4. JEDNOSTKI I WZORCE MIAR

Wielkość: px
Rozpocząć pokaz od strony:

Download "4. JEDNOSTKI I WZORCE MIAR"

Transkrypt

1 4. JEDNOSTKI I WZORCE MIAR 4.1. Jednostki miar Jednostka miary jest umownie przyjętą i wyznaczoną z dostateczną dokładnością wartością danej wielkości, która służy do porównania ze sobą innych wartości tej samej wielkości. Zbiór jednostek miar wielkości mierzalnych nosi nazwę układu jednostek miar. Z uwagi na bardzo dużą liczbę wielkości mierzalnych niezależnie definiowanie każdej wielkości fizycznej i jej jednostki miary prowadzi do powstawania bardzo niewygodnego w użyciu układu. Dlatego też dąży się do wyboru takich układów jednostek, w których kilka wielkości i ich jednostki przyjmuje się umownie za podstawowe, a pozostałe ustala się na podstawie równań wiążących je z wielkościami podstawowymi. W historii rozwoju pomiarów wprowadzono wiele układów jednostek. Obecnie obowiązuje międzynarodowy układ jednostek, tzw. układ SI. Różni się on od innych dotychczas stosowanych tym, że obejmuje wszystkie dziedziny nauki i techniki. Podstawowymi jednostkami układu SI są: jednostka długości - metr, jednostka masy - kilogram, jednostka czasu - sekunda, jednostka natężenia prądu - amper, jednostka temperatury - kelwin, jednostka światłości - kandela, jednostka liczności materii - mol. Uzupełniającymi jednostkami tego układu są: jednostka kąta płaskiego - radian oraz jednostka kąta bryłowego - steradian. Do opisu zjawisk elektrycznych używa się jednostki natężenia prądu amper (A), której definicja jest następująca : "amper" jest to prąd elektryczny nie zmieniający się, który, płynąc w dwóch równoległych prostoliniowych, nieskończenie długich przewodach o przekroju kołowym znikomo małym, umieszczonych w próżni w odległości jednego metra od siebie, wywołałby między tymi przewodami siłę N (niutonów) na każdy metr długości przewodu. Jednostki innych wielkości elektrycznych można wyznaczyć opierając się na jednostce prądu. Najważniejsze pochodne jednostki elektryczne i magnetyczne zestawiono poniżej: Wat (W) jest to moc, przy której praca wykonana w czasie 1s (sekunda) jest równa jednemu 1J (dżul). Wolt (V) jest to napięcie elektryczne występujące między dwiema powierzchniami ekwipotencjonalnymi jednorodnego przewodu prostoliniowego, którym płynie nie zmieniający się prąd 1A (amper), a moc wydzielana przez przewód między tymi powierzchniami jest równa 1W (wat). Om (Ω) jest to opór elektryczny między dwiema powierzchniami ekwipotencjonalnymi przewodu jednorodnego prostoliniowego, gdy niezmienne napięcie elektryczne 1V (wolt), występujące między tymi powierzchniami, wywołuje w tym przewodzie prąd elektryczny 1 A (amper). Kulomb (C) jest to ładunek elektryczny przepływający w czasie 1s (sekunda) przez powierzchnię, gdy prąd elektryczny płynący przez tę powierzchnię wynosi 1A (amper). Farad (F) jest to pojemność elektryczna, jaką ma kondensator, w którym między elektrodami występuje napięcie elektryczne 1V (wolt), gdy znajdują się na nich różnoimienne ładunki elektryczne o wartości 1C (kulomb). Henr (H) jest to indukcyjność obwodu, w którym indukuje się siła elektromotoryczna 1V (wolt), gdy prąd elektryczny płynący w tym obwodzie zmienia się jednostajnie o 1 A (amper) w czasie 1s (sekunda).

2 34 Weber (Wb) jest to strumień magnetyczny, który, malejąc jednostajnie do zera w czasie 1s (sekunda), indukuje siłę elektromotoryczną 1V (wolt) w obejmującym ten strumień magnetyczny obwodzie zamkniętym, jednozwojowym, wykonanym z przewodu o przekroju kołowym znikomo małym. Tesla (T) jest to indukcja magnetyczna pola magnetycznego równomiernego, przy której na przekrój poprzeczny 1m 2 (metr kwadratowy) przypada strumień magnetyczny 1Wb (weber). Wielokrotność i podwielokrotność jednostek miar wyraża się w układzie dziesiętnym przez dodanie odpowiednio do nazwy lub oznaczenia jednostki miary następujących przedrostków lub ich oznaczeń. Dziesiętne wielokrotności i podwielokrotności jednostek miar Przed- Oznarostek czenie Mnożnik eksa E = peta P = tera T = giga G 10 9 = mega M 10 6 = kilo k 10 3 = 1000 hekto h 10 2 = 100 deka da 10 1 = 10 decy d 10-1 = 0,1 centy c 10-2 = 0,01 mili m 10-3 = 0,001 mikro µ 10-6 = 0, nano n 10-9 = 0, piko p = 0, femto f = 0, atto a = 0, Tablica Wzorce Wzorce są to narzędzia pomiarowe odtwarzające jednostki miary lub ich wielokrotności. Od wzorców wymaga się niezmienności w czasie, dużej dokładności, łatwego odtwarzania i stosowania. Wzorce charakteryzują się następującymi parametrami: nominalna miara wzorca, niedokładność miary wzorca, okres zachowania niedokładności miary wzorca, warunki, w których miara i dokładność są zachowane. Powyższe dane podaje się bądź bezpośrednio na wzorcu lub w jego metryce. Wzorce z postępem techniki zmieniają definicje, a co najważniejsze ich dokładność jest coraz wyższa. Dobrym przykładem tego procesu jest wzorzec metra, którego definicja w ostatnich 200 latach uległa zmianie pięciokrotnie, a błąd graniczny dokładności odtworzenia wzorca metra zmiejszył się milion razy (tablica 4.2).

3 35 1 definicja 1791 r. 1/ część ćwiartki południka przechodzącego orzez Paryż (wzorzec naturalny) Błędy graniczne odtworzenia wzorca metra 2 definicja 1799 r. metr archiwalny (wzorzec końcowy) 3 definicja 1889 r. międzynarodowy prototyp metra (wzorzec kreskowy) 4 definicja 1960 r. metr jako wielokrotność długości fali świetlnej kryptonu 86 Tablica definicja 1983 r. metr jako długość drogi przebytej przez światło w określonym ułamku sekundy ±(0,15+0,2)mm ±(0,01+0,02)mm ±200 nm ±4 nm ±0,13 nm W zależności od roli, jaką pełnią w procesach pomiarowych, tworzy się pewną piramidę hierarchiczną wzorców. Na wierzchołku tej piramidy znajdują się etalony. Etalonami nazywamy wzorce przeznaczone wyłącznie do przekazywania jednostki miary (jej wielokrotności lub podwielokrotności) innym wzorcom. Są to wzorce pierwotne o randze wzorca państwowego (etalon państwowy) oraz wzorce I i II rzędu (etalony odniesienia i kontrolne). Piramida hierarchiczna wzorców opiera się na wzorcach użytkowych, które okresowo porównywane są z etalonami. Wzorce użytkowe biorą bezpośredni udział w procesach pomiarowych Źródła wzorcowych napięć stałych Ogniwo Westona Tradycyjnym wzorcem napięcia jest nasycone ogniwo Westona. Jest to przyrząd elektrochemiczny, który mieści się w szklanym naczyniu pokazanym na rys Elektrodami ogniwa są druty platynowe wtopione w ramiona naczynia. Biegunem dodatnim ogniwa jest rtęć (Hg), biegunem ujemnym - amalgamat kadmu (Cd 9-Hg), a elektrolitem - nasycony roztwór siarczanu kadmowego (CdSO ). 4 CdSO 4 3 CdSO H 2O 3 CdSO H 2O Hg Hg 2SO 4 Cd Hg Rys Nasycone ogniwo Westona Dla temperatury 20 o C wartość napięcia na zaciskach ogniwa jest równa 1,018636V. Niestety, ogniwa te są kapryśnymi urządzeniami. Ze względu na dużą wartość

4 36 temperaturowego współczynnika napięcia (40µV/ o C) muszą pracować w termostatach o precyzyjnie stabilizowanej temperaturze. Z ogniwa nie należy pobierać prądu przez dłuższy czas. Największy dopuszczalny, krótkotrwały prąd pobierany wynosi 1µA. Ogniwo wyładowywane w ciągu 3 min prądem 20µA odzyskuje właściwe napięcie dopiero po 3h. Pobór prądu przekraczającego 100µA powoduje uszkodzenie ogniwa. Ogniwa nasycone Westona są wrażliwe na wstrząsy i wibracje. Krajowy etalon napięcia jest wzorcem grupowym składającym się z 20 ogniw Westona. Wartość napięcia jest wyznaczona z błędem ±0,4ppm (parts per million. 1ppm = 10-6 ). Roczna zmiana siły elektromotorycznej poszczególnych ogniw tego etalonu nie przekracza ±1ppm Źródło oparte na złączu Josephsona Obecnie pomiary z użyciem ogniwa Westona jako wzorca napięcia są zastępowane pomiarami z użyciem nadprzewodzącego złącza Josephsona. Złącze Josephsona składa się z dwóch nadprzewodników rozdzielonych cienką warstwą dielektryka. W temperaturze ciekłego helu przez taką warstwę dielektryczną może przepływać prąd (tzw. prąd tunelowy), będący sumą prądu pojedynczych elektronów i elektronów związanych w pary. Stałoprądowy efekt Josephsona polega na tym, że przez złącze może przepływać prąd stały o wartości mniejszej od pewnej wartości krytycznej I k (rys. 4.2) nie wywołując spadku napięcia na złączu. Przemiennoprądowy wewnętrzny efekt Josephsona występuje w przypadku umieszczenia złącza spolaryzowanego prądem stałym w słabym (1mT) stałym polu magnetycznym. Wówczas przez złącze, oprócz prądu stałego, płynie również prąd przemienny o częstotliwości zależnej od napięcia U polaryzującego złącze zgodnie z zależnością. gdzie: e - ładunek elektronu, h - stała Plancka. f = 2 e h U, I n=1 n=2 n=4 n=3 1 2 I k 0 U 1 U 2 U 3 U 4 U 2 1 Rys Charakterystyka prądowo-napięciowa złącza Josephsona Szczególnie interesujący z punktu widzenia przydatności złącza do budowy wzorców napięcia jest przemiennoprądowy zewnętrzny efekt Josephsona. Efekt ten występuje po umieszczeniu złącza w polu elektromagnetycznego wielkiej częstotliwości f. Wskutek tego

5 37 charakterystyka prądowo-napięciowa złącza przybiera kształt schodkowy (rys. 4.2). Skok prądu występuje przy napięciu U V spełniającym zależność: e nf s = 2 n U n w której n - kolejny numer schodka. Ten sposób uzyskiwania napięcia wzorcowego ma bardzo korzystną cechę wymagane są tylko: pomiar częstotliwości oraz znajomość stałych fizycznych h i e. Decyzją Międzynarodowego Biura Miar przyjęto, że 2e/h=48359,400 10Hz/V. Ponieważ częstotliwość f s można zmierzyć stosunkowo łatwo z błędem 10-10, istnieje więc możliwość bardzo dokładnego określenia "napięcia schodkowego" U n. Zaletą takiego etalonu jest nie tylko dokładność odtwarzania i stabilność, lecz także to, że jest on wzorcem absolutnym, tj. wzorcem, którego wartości napięcia uzyskane w różnych laboratoriach byłyby jednakowe Wzorce rezystancji Etalon rezystancji Zgodnie z zasadą, aby wzorce miary były określone ze zjawisk molekularnych jako niezmiennych w czasie, w wielu krajach są prowadzone prace nad budową etalonu rezystancji opartego na odkrytym w 1980 roku kwantowym efekcie Halla. Kwantowy efekt Halla występuje w półprzewodnikowych płytkach o strukturach pnp. ALGaAs - GaAs lub InGaAs - InP, ochłodzonych do temperatury 0,36K. Jeżeli płytkę taką, zasilaną w kierunku osi X prądem stałym o wartości I=10µA, umieścić w silnym polu magnetycznym, którego wektor indukcji (B=12,6T) jest skierowany w kierunku osi Z, to rezystancja płytki w kierunku osi y będzie równa: h Ry = en = 25812, 8, 2 2 n gdzie: h - stała Plancka, e - ładunek elektronu, n - 2 lub 4. Etalony tego typu umożliwiają odtwarzanie jednostki rezystancji z błędem od 1do Oporniki wzorcowe Użytkowymi wzorcami rezystancji są bardzo starannie wykonane oporniki z drutu i taśm rezystancyjnych. Najczęściej spotykany podział tych wzorców, to: wzorce nienastawne, odtwarzające jedną wartość rezystancji - zwane opornikami wzorcowymi, i wzorce nastawne, odtwarzające wiele wartości rezystancji - zwane opornikami dekadowymi. Elementy rezystancyjne oporników wzorcowych wykonuje się ze stopów miedzi znanych pod nazwami handlowymi manganin i nikrothal. Manganin cechują następujące parametry elektryczne: współczynnik temperaturowy rezystancji K -1, rezystywność około Ωm, napięcie termoelektryczne względem miedzi - około 1 µv/k. Nikrothal ma współczynnik temperaturowy rezystancji K -1, rezystywność - około Ωm i napięcie termoelektryczne względem miedzi - około 2 µv/k.

6 38 a) b) zaciski napięciowe zaciski prądowe U=RI Rys Opornik wzorcowy: a) schemat elektryczny; b) szkic konstrukcji Elementy rezystywne wykonane z manganinu lub nikrothalu po poddaniu ich sztucznemu starzeniu wykazują dużą stałość rezystancji w czasie. Oporniki wzorcowe (rys. 4.3) mają dwie pary zacisków: dwa zaciski prądowe i dwa zaciski napięciowe. Zaciski prądowe służą do doprowadzenia prądu do opornika, a zaciski napięciowe do pomiaru napięcia na oporniku. Stosowanie zacisków prądowych i napięciowych zmniejsza błędy spowodowane skończonymi rezystancjami na stykach przewodów łączących i zacisków, zwłaszcza tam, gdzie są one porównywalne z wartością rezystancji opornika wzorcowego. Ważnym parametrem oporników wzorcowych jest ich obciążalność, która zależy od warunków chłodzenia. W powietrzu wynosi ona z reguły 1 W, zaś w kąpieli cieczowej (olej, nafta) 3 W Źródła częstotliwości wzorcowych Etalonami częstotliwości są atomowe wzorce cezowe, rubidowe oraz masery wodorowe. Ponieważ częstotliwość jest powiązana prostą zależnością z czasem (1Hz=1s -1 ), wzorzec częstotliwości jest więc jednocześnie wzorcem czasu Wzorzec cezowy Wzorce cezowe są wzorcami pierwotnymi i jako takie nie wymagają kalibracji. W wyniku umów międzynarodowych ustalono, że właściwości atomu cezu posłużą do definicji sekundy: jest to czas trwania okresów promieniowania odpowiadającego przejściu między dwoma stanami energetycznymi F=4 i F=3 swobodnych atomów cezu 133. Wzorzec cezowy jest praktycznie małym laboratorium przeznaczonym do badania wiązki atomów cezu. Atomy cezu, wytwarzane w specjalnym piecu, wpadają do komory próżniowej, gdzie przelatują przez zespół magnesów, segregujący je według wartości spinów, oraz przez obszar oscylacyjnych pól elektrycznych, a następnie trafiają do detektora jonizującego z gorącą elektrodą. Sygnał wyjściowy ma małą moc. Dlatego wzorzec cezowy jest stosowany nie bezpośrednio, lecz pośrednio do stabilizacji częstotliwości stabilnego

7 39 wzorca kwarcowego (np. o częstotliwości f w =5 MHz) za pomocą syntezy częstotliwości. Tak skonstruowany etalon wytwarza sygnał wzorcowy o częstotliwości 5 MHz z błędem względnym mniejszym niż ± Wzorzec rubidowy We wzorcach rubidowych wykorzystuje się zjawisko pochłaniania promieniowania mikrofalowego o częstotliwości Hz. Główną częścią wzorca jest szklana bańka wypełniona parami rubidu, umieszczona wraz z układem podgrzewania we wnęce mikrofalowej, którą wyposażono w dwa szklane okienka. Światło znajdujące się na zewnątrz lampy rubidowej przechodzi przez wnękę i trafia do umieszczonej po jej przeciwnej stronie fotokomórki wykrywającej wysyłane promieniowanie. Równocześnie do wnęki jest doprowadzany modulowany sygnał wyjściowy generatora kwarcowego. W omawianym wzorcu zastosowano układ detekcji synchronicznej emitowanego światła, co zapewniło dokładne zrównanie wartości częstotliwości sygnału mikrofalowego z wartością częstotliwości rezonansowej atomów rubidu. Wykorzystano zjawisko zmiany stopnia pochłaniania światła przez pary rubidu, którego atomy pobudzane są do drgań rezonansowych w zakresie mikrofal. W stanie synchronizacji występuje ścisła zależność między wartościami częstotliwości sygnału generatora kwarcowego i częstotliwości linii rezonansowej rubidu, co pozwala wytworzyć sygnał o standardowej częstotliwości 10 MHz. Wartość niestałości częstotliwości wzorców rubidowych jest rzędu w pełnym zakresie temperatur Wzorzec wodorowy Neutralne atomy wodoru charakteryzują się takimi dwoma stanami energetycznymi, że różnica wartości energii tych stanów odpowiada promieniowaniu mikrofalowemu o częstotliwości ,768 Hz. Stwierdzono, że da się stymulować emisje takiego promieniowania, otrzymując generator sygnału mikrofalowego, co nie było możliwe w przypadku innych wzorców atomowych. We wzorcu wodorowym, podobnie jak we wzorcu cezowym, wytwarza się wiązkę atomów, a następnie poddaje się ją selekcji stanów magnetycznych w odpowiednim zespole magnesów. "Odchudzoną" wiązkę, złożoną z atomów o właściwych stanach energetycznych, wpuszcza się do kwarcowej bańki, umieszczonej we wnętrzu rezonatora mikrofalowego, pokrytej wewnątrz powłoką teflonową. Atomy przebywają w bańce (komórce magazynującej) około 1s, odbijając się wielokrotnie od jej ścianek i emitując energię w zakresie mikrofalowym, co wystarcza do podtrzymania drgań w rezonatorze. Sygnał pobierany z rezonatora służy do dostrajania generatora kwarcowego. Stosuje się do tego celu układy pętli fazowych oraz mieszacze. Omawiane urządzenie nazywa się maserem (microwave amplification by stimulated emission of radiation - wzmacnianie sygnału mikrofalowego przez stymulowaną emisję promieniowania). Masery wodorowe charakteryzują się dużą, o wartości , stałością częstotliwości wytwarzanego sygnału w krótkich okresach czasu (do kilku godzin). Jednakże nie mogą one stać się pierwotnymi wzorcami częstotliwości, czyli nie mogą zastąpić wzorców cezowych ze względu na nierozwiązany problem dokładnego określenia przesunięcia częstotliwości, powodowanego przez rezonator, oraz z powodu zbyt dużej wartości długoczasowego dryftu częstotliwości, powstającego w wyniku powolnych zmian właściwości substancji tworzącej wewnętrzne pokrycie komórki magazynującej.

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

Redefinicja jednostek układu SI

Redefinicja jednostek układu SI CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA

Bardziej szczegółowo

Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika.

Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika. Sprawy organizacyjne Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. marzan@mech.pw.edu.pl p. 329, Mechatronika http://adam.mech.pw.edu.pl/~marzan/ http://www.if.pw.edu.pl/~wrobel Suma punktów: 38 2 sprawdziany

Bardziej szczegółowo

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015 Fizyka w. 02 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Wektory ujęcie analityczne Definicja Wektor = uporządkowana trójka liczb (współrzędnych kartezjańskich) a = a x a y a z długość wektora: a = a 2 x +

Bardziej szczegółowo

Fizyka i wielkości fizyczne

Fizyka i wielkości fizyczne Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać

Bardziej szczegółowo

Miernictwo elektroniczne

Miernictwo elektroniczne Miernictwo elektroniczne Policz to, co można policzyć, zmierz to co można zmierzyć, a to co jest niemierzalne, uczyń mierzalnym Galileo Galilei Dr inż. Zbigniew Świerczyński p. 112A bud. E-1 Wstęp Pomiar

Bardziej szczegółowo

PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ

PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ Klub Polskich Laboratoriów Badawczych POLLAB PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ Andrzej Hantz Centrum Metrologii im. Zdzisława Rauszera RADWAG Wagi Elektroniczne Metrologia

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo

dr inż. Marcin Małys / dr inż. Wojciech Wróbel Podstawy fizyki

dr inż. Marcin Małys / dr inż. Wojciech Wróbel Podstawy fizyki dr inż. Marcin Małys / dr inż. Wojciech Wróbel Podstawy fizyki Ramowy program wykładu (1) Wiadomości wstępne; wielkości fizyczne, układ jednostek SI; układ współrzędnych, operacje na wektorach. Rachunek

Bardziej szczegółowo

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Właściwy dobór rezystorów nastawnych do regulacji natężenia w obwodach prądu stałego. Zapoznanie

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

Wzorce jednostek miar elektrycznych

Wzorce jednostek miar elektrycznych Wzorce jednostek miar elektrycznych Wykład nr 2 2/36 Wzorce jednostek miar-klasyfikacja wzorców Wzorcem nazywamy narzędzie pomiarowe dzięki któremu możliwe jest materialne odtworzenie jednostki pomiarowej

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 5, wykład nr 9, 10 Prawo autorskie Niniejsze materiały podlegają

Bardziej szczegółowo

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 3 Podstawowe wiadomości z fizyki Kalisz Dr inż. Janusz Dębiński 1 Jednostki i układy jednostek Jednostką miary wielkości fizycznej nazywamy wybraną w sposób

Bardziej szczegółowo

Fizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria

Fizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Fizyka dla inżynierów I, II Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Wymagania wstępne w zakresie przedmiotu: - Ma wiedzę z zakresu fizyki oraz chemii na poziomie programu

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI I MIERNICTWA

PODSTAWY ELEKTRONIKI I MIERNICTWA PODSTAWY ELEKTRONIKI I MIERNICTWA Konsultacje: - czwartki 15.05-15.35 WEL, pok. 56/100 tel. 839-082 jjakubowski@wat.edu.pl 4.1. Pojęcia podstawowe M E T R O L O G I A OGÓLNA TEOTERYCZNA PRAWNA STOSOWANA

Bardziej szczegółowo

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki. 06 6 Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl Wielkość fizyczna. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.

Bardziej szczegółowo

Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki

Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki ELEKTROTECHNIKA Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki Dane kontaktowe: budynek główny Wydz. E i A, pok. E-117 (I piętro),

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

Ćwiczenie nr 3 Sprawdzenie prawa Ohma.

Ćwiczenie nr 3 Sprawdzenie prawa Ohma. Ćwiczenie nr 3 Sprawdzenie prawa Ohma. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne wykazanie i potwierdzenie słuszności zależności określonych prawem Ohma. Zastosowanie prawa Ohma dla zmierzenia oporności

Bardziej szczegółowo

Układ SI. Nazwa Symbol Uwagi. Odległość jaką pokonujeświatło w próżni w czasie 1/ s

Układ SI. Nazwa Symbol Uwagi. Odległość jaką pokonujeświatło w próżni w czasie 1/ s Układ SI Wielkość Nazwa Symbol Uwagi Długość metr m Masa kilogram kg Czas sekunda s Odległość jaką pokonujeświatło w próżni w czasie 1/299 792 458 s Masa walca wykonanego ze stopu platyny z irydem przechowywanym

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energetyczny Podstawy elektrotechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Stara kotłownia, pokój 359 Tel.: 71

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Politechnika Wrocławska Instytut Techniki Cieplnej i Mechaniki Płynów Zakład Elektrostatyki i Elektrotermii Podstawy elektrotechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. PWr Wybrzeże S. Wyspiańskiego

Bardziej szczegółowo

Prąd elektryczny 1/37

Prąd elektryczny 1/37 Prąd elektryczny 1/37 Prąd elektryczny Prądem elektrycznym w przewodniku metalowym nazywamy uporządkowany ruch elektronów swobodnych pod wpływem sił pola elektrycznego. Prąd elektryczny może również płynąć

Bardziej szczegółowo

Główne zadania Laboratorium Wzorców Wielkości Elektrycznych

Główne zadania Laboratorium Wzorców Wielkości Elektrycznych ZAKŁAD ELEKTRYCZNY Laboratorium Wzorców Wielkości Elektrycznych Kierownik Edyta Dudek tel.: (22) 581 94 62 (22) 581 93 02 faks: (22) 581 94 99 e-mail: electricity@gum.gov.pl e-mail: dc.standards@gum.gov.pl

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

Lekcja 1. Temat: Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami oceniania.

Lekcja 1. Temat: Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami oceniania. Lekcja 1 Temat: Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami oceniania. 1. Program nauczania przedmiotu Podstawy elektrotechniki i elektroniki w klasie I. Działy programowe i zagadnienia

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9.

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. Literatura: P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. A. Zięba, 2001, Natura rachunku niepewności a

Bardziej szczegółowo

Źródła siły elektromotorycznej = pompy prądu

Źródła siły elektromotorycznej = pompy prądu Źródła siły elektromotorycznej = pompy prądu komórki elektrochemiczne ogniwo Volty akumulator generatory elektryczne baterie I urządzenia termoelektryczne E I I Prądnica (dynamo) termopara fotoogniwa ogniwa

Bardziej szczegółowo

Miernictwo przemysłowe

Miernictwo przemysłowe Miernictwo przemysłowe Józef Warechowski Olsztyn, 2014 Charakterystyka pomiarów w produkcji żywności Podstawa formalna do prowadzenia ciągłego nadzoru nad AKP: PN-EN ISO 9001 punkt 7.6 1 1 a) Bezpośrednie,

Bardziej szczegółowo

Pomiary fizyczne. Wykład II. Wstęp do Fizyki I (B+C) Rodzaje pomiarów. Układ jednostek SI Błedy pomiarowe Modele w fizyce

Pomiary fizyczne. Wykład II. Wstęp do Fizyki I (B+C) Rodzaje pomiarów. Układ jednostek SI Błedy pomiarowe Modele w fizyce Pomiary fizyczne Wykład II: Rodzaje pomiarów Wstęp do Fizyki I (B+C) Wykład II Układ jednostek SI Błedy pomiarowe Modele w fizyce Rodzaje pomiarów Zliczanie Przykłady: liczba grzybów w barszczu liczba

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E3 BADANIE ŁAŚCIOŚCI

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

Narzędzia pomiarowe Wzorce Parametrami wzorca są:

Narzędzia pomiarowe Wzorce Parametrami wzorca są: Narzędzia pomiarowe zespół środków technicznych umożliwiających wykonanie pomiaru. Obejmują: wzorce przyrządy pomiarowe przetworniki pomiarowe układy pomiarowe systemy pomiarowe Wzorce są to narzędzia

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Przyrządy Pomiarowe ( Miernictwo )

Przyrządy Pomiarowe ( Miernictwo ) Przyrządy Pomiarowe ( Miernictwo ) Materiały dla klasy II-giej Technikum Zaocznego o specjalności elektronika Opracowanie : Ludwik Musiał Literatura : S.Lebson, J.Kaniewski Pomiary elektryczne J.Rydzewski

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 5, wykład nr 9, 10 Prawo autorskie Niniejsze materiały podlegają

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1)

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1) Temat nr 22: Badanie kuchenki mikrofalowej 1.Wiadomości podstawowe Metoda elektrotermiczna mikrofalowa polega na wytworzeniu ciepła we wsadzie głównie na skutek przepływu prądu przesunięcia (polaryzacji)

Bardziej szczegółowo

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier) 7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

STAŁY PRĄD ELEKTRYCZNY

STAŁY PRĄD ELEKTRYCZNY STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy.

2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy. Ćwiczenie 2. 1. Czym się różni rzeczywiste źródło napięcia od źródła idealnego? Źródło rzeczywiste nie posiada rezystancji wewnętrznej ( wew = 0 Ω). Źródło idealne posiada pewną rezystancję własną ( wew

Bardziej szczegółowo

Materiały e-learning

Materiały e-learning AKADEMIA MORSKA W SZCZECINIE JEDNOSKA ORGANIZACYJNA: ZAKŁAD KOMUNIKACYJNYCH ECHNOLOGII MORSKICH Materiały e-learning ELEKROECHNIKA I ELEKRONIKA Materiały dla studentów studiów niestacjonarnych http://www.zktm.am.szczecin.pl/index.php/laboratoria

Bardziej szczegółowo

Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej

Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej W układach elektronicznych występują: Rezystory Rezystor potocznie nazywany opornikiem jest jednym z najczęściej spotykanych

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu

Bardziej szczegółowo

2 K A T E D R A F I ZYKI S T O S O W AN E J

2 K A T E D R A F I ZYKI S T O S O W AN E J 2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka

Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka 1 Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka I. Obwody elektryczne prądu stałego 1. Pojęcie terminów: wielkość, wartość, jednostka wielkości Wielkością fizyczną nazywamy cechę zjawiska fizycznego.

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia. Powtórzenie wiadomości z klasy II Przepływ prądu elektrycznego. Obliczenia. Prąd elektryczny 1. Prąd elektryczny uporządkowany (ukierunkowany) ruch cząstek obdarzonych ładunkiem elektrycznym, nazywanych

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych.

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych. Prąd elektryczny stały W poprzednim dziale (elektrostatyka) mówiliśmy o ładunkach umieszczonych na przewodnikach, ale na takich, które są odizolowane od otoczenia. W temacie o prądzie elektrycznym zajmiemy

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

Podstawy elektrotechniki i elektroniki. Jarosław Borc

Podstawy elektrotechniki i elektroniki. Jarosław Borc Podstawy elektrotechniki i elektroniki Jarosław Borc 1. Wiadomości organizacyjne Dr Jarosław Borc Katedra Fizyki Stosowanej Wydział Mechaniczny PL P. 101B budynek Zarzadzania i Podstaw Techniki j.borc@pollub.pl

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA 1. POJĘCIA PODSAWOWE ELEKROECHNIKI. SYGNAŁY ELEKRYCZNE I ICH KLASYIKACJA 1.1. WPROWADZENIE WIELKOŚĆ (MIERZALNA) - cecha zjawiska, ciała lub substancji, którą można wyrazić jakościowo i wyznaczyć ilościowo.

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

str. 1 d. elektron oraz dziura e.

str. 1 d. elektron oraz dziura e. 1. Półprzewodniki samoistne a. Niska temperatura b. Wzrost temperatury c. d. elektron oraz dziura e. f. zjawisko fotoelektryczne wewnętrzne g. Krzem i german 2. Półprzewodniki domieszkowe a. W półprzewodnikach

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Pytania z przedmiotu Inżynieria materiałowa

Pytania z przedmiotu Inżynieria materiałowa Pytania z przedmiotu Inżynieria materiałowa 1.Podział materiałów elektrotechnicznych 2. Potencjał elektryczny, różnica potencjałów 3. Związek pomiędzy potencjałem i natężeniem pola elektrycznego 4. Przewodzenie

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo