganizowane przez Stenberga i Dettermana, poświecone zebraniu opinii reprezentatywnej grupy badaczy nt. inteligencji. Stanberg, R.J., Detterman, D.K. (eds.), What is intelligence. Contemporary viewpoints on its nature and definition. Norwood, NJ: Ablex Publishing Corporation (1986)
27 Współczesne definicje inteligencji (3) Współczesne definicje inteligencji moŝna podzielić na trzy grupy:.zdolność uczenia się,.zdolność przystosowania się,.zdolność metapoznawcza (rozeznanie we własnych procesach poznawczych i zdolnościach ich kontrolowania; osoba inteligentna uŝywa umysłu bardziej refleksyjnie i jest w stanie sterować własnymi procesami poznawczymi),
28 Współczesne definicje inteligencji (4) Inteligencja zdolność przystosowania się do okoliczności dzięki dostrzeganiu abstrakcyjnych relacji, korzystaniu z uprzednich doświadczeń i skutecznej kontroli nad własnymi procesami poznawczymi.
29 Kryteria sztucznej inteligencji - 1 Badania nad naturalną inteligencją człowieka były pierwotnie inspirowane tym, Ŝe ludzie róŝnią się między sobą pod względem zdolności umysłowych. Psychologiczne teorie inteligencji powstały jako próba zrozumienia istoty tych róŝnic oraz ich prawidłowego opisu. Podejście róŝnicowe traci jednak jakikolwiek sens w odniesieniu do AI. Kryteria AI muszą odwoływać się do cech samego procesu poznawczego, a nie do tego, czy proces ten przyniósł lepsze lub gorsze skutki w porównaniu z procesami wykonywanymi przez inne osobniki.
30 Kryteria sztucznej inteligencji - 2 MoŜna wyróŝnić trzy główne kryteria sztucznej inteligencji:.symulacja procesów naturalnych (z uŝyciem testu Turinga).Inteligentne czynności.racjonalne sprawstwo
31 Test Turinga (1) Alain Turing (1950), Computing machinery and intelligence, Mind, 59, Zaproponował przeformułowanie pytania: czy maszyny (komputery) mogą myśleć? wprowadzając koncepcję gry naśladowczej (imitacji, symulacji).
32 Test Turinga (2) B: człowiek lub komputer C: człowiek lub komputer Trzy osoby bawiące się w grę ustalania toŝsamości. Nie mogą się one widzieć, są w oddzielnych pokojach, a porozumiewają się za pomocą pisemnych protokołów. Zasadniczym elementem gry jest pytanie Turinga: Co się stanie, jeśli komputer zajmie miejsce któregoś z uczestników, a zadaniem będzie ustalenie, kto jest człowiekiem, a kto komputerem? A: człowiek lub komputer
33 Test Turinga (3) Pisanie programów komputerowych zdolnych zdać test Turinga ma głównie cel poznawczy. Celem poznania moŝe być inteligencja ludzka, a nie maszynowa. Mamy dwa systemy: naturalny (czyli umysł ludzki), sztuczny (program komputerowy).
34 Test Turinga (4) System naturalny moŝna poznać tylko pośrednio, wnioskując o zachodzących w nim procesach wyłącznie na podstawie zewnętrznego zachowania. System sztuczny nie wymaga Ŝadnych zabiegów poznawczych, poniewaŝ został przez nas od początku do końca zaprojektowany.
35 Test Turinga (5) JeŜeli system sztuczny zda test Turinga, będzie moŝna na tej podstawie wnioskować o moŝliwym sposobie funkcjonowania systemu naturalnego. A jeśli system sztuczny nie zda testu, moŝna go wtedy do woli zmieniać i poprawiać aŝ do momentu, kiedy bezstronny obserwator nie będzie w stanie odróŝnić, czy ma do czynienia z maszyną, czy teŝ z człowiekiem. Tak poprawiony program komputerowy moŝna uznać za dobrą symulację (imitację, naśladowanie) naturalnych procesów poznawczych, charakterystycznych dla inteligencji ludzkiej.
36 Test Turinga (6) Program komputerowy jest swoistym modelem procesów poznawczych człowieka. Dysponując programem dobrze naśladującym człowieka i znając doskonale jego przebieg i strukturę, uzyskujemy wiedzę o moŝliwym przebiegu i strukturze ludzkiego procesu poznawczego.
