SCENARIUSZ ZAJĘĆ EDUKACYJNYCH
|
|
- Kazimiera Kwiecień
- 8 lat temu
- Przeglądów:
Transkrypt
1 SCENARIUSZ ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 90 min. Data: Część merytoryczna Dział programowy: Liczby rzeczywiste Temat jednostki lekcyjnej: Procenty - zastosowanie Treści kształcenia Wymagania szczegółowe. Uczeń: Procenty - umie obliczać podatki, zyski z lokat, procent prosty i składany - oblicza podwyżkę, obniżkę, rabat - zna pojęcie punktu procentowego - buduje model matematyczny dla zadań w sytuacjach życiowych Korelacja sprawność silnika (procentowy stosunek wykonanej pracy do dostarczonej energii) Uwagi stężenia procentowe, obliczanie sprawności urządzeń grzewczych, zastosowanie obliczeń procentowych w zadaniach z prądu stałego -życie codzienne np. oprocentowanie kredytów, giełda 1. Cele główne: Ukazanie wszechobecności procentów w codziennym życiu Zastosowanie obliczeń procentowych do rozwiązywania zadań matematycznych i fizycznych Dobór i budowanie modelu matematycznego do prostej sytuacji Kształtowanie umiejętności pracy w grupie Kształtowanie umiejętności prezentowania wyników pracy 2. Cele operacyjne ( szczegółowe) Poziom wiadomości: Uczeń zna: Pojęcie procentu, VAT, ceny netto i brutto Pojęcie procentu prostego i procentu składanego Pojęcia stosowane przez banki kapitał, stopa procentowa, kapitalizacja odsetek Podstawowe wielkości opisujące prąd stały Wzór, z którego możemy obliczyć opór elektryczny
2 Pojęcie sprawności urządzeń grzewczych Pojęcie energii elektrycznej i jej związek z pracą prądu elektrycznego Pojęcie napięcie, natężenia, oporu Jednostki napięcia, natężenie, oporu pojęcie energii elektrycznej i jej związek z pracą prądu elektrycznego Poziom umiejętności Uczeń potrafi: Obliczać procent danej liczby Obliczać, jakim procentem jednej liczby jest druga liczba Wyznaczać liczbę, gdy dany jest jej procent Obliczać procent prosty i składany Prowadzić sprawnie obliczenia rachunkowe na kalkulatorze Czytać tekst ze zrozumieniem Odszukać potrzebne dane w tablicach matematyczno- fizycznych Analizować otrzymane wyniki Współpracować z innymi uczniami w grupie Stosować poprawny język matematyczny Obliczyć moc prądu elektrycznego Obliczyć sprawność urządzeń grzewczych Obliczyć pracę prądu elektrycznego SPOSOBY OSIĄGANIA CELÓW KSZTAŁCENIA I WYCHOWANIA 3. Cele wychowawcze Uczeń sprawnie planuje i organizuje pracę indywidualną Uczniowie sprawnie planują i organizują pracę iw grupie Uczniowie w prosty i jednoznaczny sposób podają odpowiedzi/ wnioski 4. Procedury osiągania celów: Zasada trwałości wiedzy i umiejętności Zasada indywidualizacji i zespołowości 5. Pomoce: Tablice wzorów matematyczno- fizycznych Zeszyt przedmiotowy /matematyka, fizyka/ Karty pracy Kalkulator Folie z treściami zadań /komputer i rzutnik / tablica 6. Znajomość i interpretacja wyników egzaminów zewnętrznych (maturalnych i zawodowych) Kształcone wiadomości i umiejętności na danej lekcji są zgodne z: podstawą programową standardami egzaminacyjnymi Część metodyczna Metody nauczania: pogadanka dydaktyczna, burza mózgów, uczenie się przez działanie
3 Forma pracy: praca w grupie, praca indywidualna, praca z tekstem
4 Scenariusz lekcji 1. Wstępna część lekcji ( czynności przygotowawcze) sprawdzenie obecności, wpisanie tematu lekcji do dziennika, 2. Wprowadzenie i podanie tematu zapisanie tematu na tablicy, określenie celów lekcji, omówienie zasad jej przebiegu podział klasy na 4 grupy 3. Realizacja tematu pogadanka nt. powszechności stosowania i występowania procentów nauczyciel rozdaje grupom karty pracy i jednocześnie przedstawia je na folii, rzutniku, tak aby każda grupa znała zadania pozostałych grup praca indywidualna / grupowa uczniów nauczyciel nadzoruje pracę grup w razie potrzeby pomagając lub ustalając wspólnie z uczniami plan rozwiązania prezentacja rozwiązań formułowanie odpowiedzi / wniosków każda grupa przygotowuje prezentację rozwiązań odpowiednio na folii, na komputerze bądź na arkuszu papieru 4. Podsumowanie i uporządkowanie podstawowych wiadomości nauczyciel zadaje grupom krzyżówkę wspólne zbudowanie hasła dyskusja nt. prawidłowości / słuszności sformułowanego hasła podsumowanie typu dokończ zdanie Udziel odpowiedzi stosując skalę 1-6 pkt ( 1- min, 6-max) 1.Temat i cel lekcji zrozumiałem... 2.Lekcja była ciekawa i twórcza... 3.Starałem się brać udział w lekcji... 4.Pytania i polecenia podane przez nauczyciela były zrozumiałe... Najbardziej podobało mi się... Nie podobało mi się...
5 Krzyżówka Dla każdej z 4 grup nauczyciel przygotowuje jedną część krzyżówki i odpowiadające tej części 8 haseł. Na koniec następuje złączenie wszystkich części i odczytanie hasła. Litery w wyróżnionych kratkach, czytane po przekątnych (z góry na dół lub z dołu do góry) utworzą 4 jednowyrazowe rozwiązania. Znaczenie wyrazów: GR.I 1. Ułamek 0,(23) to ułamek 2. Kąt większy niż 90 o, a mniejszy niż 180 o 3. występuje w nim niewiadoma 4. obliczanie inaczej 5. 2*3, 7*4, 8*5 to. 6. Inaczej rezystancja jednostką jest om 7. Najdłuższa cięciwa 8. Urządzenie przekształcające energię mechaniczną na energię elektryczną GR.II 9. Osiowa, środkowa 10. Ułamek zwykły to iloraz bądź. dwóch liczb 11. Natężenie prądu to wielkość.. GR.III 17. Wykres funkcji kwadratowej 18. Punkt (0,0) to. układu współrzędnych 19. Prąd elektryczny to uporządkowany ruch. elektrycznych 20. W zapisie a n litera a jest potęgi 21. Wielkość stała np. I=const 22. Kwadraty pocięte na 7 części 23. Funkcje, których wartości powtarzają się cyklicznie w stałych odstępach 24. Dodając i odejmując wyrazy podobne wykonujesz ich. GR.IV 25. I, II, III, IV w układzie współrzędnych to
6 12. Poruszać się w pionie to inaczej iść w kierunku. 13. Np. pięciokąt czy sześciokąt 14. Jeżeli suma dowolnych dwóch odcinków jest większa od turzego to mówimy, że możemy z nich.trójkąt 15.. prądu elektrycznego to różnica potencjałów pomiędzy dwoma punktami 16. Liczbę, którą można zapisać w postaci ilorazu liczb całkowitych a/b i b 0 nazywamy Np. 5 dla liczby 10 to jej 27. Nauka społeczna analizująca oraz opisująca produkcję, dystrybucję oraz konsumpcję dóbr 28. Wartość oporu zależy od. przewodnika, pola przekroju poprzecznego i rodzaju materiału 29. Osoba zajmująca się tworzeniem planów zagospodarowania przestrzennego 30. (a+b) 2 to jeden ze wzorów skróconego 31. Procent prosty i procent Autor słynnych Elementów Odpowiedzi: 1. Okresowy 2. Rozwarty 3. Równanie 4. Liczenie 5. Iloczyny 6. Oporność 7. Średnica 8. Prądnica 9. Symetria 10. Stosunek 11. Skalarna 12. Pionowym 13. Wielokąt 14. Zbudować 15. Napięcie 16. Wymierną 17. Parabola 18. Początek 19. Ładunków 20. Podstawą 21. Constans 22. Tangramy 23. Okresowa 24. Redukcję 25. Długości 26. Dzielnik 27. Ekonomia 28. Wartości 29. Planista 30. Mnożenia 31. Składany 32. Euklides Hasło: Procenty stanowią podstawę ekonomii.
7 KARTA PRACY GR. I Zad.1 Kupiono telewizor za 2744 zł, w tej cenie zawarty jest podatek VAT w wysokości 22%. Jaka jest cena netto tego telewizora? Ilu procentowa powinna być obniżka, aby cena telewizora stanowiła cenę netto jego wartości? Zad.2 Przez jedną grzałkę, która jest dostosowana do napięcia 220V przepłynął ładunek elektryczny 40C. Przez drugą grzałkę dostosowaną również do tego samego napięcia przepłynął prąd o natężeniu 2A przez 10s. Która z grzałek dostarczyła wodzie (przez cieplny przepływ energii) więcej energii i o ile procent więcej? KARTA PRACY GR. II Zad.1 Cena komputera po obniżce o 15% wynosi 2635 zł, a cena telewizora Ile zapłaciłbyś za komputer i telewizor kupując je przed obniżką? Ile złotych zaoszczędziłeś? O ile procent mniej zapłacisz kupując oba sprzęty po obniżce? Zad.2 Pan Kowalski odczytuje wskazania licznika prądu co miesiąc i dokonuje na bieżąco opłat za energię. Cena brutto 1 kwh dla obecnego dostawcy wynosi 0,3532 zł. Wskazania licznika: maj 43256,56, czerwiec ,24. Ile zapłaci pan Kowalski za zużyty prąd? Sąsiad pana Kowalskiego korzysta z usług innego dostawcy energii i za 1kwh płaci 0,3303. Ile złotych zaoszczędziłby pan Kowalski miesięcznie mając taką samą taryfę, jak sąsiad? O ile procent jego miesięczny rachunek byłby niższy? KARTA PRACY GR. III Zad.1 Masz do dyspozycji 8000 zł. Która oferta byłaby dla Ciebie bardziej korzystna: wpłacenie tej kwoty na lokatę na okres 4 lat, gdy oprocentowanie roczne wynosi 10%, ale odsetki nie podlegają kapitalizacji czy też może wpłacenie tejże kwoty na lokatę o niższym oprocentowaniu 8%, ale odsetki podlegają kapitalizacji? Zad.2 Przez żarówkę podłączoną do napięcia 6V płynie prąd o natężeniu 0,3A.Oblicz moc jaka wydzieli się na żarówce. Jaka wydzieli się na niej moc, jeżeli napięcie zwiększymy o 50%. KARTA PRACY GRUPA IV Zad.1 Hurtownia kupuje soki bezpośrednio u producenta płacąc 2 zł za karton i dodaje od razu do tej ceny dla siebie marżę w wysokości 15% ceny producenta. Ile zapłaciłbyś za ten sok kupując go w sklepie, jeżeli sklep również dolicza sobie marżę w wysokości 20%? Zad.2 Ile wynosi opór przewodnika o długości 100m, jeżeli jego odcinek o długości 20cm ma opór 0,4? Jak się on zmieni, jeżeli długość przewodnika zmniejszymy o 20%?
SCENARIUSZ ZAJĘĆ EDUKACYJNYCH
SCENARIUSZ ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Funkcje trygonometryczne Temat
Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY
Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne
Wymagania na poszczególne oceny szkolne Klasa 7
1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
rozszerzające (ocena dobra) podstawowe (ocena dostateczna)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
SZCZEGÓŁOWA TEMATYKA WARSZTATÓW MATEMATYCZNYCH Z PITAGORASEM NA TY
SZCZEGÓŁOWA TEMATYKA WARSZTATÓW MATEMATYCZNYCH Z PITAGORASEM NA TY Poniższa tematyka jest tylko przykładowa, może być zmieniona po uwzględnieniu propozycji uczniów. Prowadzący chciałby również przeprowadzić
konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
FRAGMENTY RECENZJI PROGRAMU NAUCZANIA KORELACJA PRZEDMIOTOWA NA LEKCJACH MATEMATYKI I FIZYKI W TECHNIKUM
FRAGMENTY RECENZJI PROGRAMU NAUCZANIA KORELACJA PRZEDMIOTOWA NA LEKCJACH MATEMATYKI I FIZYKI W TECHNIKUM Recenzowany program nauczania dla IV etapu edukacyjnego Korelacja przedmiotowa na lekcjach matematyki
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Scenariusz lekcyjny Obliczanie pierwiastków dowolnego stopnia i stosowanie praw działań na pierwiastkach. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 25 wrzesień 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca
Wymagania na poszczególne oceny szkolne z matematyki dla klas siódmych ''Matematyka" Szkoła Podstawowa im. Jana Pawła II w Mętowie Rok szkolny 2017/2018 Klasa 7a, 7b Nauczyciel: Małgorzata Łysakowska Ocena
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: fizyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Ruch harmoniczny i fale mechaniczne
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: matematyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Funkcje trygonometryczne
Scenariusz lekcji fizyki w klasie drugiej gimnazjum
Scenariusz lekcji fizyki w klasie drugiej gimnazjum Temat: Opór elektryczny, prawo Ohma. Czas trwania: 1 godzina lekcyjna Realizowane treści podstawy programowej Przedmiot fizyka matematyka Realizowana
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie I gimnazjum str. 1 Wymagania edukacyjne niezbędne
W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)
Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 opracowały: mgr Agnieszka Łukaszyk, mgr Magdalena Murawska, mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który:
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1
Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1
Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje
Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum
edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki
LICZBY - Podział liczb
1 LICZBY - Podział liczb Liczby naturalne (N) to liczby, za pomocą których rachujemy. Podział liczb na diagramie prezentuje się następująco 0, 1, 2, 3, 4, 5,, 99, 100, 101,, 999, 1000, Liczby całkowite
Szkoła podstawowa. podstawowe (ocena dostateczna) rozszerzające (ocena dobra) I PÓŁROCZE
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie
Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie
Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie Temat: Obliczanie procentu danej liczby z wykorzystaniem sytuacji praktycznych. Klasa VI szkoły
Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016
edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 NAUCZYCIEL: PODRĘCZNIK: mgr Marta Kamińska Liczy się matematyka wyd. WSiP Na lekcjach matematyki
Wymagania edukacyjne matematyka klasa VII
Wymagania edukacyjne matematyka klasa VII OCENA DOPUSZCZAJĄCA Dział I Liczby - zna znaki używane do zapisu liczb w systemie rzymskim - rozpoznaje liczby podzielne przez 2, 5, 10, 100, 3, 9, 4 - rozpoznaje,
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1
klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje ułamki dziesiętne zna kolejność
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Wymagania na poszczególne oceny szkolne. Zasady oceniania na lekcjach matematyki. Klasa 7 SP Rok szkolny: 2017/2018
Wymagania na poszczególne oceny szkolne. Zasady oceniania na lekcjach matematyki. Klasa 7 SP Rok szkolny: 2017/2018 Zasady oceniania na lekcjach matematyki: 1. Uczeń prowadzi zeszyt przedmiotowy, w którym
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
Wymagania edukacyjne klasa pierwsza.
Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie
Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum. Kartoteka
Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum Kartoteka Nr zad. 1. 2. 3. 4. 5. 6. 7. 8. 9. Sprawdzana umiejętność Uczeń: Oblicza potęgi liczb wymiernych o wykładnikach naturalnych
Krzyżówki i łamigłówki dotyczące procentów i liczb ujemnych.
Literka.pl Krzyżówki i łamigłówki dotyczące procentów i liczb ujemnych. Data dodania: 2006-03-11 11:30:00 Z procentami uczniowie zapoznali się w klasie piątej. Ponadto częstospotykają się z nimi w życiu
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5
KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KLASA 5E PROWADZĄCA: Anna Sałyga DZIAŁ PROGRAMOWY: Arytmetyka TEMAT: Dodawanie i odejmowanie liczb mieszanych. CELE: Poziom wiadomości: (kategoria A) uczeń zna algorytm
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa
Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Scenariusz zajęć. Temat: Podział administracyjny Polski
1 Temat: Podział administracyjny Polski Scenariusz zajęć Cele zajęć w kategoriach: wiadomości - uczeń określa połoŝenie Polski w Europie, - podaje współrzędne geograficzne krańcowych punktów Polski, -
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź
Scenariusz lekcji matematyki dla klasy I Gimnazjum
Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przekształcanie wzorów. Cel ogólny : przekształcanie wzorów matematycznych i fizycznych z zastosowaniem metod rozwiązywania równań. Cele operacyjne:
Renata Krzemińska. nauczyciel matematyki i informatyki
Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska
Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.
Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie
Program przedmiotowo- wychowawczy z matematyki w kl.v
Program przedmiotowo- wychowawczy z matematyki w kl.v Dział Treści programowe Stawiane zadania Wartości Przewidywane efekty Liczby naturalne Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych
Wymagań edukacyjne z matematyki dla klasy VII Szkoły Podstawowej
Wymagań edukacyjne z matematyki dla klasy VII Szkoły Podstawowej Ocena celująca Uczeń spełnia wymagania na ocenę bardzo dobrą oraz ponadto: potrafi rozwiązać zadania na kilka sposobów; umie rozwiązywać
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY
zna wykresy i własności niektórych funkcji, np. y = x, y =
Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu
Scenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK.
Scenariusz lekcji matematyki w klasie 3 a z zastosowaniem niektórych elementów OK. Temat: Uwielbiam liczyć - Utrwalenie dodawania i odejmowania w zakresie 1000 oraz mnożenia i dzielenia w zakresie 100.
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4
Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Anna Konstantynowicz, Adam Konstantynowicz, Bożena Kiljańska, Małgorzata Pająk, Grażyna Ukleja [ ] 2. Szczegółowe cele kształcenia
11. Liczby rzeczywiste
. Liczby rzeczywiste Zdający: Wymagania, jakie stawia przed Tobą egzamin maturalny z przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
NaCoBeZU z matematyki dla klasy 7
NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra
1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum
Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca DZIAŁ 1. LICZBY I DZIAŁANIA pojęcie liczby naturalnej, całkowitej,
MATEMATYKA. klasa VII. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa VII Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac.
Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac. Marta Wcisło DZIAŁ DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy VII w roku 2019/2020.
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy VII w roku 2019/2020. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań edukacyjnych niezbędynych
Koło Matematyczne klasy 2-3 GIM
Koło Matematyczne klasy 2-3 GIM Autor: M.Prażuch 01.09.2011. Zmieniony 06.10.2017. Gminny Zespół Szkół w Bielanach Wrocławskich "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA
Poziomy wymagań edukacyjnych : KONIECZNY (K) - OCENA DOPUSZCZAJĄCA, PODSTAWOWY( P) - OCENA DOSTATECZNA, ROZSZERZAJĄCY(R) - OCENA DOBRA, DOPEŁNIAJĄCY (D) - OCENA BARDZO DOBRA WYKRACZAJACY(W) OCENA CELUJĄCA.
PRZYKŁADOWE SCENARIUSZE ZAJĘĆ
PRZYKŁADOWE SCENARIUSZE ZAJĘĆ SCENARIUSZ NR 1 Temat zajęć: Obliczanie pól i obwodów prostokątów. Cele zajęć: Uczeń: Zna jednostki pola; Umie obliczyć pole i obwód prostokąta i kwadratu; Wykorzystuje swoje
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY VI W ROZBICIU NA OCENY
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY VI W ROZBICIU NA OCENY Treści i umiejętności Ułamki zwykłe i dziesiętne powtórzenie Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
Dla uczniów Szkoły Podstawowej
GIMNAZJUM W ZESPOLE SZKÓŁ W RUSKU PROGRAM ZAJĘĆ POZALEKCYJNYCH Z MATEMATYKI Dla uczniów Szkoły Podstawowej Cele ogólne: CELE KSZTAŁCENIA 1. Rozbudzanie i kształtowanie zainteresowań matematycznych. 2.
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej
Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej Temat: Wzory Viete a. Zastosowanie wzorów Viete a w zadaniach. Czas trwania lekcji: dwie jednostki lekcyjne (90 minut) Powiązanie z wcześniejszą
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
Wymagania eduka cyjne z matematyki
Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na
WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM
WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,