Złożoność problemów. 1 ruch na sekundę czas wykonania ok lat 1 mln ruchów na sekundę czas wykonania ok.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Złożoność problemów. 1 ruch na sekundę czas wykonania ok lat 1 mln ruchów na sekundę czas wykonania ok."

Transkrypt

1 Złożoność problemów Przykład - wieże Hanoi Problem jest zamknięty (dolne ograniczenie złożoności = złożoność algorytmu rekurencyjnego lub iteracyjnego) i ma złożoność O(2 N ). Mnisi tybetańscy podobno rozwiązują problem dla N = 64 i wierzą, że nasz świat skończy się kiedy tego dokonają! 1 ruch na sekundę czas wykonania ok lat 1 mln ruchów na sekundę czas wykonania ok lat M.Rawski Wstęp do Informatyki 1

2 Głupia układanka Problem decyzyjny - taki problem algorytmiczny, który polega na znalezieniu odpowiedzi tak lub nie (często jest to odpowiedź na pytanie o istnienie rozwiązania problemu) Czy istnieje takie ułożenie kwadratu M x M z N = M 2 elementów, które spełnia wymagania układanki? Dla układanki 5 X 5 1mlnukładów na sekundę czas sprawdzenia ok lat Problem decyzyjny - taki problem algorytmiczny, który polega na znalezieniu odpowiedzi tak lub nie (często jest to odpowiedź na pytanie o istnienie rozwiązania problemu) M.Rawski Wstęp do Informatyki 2

3 Wartości niektórych funkcji złożoności N Funkcja log 2 N N N log 2 N N N mln (8 cyfr) 1mld (10 cyfr) 2 N 1024 liczba 16 cyfrowa liczba 31 cyfrowa liczba 91 cyfrowa liczba 302 cyfrowa N! 3,6 mln (7 cyfr) liczba 65 cyfrowa liczba 161 cyfrowa liczba 623 cyfrowa N N 10 mld (11 cyfr) liczba 85 cyfrowa liczba 201 cyfrowa liczba 744 cyfrowa liczba protonów w widocznym wszechświecie ma 126 cyfr, a liczba mikrosekund od wielkiego wybuchu ma 24 cyfry M.Rawski Wstęp do Informatyki 3

4 Zapotrzebowanie na czas jedna instrukcja trwa mikrosekundę 1 milion instrukcji na sekundę N Funkcja N 2 1/ sek. 1/2500 sek. 1/400 sek. 1/100 sek. 9/100 sek. 2 N 1/1000 sek. 1 sekunda 35,7 lat 400 bilionów stuleci 75 cyfr. liczba stuleci N N 2,8 godziny 3,3 biliony lat 70 cyfr. liczba stuleci 185 cyfr. liczba stuleci 728 cyfr. liczba stuleci M.Rawski Wstęp do Informatyki 4

5 Tempo wzrostu niektórych funkcji złożoności Funkcja f(n) jest (asymptotycznie) ograniczona z góry przez funkcję g(n), jeśli N 0 N N 0 : f(n) g(n) - oznaczmy ten fakt przez f(n) g(n). Wtedy zachodzi N N 2 N 1,2 N log 2 N N N log 2 N N 2 2 N N! N N N 5 N 3 5 N M.Rawski Wstęp do Informatyki 5

6 10 40 N N 2 N 1,2 N Podział funkcji złożoności Można także porównywać funkcje asymptotycznie w oparciu o poprzednio przyjęty warunek N 5 N 3 5 N f ( N ) lim = g( N ) N 0 - oznaczmy ten fakt przez f(n) g(n). Wtedy zachodzi 1 log 2 log 2 N log 2 N N N N log 2 N N 2 N 3 N log N 2 N N! N N 2 2N Funkcje złożoności ogólnie dzielimy na: wielomianowe - ograniczone z góry przez N k dla pewnego k (tzn. N k lub N k ) ponadwielomianowe - wykładnicze i inne szybciej rosnące (tzn. nie istnieje dla nich takie k) algorytm wielomianowy = algorytm o złożoności wielomianowej O(N k ) M.Rawski Wstęp do Informatyki 6

