REGRESJA LOGISTYCZNA: WYBRANE ASPEKTY

Wielkość: px
Rozpocząć pokaz od strony:

Download "REGRESJA LOGISTYCZNA: WYBRANE ASPEKTY"

Transkrypt

1 UNIWERSYTET EKONOMICZNY W KRAKOWIE WYDZIAŁ ZARZĄDZANIA KATEDRA STATYSTYKI Kamil Fijorek REGRESJA LOGISTYCZNA: WYBRANE ASPEKTY ESTYMACJI, WNIOSKOWANIA I PORÓWNYWANIA MODELI Streszczenie rozprawy doktorskiej w języku polskim Promotor Prof. dr hab. Andrzej Sokołowski Kraków 2015

2 Streszczenie Głównym celem rozprawy jest pogłębienie stanu wiedzy na temat wybranych aspektów estymacji, wnioskowania, porównywania modeli regresji logistycznej oraz umożliwienie wykorzystania uzyskanych rezultatów teoretycznych w praktyce poprzez stworzenie odpowiedniego oprogramowania komputerowego oraz prezentację przykładów empirycznych. Główny cel rozprawy został zrealizowany za pomocą cyklu spójnych tematycznie artykułów naukowych opublikowanych w recenzowanych zagranicznych oraz polskich czasopismach naukowych. Artykuły opublikowane w czasopismach zagranicznych są prezentowane w rozprawie w oryginalnej anglojęzycznej wersji językowej. Na cykl artykułów składają się następujące publikacje: 1) Fijorek K., Porównanie modeli regresji logistycznej odpornych na problem całkowitego rozdzielenia, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, nr 884, , 2012 W małych zbiorach danych istnieje znacząca szansa na wystąpienie zjawiska całkowitego rozdzielenia. Sytuacja ta ma miejsce, gdy sukcesy i porażki mogą być całkowicie rozdzielone za pomocą jednej zmiennej objaśniającej lub liniowej kombinacji kilku zmiennych objaśniających. W takim przypadku metoda największej wiarygodności nie prowadzi do uzyskania skończonych ocen parametrów modelu. Przegląd literatury dotyczącej problematyki całkowitego rozdzielenia doprowadził do wyłonienia dwóch dojrzałych z teoretycznego punktu widzenia rozwiązań problemu, tj.: [Heinze, Schemper 2002] oraz [Rousseeuw, Christmann 2003]. Celem artykułu jest prezentacja oraz porównanie obu metod estymacji parametrów modelu regresji logistycznej. Na postawie przeprowadzonych badań można wskazać następujące wnioski ogólne: (1) Z punktu widzenia obciążenia ocen parametrów metoda Firtha oraz HLM (Hidden Logistic Model) charakteryzują się znacznie lepszym zachowaniem się w stosunku do metody największej wiarygodności (w zakresie przeprowadzonych symulacji), przy czym

3 metoda Firtha daleko lepiej radzi sobie z problemem obciążenia niż HLM. (2) Analiza wyników symulacji dla przedziałów ufności pokazuje, że metodzie Firtha powinny towarzyszyć przedziały ufności metody profile likelihood, podczas gdy dla metody HLM wyniki symulacji nie dają jednoznacznej odpowiedzi w tym zakresie. 2) Fijorek K., Aproksymacja modelu regresji logistycznej Firtha za pomocą ważenia obserwacji, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, nr 923, 89-98, 2013 W artykule przedstawiono model regresji logistycznej Firtha [Firth 1993; Heinze, Schemper 2002] z punktu widzenia wag przypisywanych przez metodę poszczególnym obserwacjom ze zbioru danych. Następnie dokonano przeformułowania modelu HLM [Rousseeuw, Christmann 2003] do podobnej postaci. Na bazie wniosków płynących z alternatywnego spojrzenia na model Firtha oraz HLM zaproponowano dwie metody aproksymacji modelu Firtha. Symulacyjnie zbadano jakość aproksymacji oraz omówiono praktyczne korzyści płynące z jej stosowania. Na postawie przeprowadzonych badań można wskazać następujące wnioski ogólne: (1) Model Firtha powinien być zawsze preferowany w stosunku do innych rozważonych w artykule metod aproksymacji. (2) Jednak w sytuacji, gdy zastosowanie modelu Firtha nie jest możliwe (co było zasadniczym założeniem poczynionym w artykule) należy rekomendować stosowanie zmodyfikowanego modelu HLM (mhlm). (3) Propozycja afirth (aproksymowany model Firtha) nie dostarczyła zadowalających rezultatów. 3) Fijorek K., Sokołowski A., Separation-resistant and bias-reduced logistic regression: STATISTICA macro, Journal of Statistical Software, 47, Code Snippet 2, 2012 (Impact Factor = 4.01, 50 punktów MNiSW) W artykule opisano rezultaty prac nad stworzeniem programu komputerowego implementującego model regresji logistycznej Firtha. Program funkcjonuje jako rozszerzenie do pakietu statystycznego STATISTICA. Wybór wspomnianego środowiska

4 był podyktowany tym, że model Firtha nie posiadał w nim swojej implementacji. Ponadto argumentem przemawiającym za tym środowiskiem jest jego znaczna popularność wśród polskich naukowców i praktyków analizy danych. Implementacja modelu Firtha może znaleźć zastosowanie, np. w naukach ekonomicznych do tworzenia modeli bankructwa w oparciu o niewielkie zbiory danych przedsiębiorstw upadłych, w naukach biologicznych podczas analizy danych pochodzących z niewielkich badań klinicznych. Artykuł zawiera opis funkcjonalności programu komputerowego, opis stosowanych metod statystycznych, numerycznych, programistycznych. W załączeniu do artykułu znajduje się kod źródłowy programu, którego działanie jest ilustrowane na przykładach empirycznych. 4) Fijorek K., Fijorek D., Dobór zmiennych objaśniających metodą najlepszego podzbioru do modelu regresji logistycznej Firtha, Metody Informatyki Stosowanej, nr 2, 15-23, 2011 W artykule podjęto próbę określenia sprawności metody najlepszego podzbioru jako procedury doboru zmiennych objaśniających do klasycznego modelu regresji logistycznej oraz do modelu regresji logistycznej Firtha w ujęciu bayesowskim. Inspiracją do podjęcia badań w tym zakresie była praca [Chen i inni, 2008], której autorzy zauważają, że generalnie w rozważanym kontekście podejście klasyczne i bayesowskie są podobne, lecz ten stan rzeczy może ulec diametralnej zmianie w małych próbach. Badacze ci jednak nie precyzują swojego spostrzeżenia, tzn. nie jest jasne, które podejście w małych próbach będzie się odznaczało lepszymi właściwościami. W rezultacie przeprowadzonych symulacji stwierdzono, że bayesowskie ujęcie modelu Firtha oraz podejście klasyczne charakteryzują się bardzo podobnymi zdolnościami wykrywania procesu generującego dane w małych próbach.

5 5) Fijorek K., Fijorek D., Wiśniowska B., Polak S., BDTcomparator: a program for comparing binary classifiers, Bioinformatics, 27(24), , 2011 (Impact Factor = 5.468, 40 punktów MNiSW) W modelu regresji logistycznej po ustaleniu wartości progowej predykcje probabilistyczne zostają zamienione na twarde predykcje przynależności przypadków do jednej z dwóch klas. W ten sposób możliwe jest zestawienie stanu faktycznego z predykcją modelu w formie tabeli czteropolowej, którą dalej można podsumować za pomocą miar sprawności klasyfikacji takich jak: dokładność, czułość, specyficzność, dodatnia i ujemna wartość predykcyjna, iloraz wiarygodności dla dodatniego i ujemnego wyniku predykcji. W chwili powstawania niniejszej pracy nie istniały narzędzia, które umożliwiałyby w kompleksowy lecz przyjazny użytkownikowi sposób wyznaczyć wszystkie wspomniane miary sprawności jednocześnie dla kilku konkurujących ze sobą modeli oraz dokonać wnioskowania statystycznego dla par konkurujących ze sobą modeli. W artykule dokonano usystematyzowania stanu wiedzy w tym temacie, dokonano weryfikacji poprawności wzorów obliczeniowych prezentowanych w literaturze poprzez ich ponowne wyprowadzenie oraz badania symulacyjne. Na postawie tych prac stworzono program komputerowy. Program dokonuje estymacji punktowej oraz przedziałowej miar sprawności klasyfikacji jednocześnie dla wielu klasyfikatorów wraz z testowaniem hipotez statystycznych o równości miar sprawności dla par konkurujących modeli. 6) Fijorek K., Przedział ufności profile likelihood dla prawdopodobieństwa sukcesu w modelu regresji logistycznej Firtha, Przegląd Statystyczny, 59(4), , 2012 W pierwszej części artykułu za pomocą symulacji zbadano właściwości przedziałów ufności Walda oraz przedziałów ufności wyznaczanych metodą profile likelihood (zaproponowano również efektywny algorytm wyznaczania tychże przedziałów) budowanych dla prawdopodobieństwa sukcesu w modelu regresji logistycznej Firtha. W drugiej części artykułu zaprezentowano przykładowy model zagrożenia upadłością przedsiębiorstwa handlowego jako etap pośredni w celu zademonstrowania praktycznego znaczenia rezultatów uzyskanych w części teoretycznej artykułu.

6 Na postawie przeprowadzonych badań można wskazać następujące wnioski ogólne: (1) Przedziały ufności metody profile likelihood osiągają prawdopodobieństwo pokrycia znacznie bliższe poziomowi nominalnemu w porównaniu do przedziałów asymptotycznych niemal we wszystkich rozważonych scenariuszach symulacyjnych. (2) Analiza rzeczywistego zbioru danych (zbiór uczący polskich przedsiębiorstw handlowych liczył 84 przedsiębiorstwa upadłe oraz 405 przedsiębiorstw nieupadłych) ponadto dostarczyła istotnego z punktu widzenia praktyki wniosku, tzn. skonstruowane przedziały ufności ukazały niepokojąco dużą niepewność związaną z szacowanym wskaźnikiem zagrożenia upadłością. Można przypuszczać, że w mniejszych próbach, tak często spotykanych w polskich modelach zagrożenia upadłością, niepewność szacunków miar zagrożenia znajduje się na jeszcze wyższym poziomie. 7) Fijorek K., Grotowski M., Bankruptcy Prediction: Some Results From a Large Sample of Polish Companies, International Business Research, 5(9), 70-77, 2012 Na potrzeby artykułu opracowano zbiór danych finansowych o polskich przedsiębiorstwach, które upadły oraz przedsiębiorstwach, które na chwilę gromadzenia danych nadal prowadziły działalność gospodarczą. Zgromadzone dane pochodziły z około 13 tys. przedsiębiorstw, przy czym przeciętna liczba rocznych obserwacji przypadająca na jedno przedsiębiorstwo wynosiła około 7. Stan ekonomiczno-finansowy przedsiębiorstw opisano za pomocą 16 wskaźników finansowych. Zbiór danych posłużył do estymacji modeli upadłości (wszystkie możliwe podzbiory zbioru zmiennych objaśniających) za pomocą regresji logistycznej Firtha. Jednym z głównych celów była próba określenia czy możliwe jest wskazanie jednego modelu lub niewielkiej grupy modeli regresji logistycznej o wyraźnie najlepszych zdolnościach predykcji upadłości, na tle pozostałych wyznaczonych modeli. W rezultacie przeprowadzonych badań można stwierdzić, że nawet w oparciu o bardzo duży zbiór danych trudno jest wskazać model ewidentnie najlepszy. Liczna grupa modeli regresji logistycznej znacznie różniących się pod względem zmiennych objaśniających charakteryzowała się zbliżonymi zdolnościami predykcyjnymi, stawiając pod znakiem

7 zapytania możliwość formułowania silnych interpretacji ekonomicznych na podstawie pojedynczych modeli.

PRZEDZIAŁ UFNOŚCI PROFILE LIKELIHOOD DLA PRAWDOPODOBIEŃSTWA SUKCESU W MODELU REGRESJI LOGISTYCZNEJ FIRTHA 1 1. WSTĘP

PRZEDZIAŁ UFNOŚCI PROFILE LIKELIHOOD DLA PRAWDOPODOBIEŃSTWA SUKCESU W MODELU REGRESJI LOGISTYCZNEJ FIRTHA 1 1. WSTĘP PRZEGLĄD STATYSTYCZNY R. LIX ZESZYT 4 2012 KAMIL FIJOREK PRZEDZIAŁ UFNOŚCI PROFILE LIKELIHOOD DLA PRAWDOPODOBIEŃSTWA SUKCESU W MODELU REGRESJI LOGISTYCZNEJ FIRTHA 1 1. WSTĘP Istotnym elementem teorii bankructwa

Bardziej szczegółowo

Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA

Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA Opis zakładanych efektów kształcenia na studiach podyplomowych Nazwa studiów: BIOSTATYSTYKA PRAKTYCZNE ASPEKTY STATYSTYKI W BADANIACH MEDYCZNYCH Typ studiów: doskonalące Symbol Efekty kształcenia dla studiów

Bardziej szczegółowo

STRESZCZENIE. rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne.

STRESZCZENIE. rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne. STRESZCZENIE rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne. Zasadniczym czynnikiem stanowiącym motywację dla podjętych w pracy rozważań

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:

Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek: Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Zdrowie Publiczne ogólnoakademicki praktyczny inny jaki. Zakład Statystyki i Informatyki Medycznej

KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Zdrowie Publiczne ogólnoakademicki praktyczny inny jaki. Zakład Statystyki i Informatyki Medycznej Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) dr Robert Milewski

KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) dr Robert Milewski Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Załącznik nr 5b do Uchwały senatu UMB nr 61/2016 z dnia 30.05.2016 Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email):

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Załącznik nr 5b do Uchwały senatu UMB nr 61/2016 z dnia 30.05.2016 Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email):

Bardziej szczegółowo

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

PRZEGLĄD STATYSTYCZNY

PRZEGLĄD STATYSTYCZNY POLSKA AKADEMIA NAUK KOMITET STATYSTYKI I EKONOMETRII PRZEGLĄD STATYSTYCZNY STATISTICAL REVIEW TOM 59 4 2012 WARSZAWA 2012 WYDAWCA Komitet Statystyki i Ekonometrii Polskiej Akademii Nauk RADA REDAKCYJNA

Bardziej szczegółowo

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii

Bardziej szczegółowo

Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L

Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE. Statystyka opisowa. Zarządzanie. niestacjonarne. I stopnia. dr Agnieszka Strzelecka. ogólnoakademicki.

PRZEWODNIK PO PRZEDMIOCIE. Statystyka opisowa. Zarządzanie. niestacjonarne. I stopnia. dr Agnieszka Strzelecka. ogólnoakademicki. Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgr Bartosza Rymkiewicza pt. Społeczna odpowiedzialność biznesu a dokonania przedsiębiorstwa

Recenzja rozprawy doktorskiej mgr Bartosza Rymkiewicza pt. Społeczna odpowiedzialność biznesu a dokonania przedsiębiorstwa Prof. dr hab. Edward Nowak Uniwersytet Ekonomiczny we Wrocławiu Katedra Rachunku Kosztów, Rachunkowości Zarządczej i Controllingu Recenzja rozprawy doktorskiej mgr Bartosza Rymkiewicza pt. Społeczna odpowiedzialność

Bardziej szczegółowo

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Model referencyjny doboru narzędzi Open Source dla zarządzania wymaganiami

Model referencyjny doboru narzędzi Open Source dla zarządzania wymaganiami Politechnika Gdańska Wydział Zarządzania i Ekonomii Katedra Zastosowań Informatyki w Zarządzaniu Zakład Zarządzania Technologiami Informatycznymi Model referencyjny Open Source dla dr hab. inż. Cezary

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

przedmiot podstawowy obowiązkowy polski drugi

przedmiot podstawowy obowiązkowy polski drugi KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMOWIENIA Szkolenie pt. Zastosowanie metod statystycznych w badaniach środowiskowych

OPIS PRZEDMIOTU ZAMOWIENIA Szkolenie pt. Zastosowanie metod statystycznych w badaniach środowiskowych Załącznik nr 1 OPIS PRZEDMIOTU ZAMOWIENIA Szkolenie pt. Zastosowanie metod statystycznych w badaniach środowiskowych 1. Przedmiotem zamówienia jest usługa szkolenia z zastosowania metod statystycznych

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Inżynieria Środowiska

Bardziej szczegółowo

Metoda przedwdrożeniowego wymiarowania zmian oprogramowania wybranej klasy systemów ERP

Metoda przedwdrożeniowego wymiarowania zmian oprogramowania wybranej klasy systemów ERP Zielona Góra, 05.03.2017r. Prof. dr hab. inż. Marcin Witczak Instytut Sterowania i Systemów Informatycznych Wydział Informatyki, Elektrotechniki i Automatyki Uniwersytet Zielonogórski Ul. Podgórna 50 65-246

Bardziej szczegółowo

Opis programu studiów

Opis programu studiów IV. Opis programu studiów Załącznik nr 9 do Zarządzenia Rektora nr 35/19 z dnia 1 czerwca 019 r. 3. KARTA PRZEDMIOTU Kod przedmiotu I-IŚ-103 Nazwa przedmiotu Statystyka w inżynierii środowiska Nazwa przedmiotu

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Kierunek studiów: Informatyka Profil: Praktyczny

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Z-LOGN1-006 Statystyka Statistics

Z-LOGN1-006 Statystyka Statistics KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN-006 Statystyka Statistics Obowiązuje od roku akademickiego 0/0 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Opinia o pracy doktorskiej pt. On active disturbance rejection in robotic motion control autorstwa mgr inż. Rafała Madońskiego

Opinia o pracy doktorskiej pt. On active disturbance rejection in robotic motion control autorstwa mgr inż. Rafała Madońskiego Prof. dr hab. inż. Tadeusz Uhl Katedra Robotyki i Mechatroniki Akademia Górniczo Hutnicza Al. Mickiewicza 30 30-059 Kraków Kraków 09.06.2016 Opinia o pracy doktorskiej pt. On active disturbance rejection

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Summary in Polish. Fatimah Mohammed Furaiji. Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling

Summary in Polish. Fatimah Mohammed Furaiji. Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling Summary in Polish Fatimah Mohammed Furaiji Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling Zastosowanie symulacji wieloagentowej w modelowaniu zachowania konsumentów Streszczenie

Bardziej szczegółowo

BIOSTATYSTYKA. Liczba godzin. Zakład Statystyki i Informatyki Medycznej

BIOSTATYSTYKA. Liczba godzin. Zakład Statystyki i Informatyki Medycznej Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez

Bardziej szczegółowo

Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski

Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Nazwa przedmiotu INFORMATYKA I BIOSTATYSTYKA Kod przedmiotu WL_ 10 Poziom studiów Jednolite studia magisterskie Status przedmiotu x podstawowy uzupełniający

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu ELEKTROLADIOLOGIA ogólnoakademicki praktyczny inny jaki. Zakład Statystyki i Informatyki Medycznej

KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu ELEKTROLADIOLOGIA ogólnoakademicki praktyczny inny jaki. Zakład Statystyki i Informatyki Medycznej Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Niezawodność i diagnostyka projekt. Jacek Jarnicki

Niezawodność i diagnostyka projekt. Jacek Jarnicki Niezawodność i diagnostyka projekt Jacek Jarnicki Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania 4. Podział na grupy, wybór tematów, organizacja

Bardziej szczegółowo

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIPN-004 Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 0/04 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Karta przedmiotu. Obowiązkowy. Kod przedmiotu: Rok studiów: Semestr: Język:

Karta przedmiotu. Obowiązkowy. Kod przedmiotu: Rok studiów: Semestr: Język: Karta przedmiotu Nazwa przedmiotu: Stopień studiów: Doktoranckie Seminarium doktorskie Marketing i jego rola we współczesnym biznesie Tryb studiów: niestacjonarne Obowiązkowy Kod przedmiotu: Rok studiów:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6

EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Układ sterowania płaszczyzną sterową o podwyższonej niezawodności 1. Analiza literatury. 2. Uruchomienie

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Załącznik nr 5b do Uchwały senatu UMB nr 61/2016 z dnia 30.05.2016 Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email):

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS Nauk o Zdrowiu Dietetyka x ogólnoakademicki praktyczny inny jaki. Zakład Statystyki i Informatyki Medycznej

KARTA PRZEDMIOTU / SYLABUS Nauk o Zdrowiu Dietetyka x ogólnoakademicki praktyczny inny jaki. Zakład Statystyki i Informatyki Medycznej Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

Nazwa przedmiotu: Współczesne koncepcje raportowania finansowego spółek w warunkach rynku kapitałowego. Obowiązkowy

Nazwa przedmiotu: Współczesne koncepcje raportowania finansowego spółek w warunkach rynku kapitałowego. Obowiązkowy Karta przedmiotu Seminarium doktorskie Nazwa przedmiotu: Stopień studiów: Doktoranckie Współczesne koncepcje raportowania finansowego spółek w warunkach rynku kapitałowego Tryb studiów: stacjonarne Obowiązkowy

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza danych ankietowych Nazwa w języku angielskim: Categorical Data Analysis Kierunek studiów (jeśli dotyczy): Matematyka stosowana Specjalność

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

BIOSTATYSTYKA KARTA PRZEDMIOTU. 1. Nazwa przedmiotu. 2. Numer kodowy COM03c. 3. Język, w którym prowadzone są zajęcia polski. 4. Typ kursu obowiązkowy

BIOSTATYSTYKA KARTA PRZEDMIOTU. 1. Nazwa przedmiotu. 2. Numer kodowy COM03c. 3. Język, w którym prowadzone są zajęcia polski. 4. Typ kursu obowiązkowy Projekt OPERACJA SUKCES unikatowy model kształcenia na Wydziale Lekarskim Uniwersytetu Medycznego w Łodzi odpowiedzią na potrzeby gospodarki opartej na wiedzy współfinansowany ze środków Europejskiego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie

Bardziej szczegółowo

Zagadnienia na egzamin magisterski na kierunku Informatyka i Ekonometria (2 stopień studiów)

Zagadnienia na egzamin magisterski na kierunku Informatyka i Ekonometria (2 stopień studiów) Zagadnienia na egzamin magisterski na kierunku Informatyka i Ekonometria (2 stopień studiów) 1. Topologie sieci komputerowych a. 06IE_2A_W02 - jest w stanie zdefiniować problem decyzyjny, analizować źródła

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO)

OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) Łódź, dn. 23.12.2013r. OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) 1. Zamawiający Firma i adres: PL Europa S.A. NIP: 725-195-02-28 Regon: 100381252 2. Tryb udzielenia zamówienia Zgodnie z

Bardziej szczegółowo

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0 Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Statystyka Wszystkie specjalności Data wydruku: 31.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane podstawowe

Bardziej szczegółowo

Natalia Gorynia-Pfeffer STRESZCZENIE PRACY DOKTORSKIEJ

Natalia Gorynia-Pfeffer STRESZCZENIE PRACY DOKTORSKIEJ Natalia Gorynia-Pfeffer STRESZCZENIE PRACY DOKTORSKIEJ Instytucjonalne uwarunkowania narodowego systemu innowacji w Niemczech i w Polsce wnioski dla Polski Frankfurt am Main 2012 1 Instytucjonalne uwarunkowania

Bardziej szczegółowo