37 Inteligentne czynności (1) Czy maszyny zdolne są do wykonywania czynności uznanych przez badacza za inteligentne? Badacz moŝe się w tym przypadku kierować intuicją lub powszechnie Ŝywionymi przekonaniami Np. gra w szachy, prowadzenie sensownej rozmowy, dowodzenie twierdzeń matematycznych lub logicznych to czynności niewątpliwie inteligentne.
38 Inteligentne czynności (2) Jedną z pierwszych prób w zakresie AI był Teoretyk Logiki, zaprojektowany przez Newella i Simona. Był to program wyspecjalizowany w dowodzeniu twierdzeń Whiteheada i Russella (Principia Mathematica). Maszyna nie przeszukiwała wyczerpująco całego zbioru potencjalnie dostępnych sposobów rozwiązania, lecz kierowała się zasadami ograniczającymi zakres przeszukiwania. Zasady takie nazywa się heurystykami. Heurystyka to reguła pozwalająca ograniczyć zakres przeszukiwania pola problemowego, a tym samym skrócić czas rozwiązywania problemu.
39 Inteligentne czynności (3) Heurystyki znacząco skróciły czas pracy maszyny i sprawiły, Ŝe jej zachowanie nie było w stu procentach przewidywalne. Ponadto maszyna wykorzystywała wyniki swoich wcześniejszych działań, aŝeby zwiększyć skuteczność czynności bieŝących. Tym samym przejawiała zdolność do uczenia się na podstawie własnych doświadczeń, a nie ślepo wykonywała zadane jej rozkazy. Inteligentne czynności to zatem: (i) uŝycie heurystyk, (ii) uczenie się.
40 Racjonalne Sprawstwo (1) RS - zdolność systemu komputerowego do inicjowania działań, które są sensowne w określonym środowisku, a następnie do skutecznego kierowania tymi działaniami. System nazywamy inteligentnym wtedy, gdy jest on sprawcą, a nie tylko wykonawcą poleceń, zgodnie z zadanym algorytmem. Musi być przy tym sprawcą racjonalnym, tzn. dostosowującym swe działania do wymagań bieŝącej sytuacji i naturalnego dla siebie środowiska. System spełniający te kryteria naleŝy uznać za podmiot własnych działań.
41 Racjonalne Sprawstwo (2) System, który zachowuje się jak racjonalny sprawca, musi być wyposaŝony nie tylko w procedury umoŝliwiające wykonywanie określonych czynności, lecz równieŝ w system motywacji. Oprócz motywacji racjonalny sprawca musi być wyposaŝony w wiedzę o otoczeniu. MoŜe to być wiedza niezwykłe uproszczona, zredukowana do najbardziej niezbędnych informacji, ale musi istnieć. Ludzka wiedza teŝ nie jest doskonała ani pełna. Stanowi zawsze uproszczony model rzeczywistości, tworzony w ściśle utylitarnym celu: aby nam ułatwić skuteczne poruszanie się w rzeczywistości i rozwiązywanie problemów wynikających z jej istnienia.
42 Racjonalne Sprawstwo (3) Racjonalne sprawstwo jest najtrudniejszym do spełnienia kryterium sztucznej inteligencji. Nie ma w tej chwili systemów, o których moŝna by z przekonaniem powiedzieć, Ŝe to kryterium spełniają.
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Sztuczna inteligencja - wprowadzenie
Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
Nowoczesne techniki informatyczne Program: 1. Sztuczna inteligencja. a) definicja; b) podział: Systemy ekspertowe Algorytmy ewolucyjne Logika rozmyta Sztuczne sieci neuronowe c) historia; 2. Systemy eksperckie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, laboratorium BIOCYBERNETYKA Biocybernetics Forma studiów:
Elementy kognitywistyki II: Sztuczna inteligencja
Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3
Algorytmy wspomagania decyzji Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Systemy inteligentne Rok akademicki: 2013/2014 Kod: RME-2-108-SI-s Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: Systemy inteligentne Poziom
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Algorytmy wspomagania decyzji Czyli co i jak 2013 andrzej.rusiecki@pwr.wroc.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 911/D-20 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek:
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
Metody sztucznej inteligencji w układach sterowania METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Metody sztucznej inteligencji w układach sterowania Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
KARTA PRZEDMIOTU. 17. Efekty kształcenia:
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CYBERNETYKA 2. Kod przedmiotu: CYB 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia:
Plan wykładów METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Plan wykładów Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie formysztucznej inteligencji Elementy
Programowanie deklaratywne
Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne
BIOCYBERNETYKA PROLOG
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Wprowadzenie Wprowadzenie 1 Program przedmiotu Poszukiwanie rozwiązań w przestrzeni stanów Strategie w grach Systemy decyzyjne i uczenie maszynowe Wnioskowanie
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Wykład organizacyjny
Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania Wykład organizacyjny dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl
Inteligencja. Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych
Wstęp Inteligencja Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych inteligencja psych. zdolność rozumienia, kojarzenia; pojętność, bystrość; zdolność znajdowania właściwych, celowych
technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych.
Informatyka Coraz częściej informatykę utoŝsamia się z pojęciem technologii informacyjnych. Za naukową podstawę informatyki uwaŝa się teorię informacji i jej związki z naukami technicznymi, np. elektroniką,
Diagnostyka procesów przemysłowych Kod przedmiotu
Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki
Programowanie komputerów
Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych
Praca dyplomowa magisterska
KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW I METOD KOMPUTEROWYCH MECHANIKI Wydział Mechaniczny Technologiczny POLITECHNIKA ŚLĄSKA W GLIWICACH Praca dyplomowa magisterska Temat: Komputerowy system wspomagania wiedzy:
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład II: Modele pojęciowe Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe) przeformułowanie
Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów
Wprowadzenie. Jacek Bartman. Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski
Sztuczna inteligencja Wprowadzenie Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski INFORMACJE ORGANIZACYJNE Forma zajęć: Studia stacjonarne Wykłady 30h Laboratorium
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład I: Pomieszanie z modelem w środku Czym jest kognitywistyka? Dziedzina zainteresowana zrozumieniem procesów, dzięki którym mózg (zwł.
Najprostszy schemat blokowy
Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano
Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Inteligentne Multimedialne Systemy Uczące
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr
Inżynieria wiedzy. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki
Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki www.kwmimkm.polsl.pl Wydział Mechaniczny Technologiczny Politechnika Śląska Inżynieria wiedzy Instrukcja do zajęć laboratoryjnych 2. Tworzenie
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy
Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do
Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Systemy Decision suport systems Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia II stopnia
semestr zimowy Teoria sterowania tak
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski
Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski Architektura umysłu Pojęcie używane przez prawie wszystkie współczesne ujęcia kognitywistyki Umysł Przetwornik informacji 2 Architektura
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Alan M. TURING. Matematyk u progu współczesnej informatyki
Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Inżynieria Wiedzy i Systemy Ekspertowe dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Informacje o przedmiocie Wykład (18 h) Ćwiczenia (9
Zagadnienia optymalizacji Problems of optimization
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/04 Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE MODUŁU W
prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz
WIEDZA prawda komunikat symbol DANE fałsz kod INFORMACJA (nie tyko w informatyce) liczba znak forma ENTROPIA przekaz wiadomość Czy żyjemy w erze informacji? TAK Bo używamy nowego rodzaju maszyn maszyn
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 00 Metainformacje i wprowadzenie do tematyki Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 19 1 Metainformacje Prowadzący, terminy, i.t.p. Cele wykładu Zasady
Modelowanie przetworników pomiarowych Kod przedmiotu
Modelowanie przetworników pomiarowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Modelowanie przetworników pomiarowych Kod przedmiotu 06.0-WE-ED-MPP Wydział Kierunek Wydział Informatyki, Elektrotechniki
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
KARTA PRZEDMIOTU. Dyscyplina:
KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba
Zakład Sterowania Systemów
Zakład Sterowania Systemów Zespół ZłoŜonych Systemów Kierownik zespołu: prof. dr hab. Krzysztof Malinowski Tematyka badań i prac dyplomowych: Projektowanie algorytmów do podejmowania decyzji i sterowania
ID1SIII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
KARTA MODUŁU / KARTA RZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu ID1SIII4 Nazwa modułu Systemy inteligentne 2 Nazwa modułu w języku angielskim Intelligent
Badania operacyjne. Ćwiczenia 1. Wprowadzenie. Filip Tużnik, Warszawa 2017
Badania operacyjne Ćwiczenia 1 Wprowadzenie Plan zajęć Sprawy organizacyjne (zaliczenie, nieobecności) Literatura przedmiotu Proces podejmowania decyzji Problemy decyzyjne w zarządzaniu Badania operacyjne
Opis modułu kształcenia Programowanie liniowe
Opis modułu kształcenia Programowanie liniowe Nazwa podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku, z którym jest związany zakres podyplomowych
Reprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
Percepcja, język, myślenie
Psychologia procesów poznawczych Percepcja, język, myślenie Wprowadzenie w problematykę zajęć. Podstawowe pojęcia. W 1 1.Wprowadzenie w problematykę zajęć. Podstawowe pojęcia. 2. Historia psychologii poznawczej.
KARTA PRZEDMIOTU. zaliczenie na ocenę WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Metody numeryczne w biomechanice Nazwa w języku angielskim: Numerical methods in biomechanics Kierunek studiów (jeśli dotyczy): Inżynieria
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 2 Ćwiczenia w narzędziu CASE diagram klas. Materiały dla nauczyciela
Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Laboratorium modelowania oprogramowania w języku UML Ćwiczenie 2 Ćwiczenia w narzędziu CASE diagram
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Systemy sztucznej inteligencji w zarzdzaniu przedsibiorstwem Karta (sylabus) przedmiotu
Systemy w zarzdzaniu przedsibiorstwem Karta (sylabus) przedmiotu WZ Zarzdzanie i Inynieria Produkcji Studia II stopnia o profilu: A P Przedmiot: Systemy w zarzdzaniu przedsibiorstwem Status przedmiotu:
Historia sztucznej inteligencji. Przygotował: Konrad Słoniewski
Historia sztucznej inteligencji Przygotował: Konrad Słoniewski Prahistoria Mit o Pigmalionie Pandora ulepiona z gliny Talos olbrzym z brązu Starożytna Grecja System sylogizmów Arystotelesa (VI w. p.n.e.)
Ontologie, czyli o inteligentnych danych
1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania
Sztuczna inteligencja
POLITECHNIKA KRAKOWSKA WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Sztuczna inteligencja www.pk.edu.pl/~zk/si_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 1: Wprowadzenie do
Sztuczna inteligencja Definicja Sztuczna inteligencja (AI - ang. artificial inteligence) lub krótko SI jest stosunkowo nową interdyscyplinarną dziedziną nauki, przedmiotem wielkich oczekiwań i ożywionych
Programowanie gier. wykład 0. Joanna Kołodziejczyk. 30 września Joanna Kołodziejczyk Programowanie gier 30 września / 13
Programowanie gier wykład 0 Joanna Kołodziejczyk 30 września 2016 Joanna Kołodziejczyk Programowanie gier 30 września 2016 1 / 13 Program przedmiotu Formy zajęć: 1 Wykład studia stacjonarne (15h) 2 Laboratorium
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz
K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie
2.2.P.07: Komputerowe narzędzia inżynierii powierzchni
2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 2 Panel nt. Produkt oraz materiał
Sztuczna inteligencja - mity i rzeczywistość. Sztuczna inteligencja. Plan zajęć z przedmiotu. Plan wykładów. Literatura.
Sztuczna inteligencja dr hab. inż. Joanna Józefowska, prof. PP http://www.cs.put.poznan.pl/jjozefowska w2005 Dyżur: środa 11.30-13.00, p. 436WE Plan zajęć z przedmiotu Wykład 30 godzin Projekt 30 godzin
CZYM SĄ OBLICZENIA NAT A URALNE?
CZYM SĄ OBLICZENIA NATURALNE? Co to znaczy obliczać (to compute)? Co to znaczy obliczać (to compute)? wykonywać operacje na liczbach? (komputer = maszyna licząca) wyznaczać wartości pewnych funkcji? (program
Zasady krytycznego myślenia (1)
Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte
OPIS PRZEDMIOTU. Psychologia różnic indywidualnych 1100-Ps2RI-SJ. Kod przedmiotu. Pedagogiki i Psychologii
OPIS PRZEDMIOTU Nazwa przedmiotu Kod przedmiotu Psychologia różnic indywidualnych 1100-Ps2RI-SJ Wydział Instytut/Katedra Kierunek Pedagogiki i Psychologii Instytut Psychologii Psychologia Specjalizacja/specjalność