7 Sfery problemów algorytmicznych (podział zgrubny) Kilka pytań wzwiązku z głupią układanką: PROBLEMY TRUDNO ROZWIĄZYWALNE PROBLEMY ŁATWO ROZWIĄZYWALNE Nie istnieją wielomianowe algorytmy Istnieją (rozsądne) wielomianowe algorytmy Czy nie można po prostu poczekać na zbudowanie dostatecznie szybkiego komputera? Czy brak rozsądnego algorytmu dla tego problemu nie jest rezultatem braku wiedzy i inwencji informatyków? Czy nie można by wykazać, że dolne ograniczenie złożoności dla tego problemu jest wykładnicze i dać sobie spokój? Czy nie jest on przypadkiem tak szczególnym, że można go pominąć? M.Rawski Wstęp do Informatyki 7

8 Szybszy komputer? Maksymalna liczba elementów układanki do sprawdzenia wgodzinę Funkcja współczesny komputer komputer 100 razy szybszy komputer 1000 razy szybszy N 2 K 10 K 31,6 K 2 N L L +6 L +10 M.Rawski Wstęp do Informatyki 8

9 Szczególny przypadek? Głupia układanka należy do klasy problemów NPC (ang. Nondeterministic Polynomial-time Complete) zwanych po polsku NP. - zupełnymi, która obejmuje prawie 1000 problemów algorytmicznych o jednakowych cechach: dla wszystkich istnieją wątpliwe rozwiązania w postaci algorytmów wykładniczych dla żadnego nie znaleziono rozsądnego rozwiązania w postaci algorytmu wielomianowego dla żadnego nie udowodniono, że jego rozwiązania wymaga czasu wykładniczego najlepsze znane dolne ograniczenia są liniowe, tzn. O(N) Nie wiadomo czy są one trudno, czy łatwo rozwiązywalne! Nowe problemy NP-zupełne powstają w kombinatoryce, badaniach operacyjnych, ekonometrii, teorii grafów, logice itd. M.Rawski Wstęp do Informatyki 9

10 Układanki dwuwymiarowe Powodem braku szybkiego rozwiązania jest istnienie wielu różnych rozwiązań częściowych, nie będących częścią rozwiązania pełnego nie dających się rozszerzyć do jakiegoś rozwiązania pełnego Zwykłe układanki Puzzle zazwyczaj mają złożoność czasową O(N 2 ) W ogólnym przypadku problem układanek jest także problemem NP zupełnym M.Rawski Wstęp do Informatyki 10

11 Problem komiwojażera Problem polega na znalezieniu w sieci połączeń pomiędzy miastami najkrótszej drogi, która pozwala odwiedzić każde z miast i powrócić do miasta wyjściowego (tzw. cykl). Problem formułowany jest jako poszukiwanie minimalnego pełnego cyklu w grafie z wagami krawędzi W wersji decyzyjnej problem polega na stwierdzeniu czy istnieje cykl o koszcie nie większym niż podana wartość K Graf z wagami krawędzi Minimalny cykl o koszcie 28 M.Rawski Wstęp do Informatyki 11

12 Problem komiwojażera cd Problem komiwojażera pojawia się na przykład przy: projektowaniu sieci telefonicznych projektowaniu układów scalonych planowaniu linii montażowych programowaniu robotów przemysłowych Graf z wagami krawędzi Naiwne rozwiązanie N! Przypadek nawet dla N = 25 jest beznadziejny Minimalny cykl o koszcie 28 M.Rawski Wstęp do Informatyki 12

13 Ścieżka Hamiltona Problem polega na sprawdzeniu czy w grafie istnieje ścieżka, która przez każdy wierzchołek przechodzi dokładnie raz. Ale... Sprawdzeniu czy w grafie istnieje ścieżka, która przez każdą krawędź przechodzi dokładnie raz, nazywane jest problemem Eulera i nie jest problemem klasy NPC Graf posiadający ścieżkę Hamiltona dopiero po dodaniu krawędzi Ścieżka Hamiltona w grafie po dodaniu krawędzi M.Rawski Wstęp do Informatyki 13

14 Problemem Eulera Twierdzenie (Eulera) ( problem jest łatwo rozwiązywalny ) W grafie spójnym o parzystej liczbie krawędzi wychodzących z każdego wierzchołka (być może z wyjątkiem dwóch) istnieje ścieżka Eulera. Graf posiadający ścieżkę Eulera dopiero po dodaniu krawędzi Ścieżka Eulera w grafie po dodaniu krawędzi M.Rawski Wstęp do Informatyki 14

15 Przydział i układanie planu zajęć Na przykład: przydział studentów do pokoi w akademiku z uwzględnieniem ograniczeń wypełnianie kontenerów przedmiotami o różnych rozmiarach stwierdzenie czy istnieje plan zajęć dopasowujący nauczycieli, klasy i godziny lekcyjne w taki sposób, aby dwie klasy nie miały jednocześnie zajęć z tym samym nauczycielem, nauczyciel nie prowadził w tym samym czasie lekcji w dwóch różnych klasach, dwaj nauczyciele nie prowadzili jednocześnie lekcji w tej samej klasie itd. M.Rawski Wstęp do Informatyki 15

16 Ustalenie czy zdanie logiczne jest spełnialne Problem polega na stwierdzeniu czy istnieje takie wartościowanie asercji użytych w złożonym zdaniu logicznym, które powoduje, że zdanie to staje się prawdziwe. Np. zdanie ( E F) ( F ( D E)) staje się prawdziwe dla następującego wartościowania E PRAWDA, F FAŁSZ, D FAŁSZ i jest zatem spełnialne. Natomiast zdanie nie jest spełnialne (( D E) F) ( F ( D E)) M.Rawski Wstęp do Informatyki 16

17 Kolorowanie map Kolorowanie mapy - problem decyzyjny polegający na ustaleniu czy dana mapa płaska może być pokolorowana k barwami tak, aby sąsiednie państwa nie miały tego samego koloru. dla 2 barw problem jest łatwo rozwiązywalny - wystarczy sprawdzić, czy mapa nie zawiera punktów, w których styka się nieparzysta liczba państw dla 3 barw problem jest trudno rozwiązywalny (klasy NPC) dla 4 barw problem jest banalny - patrz twierdzenie o czterech barwach M.Rawski Wstęp do Informatyki 17

18 Kolorowanie grafów Kolorowanie grafu - wyznaczenie minimalnej liczby barw, którymi można pokolorować wierzchołki danego grafu tak, aby każde dwa wierzchołki bezpośrednio połączone krawędzią miały różne kolory. Łatwo można skonstruować graf wymagający dowolnie dużej liczby kolorów: Klika - zbiór wierzchołków w grafie połączonych każdy z każdym 8barw M.Rawski Wstęp do Informatyki 18

19 Załadunek plecaka zł Zapis w wersji optymalizacyjnej: N = max ci xi i 1,..., N, przy ograniczeniach, N i i= 1,..., N a x b i Zapis w wersji decyzyjnej: czy dla danego K istnieje takie upakowanie, że N N i i = 1,..., N c x K i i= 1,..., N a i a x b i i zł 27zł 4 7zł Plecak załadowany optymalnie c i plecak 53 zł 6 b M.Rawski Wstęp do Informatyki 19

20 Ogólna charakterystyka problemów z klasy NP (ang. Nondeterministic Polynomial-time) wymagają sprawdzania rozwiązań częściowych i rozszerzania ich w celu znalezienia rozwiązania ostatecznego; jeśli rozwiązanie częściowe nie da się dalej rozszerzyć, to trzeba powrócić na jakiś wcześniejszy etap i po dokonaniu zmian rozpocząć od nowa, postępowanie polegające na systematycznym sprawdzeniu wszystkich możliwości wymaga czasu wykładniczego jeśli znamy rozwiązanie, to sprawdzenie jego poprawności może być przeprowadzone w czasie wielomianowym! dla każdego z problemów istnieje niedeterministyczny ( magiczny ) algorytm o złożoności wielomianowej; NP skrót od ang. Nondeterministic Polynomial-time są trudno rozwiązywalne, ale stają się łatwo rozwiązywalne, jeśli korzysta się z niedeterministycznej wyroczni M.Rawski Wstęp do Informatyki 20

21 Ogólna charakterystyka problemów NP-zupełnych każdy problem klasy NP można przekształcić do jednego z nich w czasie wielomianowym (taka jest ich definicja) NPC skrót od ang. Nondeterministic Polynomial-time Complete każdy problem z tej klasy można przekształcić w czasie wielomianowym do każdego innego! znalezienie algorytmu wielomianowego dla jednego z problemów oznacza możliwość rozwiązania w czasie wielomianowym wszystkich innych! M.Rawski Wstęp do Informatyki 21

22 Ogólna charakterystyka problemów NP-zupełnych cd udowodnienie wykładniczego dolnego oszacowania dla jednego z problemów oznacza wykazanie, że żaden z nich nie może być rozwiązany w czasie wielomianowym! albo wszystkie te problemy są łatwo rozwiązywalne, albo wszystkie trudno wykazanie, że nowy problem jest NP-zupełny przebiega w dwóch krokach: 1. trzeba udowodnić, że nowy problem jest klasy NP 2. trzeba skonstruować przekształcenie, które w czasie wielomianowym transformuje do niego dowolny znany problem NPzupełny M.Rawski Wstęp do Informatyki 22

23 Przykłady przekształcania jednego problemu NPC w drugi znalezienie ścieżki Hamiltona problem komiwojażera Ścieżka Hamiltona dla 5 wierzchołków Istnieje ścieżka Hamiltona w grafie o N wierzchołkach 2 Cykl komiwojażera odługości 6 Istnieje cykl komiwojażera w uzupełnionym grafie nie dłuższy niż N + 1 M.Rawski Wstęp do Informatyki 23

24 Przykłady przekształcania jednego problemu NPC w drugi kolorowanie mapy 3 kolorami spełnialność zdania logicznego Mapa składa się z P 1, P 2,..., P N państw i mamy trzy kolory C, Z i N. Asercja P K = Z oznacza, że państwo P K jest pokolorowane na zielono. Zdanie F ma postać F1 F2, gdzie F 1 składa się ze zdań ( PK = C PK = Z PK = N) ( PK = C PK = Z PK = N) ( PK = C PK = Z PK = N) powtórzonych dla K = 1,...,N i połączonych koniunkcją, a F 2 składa się ze zdań (( P = C P = C) ( P = Z P = Z) ( P = N P = N)) K L K L K L powtórzonych dla wszystkich par K i L państw sąsiadujących ze sobą i także połączonych koniunkcją. M.Rawski Wstęp do Informatyki 24

25 Klasy problemów Klasa NP - problemy posiadające niedeterministyczne algorytmy o czasie wielomianowym Klasa P - problemy posiadające zwykłe algorytmy o czasie wielomianowym (łatwo rozwiązywalne) Klasa NP-zupełne - wzorcowe problemy z klasy NP sprowadzalne jeden do drugiego NP NP-zupełne P Czy P = NP? M.Rawski Wstęp do Informatyki 25

26 ALGORYTMY PRZYBLIŻONE praktyczne rozwiązanie dla problemównpc Np. problem komiwojażera jest trudno rozwiązywalny (NP-zupełny), ale można w czasie wielomianowym wyznaczać niezłe cykle obchodzące wszystkie wierzchołki grafu: L OPT - długość minimalnego cyklu Hamiltona L APR - długość przybliżonego rozwiązania LAPR miara dobroci rozwiązania przybliżonego: s = OPT istnieje algorytm o złożoności O(N 3 ) wyznaczający w najgorszym przypadku cykl Hamiltona o dobroci s A 1,5 A L M.Rawski Wstęp do Informatyki 26

27 Załadunek plecaka - zastosowanie metody zachłannej Posortuj pakowane przedmioty według nie rosnących wartości Pakuj je do plecaka w otrzymanym porządku, dopóki się mieszczą c a i i W przykładzie liczbowym: c1 a = = 7 3 4, c2 a = = 9 1 2, c3 27 c = = 9, a3 3 a c2 c3 c1 c4 zatem i ta lista wyznacza kolejność pakowania: a a a a a 2 = 2 6 x 2 = 1 a 2 + a 3 = 5 6 x 3 = 1 a 2 + a 3 + a 1 = 9 > 6 x 1 = 0 a 2 + a 3 + a 4 = 6 6 x 4 = 1, c 2 + c 3 + c 4 = 53 s A = 1 W najgorszym przypadku algorytm daje upakowanie o dobroci s A 2 złożoność algorytmu = złożoność sortowania = O(N log N) = = 1 7 M.Rawski Wstęp do Informatyki 27

28 UWAGI o złożoności problemów: po raz pierwszy wykazano NP-zupełność dla problemu spełnialności zdania logicznego (Cook w 1971 r.) są problemy, dla których udowodniono, że należą do klasy NP, ale nie są ani NP-zupełne, ani nie należą do klasy P, np. sprawdzenie czy dana liczba jest liczbą pierwszą są problemy, których złożoność wykładniczą można udowodnić przez podanie dolnych ograniczeń czasowych (i to nie tylko takie, jak wieże Hanoi, dla których z góry wiadomo ile iteracji wykona algorytm), np. stwierdzenie czy dla danej konfiguracji w uogólnionych szachach N x N istnieje strategia wygrywająca dla jednego z przeciwników M.Rawski Wstęp do Informatyki 28

29 UWAGI cd są problemy spełnialności, dla których także można udowodnić złożoność wykładniczą np. w dynamicznej logice zdań są problemy, dla których pokazano podwójnie wykładnicze dolne ograniczenia czasowe, np. spełnialność w arytmetyce Presburgera są problemy algorytmiczne, dla których udowodniono, że mają wykładnicze dolne ograniczenia pamięciowe O( 2 2N są ciekawe przypadki problemów, dla których efektywne w praktyce algorytmy mają złożoność wykładniczą, ale znaleziono dla nich algorytm wielomianowy sprawujący się w większości przypadków wyraźnie gorzej - zadanie programowania liniowego, algorytm sympleksowy (wykładniczy) i algorytm Karmarkara (1979) ) M.Rawski Wstęp do Informatyki 29

30 Klasy złożoności algorytmów podwójnie wykładnicza wykładnicza NP-zupełne NP P (wielomianowa) logarytmiczna arytmetyka Presburgera szachy, warcaby uogólnione małpie układanki, spełnialność, ładowanie plecaka sprawdzanie czy liczba jest pierwsza sortowanie wyszukiwanie w uporządkowanej liście M.Rawski Wstęp do Informatyki 30

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

PROBLEMY NIEROZSTRZYGALNE

PROBLEMY NIEROZSTRZYGALNE PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski Logika stosowana Ćwiczenia Złożoność obliczeniowa problemu spełnialności Marcin Szczuka Instytut Informatyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2015/2016 Marcin Szczuka (MIMUW)

Bardziej szczegółowo

Lista 6 Problemy NP-zupełne

Lista 6 Problemy NP-zupełne 1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 6 Problemy NP-zupełne Problem abstrakcyjny Q jest to relacja dwuargumentowa

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 4 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 4 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 4 WSTĘP DO INFORMATYKI Podprogramy 2 Mówiąc o podprogramach będziemy zakładali : każdy podprogram posiada jeden punkt wejścia;

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

Scenariusz 14. Miejscowość turystyczna

Scenariusz 14. Miejscowość turystyczna Scenariusz 14. Miejscowość turystyczna Znakomitym modelem wielu problemów (np. inżynierskich) mogą być obiekty matematyczne zwane grafami. Dzięki temu abstrakcyjnemu przedstawieniu danego problemu projektowanie

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze.

Struktura danych. Sposób uporządkowania informacji w komputerze. Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Złożoność algorytmów. Wstęp do Informatyki

Złożoność algorytmów. Wstęp do Informatyki Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Informatyka 1. Złożoność obliczeniowa

Informatyka 1. Złożoność obliczeniowa Informatyka 1 Wykład XI Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Efektywność Procedur Obliczeniowych. wykład 5

Efektywność Procedur Obliczeniowych. wykład 5 Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

Zadania obliczeniowe, algorytmy i złożoność obliczeniowa

Zadania obliczeniowe, algorytmy i złożoność obliczeniowa Dr inż. Jerzy Mieścicki Instytut Informatyki PW Zadania obliczeniowe, algorytmy i złożoność obliczeniowa Wstęp do Informatyki, część 2 Przeszukiwanie listy nieuporządkowanej Zapisy (records), umieszczone

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

O ISTOTNYCH OGRANICZENIACH METODY

O ISTOTNYCH OGRANICZENIACH METODY O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę

Bardziej szczegółowo

Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ

Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZŁOŻONOŚĆ OBLICZENIOWA ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ dr hab. Krzysztof SZKATUŁA, prof. PAN Instytut Badań Systemowych PAN Uniwersytet

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Podstawy Programowania. Złożoność obliczeniowa

Podstawy Programowania. Złożoność obliczeniowa Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp

Bardziej szczegółowo

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Podstawy Informatyki. Sprawność algorytmów

Podstawy Informatyki. Sprawność algorytmów Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych

Bardziej szczegółowo

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.

3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE

PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie

Bardziej szczegółowo

Wprowadzenie do złożoności obliczeniowej

Wprowadzenie do złożoności obliczeniowej problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów

Bardziej szczegółowo

Poprawność algorytmów

Poprawność algorytmów Poprawność algorytmów Jeśli uważasz, że jakiś program komputerowy jest bezbłędny, to się mylisz - po prostu nie zauważyłeś jeszcze skutków błędu, który jest w nim zawarty. Jakie błędy można popełnić? Błędy

Bardziej szczegółowo

Podstawy Programowania

Podstawy Programowania Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy

Bardziej szczegółowo

Podstawy Programowania. Złożoność obliczeniowa

Podstawy Programowania. Złożoność obliczeniowa Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott Problemy łatwe i trudne Problemy łatwe to problemy rozwiązywalne w czasie wielomianowym. Problemy trudne to takie, których

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Ubogi kartograf Kolorowanie grafu

Ubogi kartograf Kolorowanie grafu Temat 13 Ubogi kartograf Kolorowanie grafu Streszczenie Wiele problemów optymalizacyjnych dotyczy sytuacji, gdy dwa zdarzenia nie mogą wystąpić w tym samym momencie lub gdy pewne obiekty nie mogą do siebie.

Bardziej szczegółowo

Lista 4. Kamil Matuszewski 22 marca 2016

Lista 4. Kamil Matuszewski 22 marca 2016 Lista 4 Kamil Matuszewski 22 marca 2016 1 2 3 4 5 6 7 8 9 10 Zadanie 2 Ułóż algorytm który dla danego n-wierzchołkowego drzewa i liczby k pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce

Bardziej szczegółowo

Wykład 4. Droga i cykl Eulera i Hamiltona

Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Kolorowanie grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: -8-9-, p./ Zakład Badań Operacyjnych i Wspomagania

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych ZłoŜoność obliczeniowa algorytmów Techniki projektowania algorytmów Witold Marańda maranda@dmcs.p.lodz.pl 1 ZłoŜoność obliczeniowa miara efektywności algorytmu ZłoŜoność obliczeniowa

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Rozwiązywanie problemów metodą przeszukiwania

Rozwiązywanie problemów metodą przeszukiwania Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Maszyna Turinga Złożoność obliczeniowa

Maszyna Turinga Złożoność obliczeniowa Maszyna Turinga Złożoność obliczeniowa Weryfikacja poprawności programu W celu uniezależnienia się od typu komputera służącego do realizowania obliczeń, musimy się posłużyć ogólnym abstrakcyjnym modelem

Bardziej szczegółowo

Maszyna Turinga Złożoność obliczeniowa

Maszyna Turinga Złożoność obliczeniowa Zadania łatwe i trudne Złożoność obliczeniowa Zadania łatwe Sortowanie Szukanie pierwiastków wielomianów Szukanie maksimum funkcji ciągłej i różniczkowalnej Mnożenie macierzy Zadania trudne Szukanie maksimum

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

Podstawy Programowania

Podstawy Programowania Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

Przykłady problemów optymalizacyjnych

Przykłady problemów optymalizacyjnych Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Zasady analizy algorytmów

Zasady analizy algorytmów Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania

Bardziej szczegółowo

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

Lista 0. Kamil Matuszewski 1 marca 2016

Lista 0. Kamil Matuszewski 1 marca 2016 Lista 0 Kamil Matuszewski marca 206 2 3 4 5 6 7 8 0 0 Zadanie 4 Udowodnić poprawność mnożenia po rosyjsku Zastanówmy się co robi nasz algorytm Mamy podane liczby n i m W każdym kroku liczbę n dzielimy

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016 2020 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Algorytmy aproksymacyjne i parametryzowane

Algorytmy aproksymacyjne i parametryzowane Algorytmy aproksymacyjne i parametryzowane Marek Cygan Uniwersytet Warszawski 18 października 2012 Marek Cygan Algorytmy aproksymacyjne i parametryzowane 1/22 Wstęp W algorytmice problemy dzielimy na obliczeniowo

Bardziej szczegółowo

Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań

Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań dopuszczalnych. NP-optymalizacyjny problem Π składa się: zbioru instancji D Π rozpoznawalnego

Bardziej szczegółowo

INFORMATYKA SORTOWANIE DANYCH.

INFORMATYKA SORTOWANIE DANYCH. INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Wykład 10 Grafy, algorytmy grafowe

Wykład 10 Grafy, algorytmy grafowe . Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo