Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1)
|
|
- Kajetan Wierzbicki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Temat nr 22: Badanie kuchenki mikrofalowej 1.Wiadomości podstawowe Metoda elektrotermiczna mikrofalowa polega na wytworzeniu ciepła we wsadzie głównie na skutek przepływu prądu przesunięcia (polaryzacji) (i ewentualnie prądu przewodzenia) przez ciało stałe lub ciecz, poddane działaniu promieniowania mikrofalowego o częstotliwości od kilkuset MHz do kilkuset GHz. Energia elektromagnetyczna przenosi się od magnetronu (gdzie jest wytwarzana) poprzez falowód do wnęki rezonansowej w której umieszczony jest wsad. Czasami wsad umieszcza się naprzeciw otwartego końca falowodu. Pole elektromagnetyczne wnikając do wsadu powoduje wystąpienie w nim zjawisk polaryzacji, które prowadzą do przepływu prądu polaryzacji. Jednocześnie występuje zjawisko silnego tłumienia pola elektromagnetycznego i wywołana tym nierównomierność wydzielania mocy cieplnej i nagrzewania. Jeśli płaska fala elektromagnetyczna o gęstości powierzchniowej mocy p (W/m 2 ). pada na dielektryk to część tej mocy (p r ) ulegnie odbiciu, a pozostała moc (p s ) wniknie do dielektryka Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: E x x δ = E 0 e (1) gdzie E 0 to natężenie na powierzchni granicznej, a E x na głębokości x. Wielkość δ (mierzona w m) oznacza tzw. głębokość wnikania, określaną jako głębokość, na której natężenie pola E w porównaniu z powierzchnią maleje e-krotnie. Wielkość tą określa wzór δ = π 0,95 10 µ ε ε f tgδ r 1 f tgδ ε r (2) - 1 -
2 gdzie µ 0 i ε 0 to magnetyczna i dielektryczna przenikalność próżni, f częstotliwość pola, a tgδ to współczynnik strat dielektrycznych. Moc wydzielana w jednostce objętości wsadu p v zależy od: - parametrów pola (natężenie E i częstotliwość f), - parametrów wsadu (przenikalność względna elektryczna ε r, współczynnik strat dielektrycznych tgδ), - odległości od powierzchni x. a wzór określający gęstość objętościową mocy p v w odległości x od powierzchni ma postać: p vx 2x δ 12 2 = ε tgδ f E e (3) r 0 Kuchenka mikrofalowa jest urządzeniem przeznaczonym do szybkiego rozmrażania i ogrzewania produktów żywnościowych, rzadziej do ich gotowania i pieczenia. Działanie polega na wykorzystywaniu silnego pola zakresu mikrofal - 2,45 GHz. Mikrofale w kuchence mikrofalowej wytwarzane są przez magnetron zbudowany z katody otoczonej anodą, oraz dwóch magnesów. Katoda, wykonując ruch obrotowy, emituje elektrony, które krążą wokół anody w zmiennym polu elektrycznym i magnetycznym. Do anody podłączone są obwody rezonansowe. Powodują one drganie pola elektromagnetycznego. Tak wytworzone pole emituje energię w postaci promieniowania mikrofalowego. Mikrofale wysyłane są do kuchenki falowodem. Częstotliwość drgań jest tak dobrana, aby oddziaływanie na cząsteczki wody było maksymalne. Pochłanianie energii przez cząsteczki wody powoduje, że drgają one i obracają się. Poprzez zderzenie przekazują energię innym cząsteczkom powodując podgrzewanie umieszczonego w kuchence produktu. Powstające fale elektromagnetyczne odbijają się od ścianek wnętrza kuchenki i powstają w ten sposób fale stojące, które przenoszą różną wartość energii. W "węzłach" występuje E=0, a na wierzchołkach fali E max, z tego powodu produkt umieszczany jest wewnątrz na obrotowym talerzu
3 Zdjęcie oraz budowa magnetronu. Rys. 1 Budowa magnetronu [1] Rys. 2 Magnetron [2] Schemat elektryczny kuchenki mikrofalowej
4 2. Przebieg ćwiczenia 2.1 Wykonać oględziny wnętrza kuchenki mikrofalowej, zapoznać się ze schematem elektrycznym nazwać poszczególne części. Zapoznać się z tabliczką znamionową. Napięcie zasilające [V] Częstotliwość napięcia zasilającego f [Hz] Max moc pobierana z sieci P 1 Max moc użyteczna P 2 Zakres częstotliwości mikrofalowej f [MHz] 2.2 Zbadać sposób regulacji wielkości mocy mikrofalówki. Wstawić do komory 3 szklanki z wodą. Dla 3 kolejnych cykli pracy kuchenki (1 cykl to kolejne załączenie i wyłączenie magnetronu) wykonać pomiary czasu trwania załączenia t z i wyłączenia t w magnetronu oraz pobieranej przez mikrofalówkę w tych okresach mocy P x, dla kolejnych nastaw mocy mikrofalówki. Obliczyć średnią moc P sr dla każdej nastawy. Nastawa Magnetron załączony Magnetron wyłączony Czas cyklu pracy Moc średnia Psr Czas t z [s] Moc P z Czas t w [s] Moc P w T [s] 2.3 Zbadać przestrzenny rozkład mocy w komorze. Badanie przeprowadzić kolejno dla małego (1 szklanka zapełniona w ¾ wodą) i dużego wsadu (9 szklanek zapełnionych w ¾ wodą)
5 2.3.1 Przypadek małego wsadu Wyjąć talerz obrotowy i umieścić w komorze dolną półkę. Zmierzyć masę szkła oraz wody. Szklankę z wodą (wsad) umieścić na pozycji 1 dolnej półki. Po zmierzeniu temperatury wody (przyjmujemy, że szkło ma taka samą temperaturę) nagrzewać wsad pełną mocą przez 30 s mierząc moc pobieraną z sieci; po zakończeniu nagrzewania zmierzyć ponownie temperaturę wsadu. Powtórzyć pomiary dla kolejnych punktów dolnej, a potem górnej półki, korzystając z tej samej szklanki z taką same ilością wody. Wyniki pomiarów zapisać w tabeli. Obliczyć przyrosty temperatur wody, szkła oraz moce wydzielające się w poszczególnych punktach komory. pozycja wsadu (1 szklanka z wodą) półka... początkowa t p [ o C ] Temperatura końcowa t k [ o C ] dla szkła Q 1 [J] Ilość ciepła dla wody Q 2 [J] moc we wsadzie P Masa szkła Masa wody Razem masa wsadu - 5 -
6 2.3.2 Przypadek dużego wsadu Umieścić w komorze jednocześnie 9 szklanek napełnionych wodą na dolnej półce. Dla każdej szklanki zmierzyć masę szkła, wody oraz jej temperaturę przed nagrzewaniem. Nagrzewać wsad pełną mocą przez 120 s mierząc moc pobieraną z sieci, następnie zmierzyć temperaturę wody w każdej ze szklanek oddzielnie. Powtórzyć pomiar dla wsadu umieszczonego na górnej półce. Obliczyć przyrosty temperatur wody i moce wydzielające się w poszczególnych punktach komory. pozycja wsadu: półka masa szkła masa wody masa wsadu Temperatura początkowa t p [ o C] końcowa t k [ o C] dla szkła Q 1 [J] Ilość ciepła dla wody Q 2 [J] moc we wsadzie na danej pozycji P Moc urządzenia Czas pracy [s] Sumaryczna moc wsadu - 6 -
7 2.4 Zbadać sprawność kuchenki w zależności od wielkości wsadu. Umieścić talerz obrotowy w kuchence. Dla pracy kuchenki na pełnej mocy przez 90 s wykonać pomiary nagrzewania się kolejno: A. ½ szklani wody, B. 1 szklanka wody, C. 3 szklanek wody, D. 6 szklanek wody E. 9 szklanek wody. Przed nagrzewaniem zmierzyć masę szkła, masę wody oraz średnią temperaturę wsadu. W trakcie nagrzewania mierzyć moc kuchenki, a po średnią temperaturę nagrzanego wsadu. Obliczyć przyrosty temperatur i moc wydzieloną we wsadzie. Wyznaczyć wykres sprawności w funkcji masy wsadu w komorze. Wsad Masa Temperatura Ciepło Moc Sprawność Szkła Wody Początkowa Końcowa Szkła Wody m 1 m 2 t p [ o C] t k [ o C] Q 1 [J] Q 2 [J] P η[%] A B C D E 2.5 Badanie nagrzewania się różnych materiałów Dla maksymalnej mocy grzania i czasu 90 s umieścić jednocześnie na obrotowym talerzu po jednej szklance z wodą, kaszą i suchym piaskiem. Zmierzyć masę wsadów, ich temperatury przed i po grzaniu, moc pobieraną z sieci w trakcie nagrzewania. Obliczyć przyrosty temperatur i moc wydzieloną we wsadzie. Wyznaczyć sprawności
8 Wsad Masa Temperatura Ciepło Moc Sprawność Szkła Wody Początkowa Końcowa Szkła Wody m 1 m 2 t p [ o C] t k [ o C] Q 1 [J] Q 2 [J] P η[%] woda kasza piasek 3. Stałe, oznaczenia i wzory Ciepło właściwe Ciepło właściwe kj/kg deg Materiał Woda Szkło Kasza Piasek 4,19 0,67 1,85 0,7 Oznaczenia: m - masa c w - ciepło właściwe t k - temperatura końcowa t p - temperatura początkowa Wzory: Ilość ciepła Q=m*c w *(t k -t p ) ( Q1 Q2 ) Moc wsadu P w = + t Pw Sprawność η = 100 [%] P 4. Literatura urz 1. Hauser J.: Elektrotechnika podstawy elektrotermii i techniki świetlnej. Wyd PP, Poznań, Hering M.: Podstawy elektrotermii cz.ii, WNT, Warszawa, Gozdecki T., Hering M., Łobodziński W.: Elektroniczne urządzenia grzejne. WSiP, Warszawa,
I, II I, II 8. BADANIE WNĘKOWEJ NAGRZEWNICY MIKROFALOWEJ Cel ćwiczenia:
tel. (0-6) 665688 fax (0-6) 66589 8. BADANIE WNĘKOWEJ NAGRZEWNICY MIKROFALOWEJ 8.. Cel ćwiczenia: zapoznanie się z parametrami elektrycznymi mającymi wpływ na bezpośrednie mikrofalowe nagrzewanie quasi-dielektryków
NAGRZEWANIE INDUKCYJNE POWIERZCHNI PŁASKICH
INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 6 NAGRZEWANIE INDUKCYJNE POWIERZCHNI PŁASKICH 1.WPROWADZENIE. Nagrzewanie indukcyjne jest bezpośrednią metodą grzejną, w której energia
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Nagrzewanie pojemnościowe i mikrofalowe dr hab. inż. Jerzy Pasternak, prof. AGH
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Nagrzewanie pojemnościowe i mikrofalowe dr hab. inż. Jerzy Pasternak,
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Moduł 5: Efektywność energetyczna w urządzeniach elektrotermicznych
Studia odyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Efektywność energetyczna w urządzeniach elektrotermicznych dr hab.
GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW
GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW Nagrzewanie pojemnościowe jest nagrzewaniem elektrycznym związanym z efektami polaryzacji i przewodnictwa w ośrodkach
WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000
SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
ELEKTRYCZNE ŹRÓDŁA CIEPŁA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
ELEKTRYCZNE ŹRÓDŁA CIEPŁA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Elektryczne źródła ciepła Zachodzi w nich przemiana energii elektrycznej na
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
Podpis prowadzącego SPRAWOZDANIE
Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek
NAGRZEWANIE INDUKCYJNE CZĘSTOTLIWOŚCIĄ SIECIOWĄ
INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 9 NAGRZEWANIE INDUKCYJNE CZĘSTOTLIWOŚCIĄ SIECIOWĄ 1.WPROWADZENIE. Nagrzewanie indukcyjne jest bezpośrednią metodą grzejną, w której energia
= e. m λ. Temat: BADANIE PROMIENNIKÓW PODCZERWIENI. 1.Wiadomości podstawowe
Kierunek: Elektrotechnika, semestr 3 Zastosowanie promieniowania optycznego Laboratorium Ćwiczenie nr 4 Temat: BADANIE PROMIENNIKÓW PODCZERWIENI 1.Wiadomości podstawowe Promienniki podczerwieni to urządzenia
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Regulacja dwupołożeniowa (dwustawna)
Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,
Badanie rozkładu pola elektrycznego
Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych
Wytrzymałość układów uwarstwionych powietrze - dielektryk stały
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 8 Wytrzymałość
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ PRACOWNIA MATERIAŁOZNAWSTWA
Polaryzacja anteny. Polaryzacja pionowa V - linie sił pola. pionowe czyli prostopadłe do powierzchni ziemi.
Parametry anten Polaryzacja anteny W polu dalekim jest przyjęte, że fala ma charakter fali płaskiej. Podstawową właściwością tego rodzaju fali jest to, że wektory natężenia pola elektrycznego i magnetycznego
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi:
1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: A. 10 V B. 5,7 V C. -5,7 V D. 2,5 V 2. Zasilacz dołączony jest do akumulatora 12 V i pobiera z niego prąd o natężeniu
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
( L ) I. Zagadnienia. II. Zadania
( L ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
NAGRZEWANIE ELEKTRODOWE
INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 7 NAGRZEWANIE ELEKTRODOWE 1.WPROWADZENIE. Nagrzewanie elektrodowe jest to nagrzewanie elektryczne oparte na wydzielaniu, ciepła przy przepływie
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI
37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe
( F ) I. Zagadnienia. II. Zadania
( F ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
MIERNIK POLA MAGNETYCZNEGO TM
INSTRUKCJA OBSŁUGI MIERNIK POLA MAGNETYCZNEGO TM 191 Spis treści Strona 1. Informacje dotyczące bezpieczeństwa... - 3-2. Zastosowanie... - 3-3. Cechy... - 3-4. Opis przycisków... - 4-5. Procedura pomiaru...
Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.
POLE ELEKTRYCZNE PRAWO COULOMBA
POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim
całkowite rozproszone
Kierunek: Elektrotechnika, II stopień, semestr 1 Technika świetlna i elektrotermia Laboratorium Ćwiczenie nr 14 Temat: BADANIE KOLEKTORÓW SŁONECZNYCH 1. Wiadomości podstawowe W wyniku przemian jądrowych
Powtórzenie wiadomości z klasy II. Elektromagnetyzm pole magnetyczne prądu elektrycznego
Powtórzenie wiadomości z klasy II Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne.
Ćwiczenie 1 BADANIE PRZEMIANY ELEKTROTERMICZNEJ W CIECZY
Ćwiczenie 1 BADANIE PRZEMIANY ELEKTROTERMICZNEJ W CIECZY Ciecze, podobnie jak ciała stałe podzielić można na nieprzewodzące i przewodzące. Mnogość zastosowań tych ciał w różnorodnych dziedzinach elektrotechniki
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego
Wpływ pola elektromagnetycznego na { zdrowie }
Wpływ pola elektromagnetycznego na { zdrowie } Czym jest w ogóle promieniowane? Jest to zjawisko polegające na wysyłaniu i przekazywaniu energii na odległość. Energia ta może być wysyłana w postaci cząstek,
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k
Badanie oleju izolacyjnego
POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie oleju izolacyjnego Grupa dziekańska... Data wykonania
Zastosowanie metod dielektrycznych do badania właściwości żywności
Zastosowanie metod dielektrycznych do badania właściwości żywności Ze względu na właściwości elektryczne materiały możemy podzielić na: Przewodniki (dobrze przewodzące prąd elektryczny) Półprzewodniki
) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.
Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do
O czym producenci telefonów komórkowych wolą Ci nie mówić?
Politechnika Lubelska Instytut Podstaw Elektrotechniki i Elektrotechnologii www.ipee.pollub.pl O czym producenci telefonów komórkowych wolą Ci nie mówić? Koło Naukowe ELMECOL www.elmecol.pollub.pl Parys
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Mata ADR. nowoczesny ekran pola elektrycznego. Czytelnia www.biomagnetica.pl. Uproszczony mechanizm działania Maty ADR
Mata ADR nowoczesny ekran pola elektrycznego Po latach pracy i setkach doświadczeń naukowcy z ADR Technology jako pierwsi na świecie stworzyli prosty ale niezwykle skuteczny ekran chroniący człowieka przed
Akademickie Centrum Czystej Energii. Ogniwo paliwowe
Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody
LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia
LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,
transformatora jednofazowego.
Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW
Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku
ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5
ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki
PORÓWNAWCZE POMIARY ENERGETYCZNE PŁYT GRZEWCZYCH
PORÓWNAWCZE POMIARY ENERGETYCZNE PŁYT GRZEWCZYCH Wstęp Praca wykonana na zlecenie Audytorzy R - Laboratorium Świat Jakości AGD. Zakres prac W pierwszym etapie realizacji zadania dopracowano metodykę badań
Prądy wirowe (ang. eddy currents)
Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko
Oddziaływanie pola elektrycznego z materią
Oddziaływanie pola elektrycznego z materią (jak działa kuchenka mikrofalowa) dr hab. inż. Paweł Perkowski pawel.perkowski@wat.edu.pl Instytut Fizyki Technicznej, Wydział Nowych Technologii i Chemii Wojskowa
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
MP122N Nowość. Functions. Wersje. linea. Kuchenka mikrofalowa, wysokość: 39 cm, 6 funkcje pieczenia, pojemność netto: 22 l
MP122N Nowość Kuchenka mikrofalowa, wysokość: 39 cm, 6 funkcje pieczenia, pojemność netto: 22 l EAN13: 8017709228569 ESTETYKA / STEROWANIE Czarne szkło Stopsol + stal nierdzewna Podświetlane pokrętła Wyświetlacz:
INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA
ĆWICZENIE NR 4 WYMIENNIK CIEPŁA
ĆWICZENIE NR 4 WYMIENNIK CIEPŁA 1. Cel ćwiczenia Celem ćwiczenia jest doświadczalne zbadanie wymiany ciepła w przeponowym płaszczowo rurowym wymiennika ciepła i porównanie wyników z obliczeniami teoretycznymi.
Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych
Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11
NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi
ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni
KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz
Schemat punktowania zadań
1 Maksymalna liczba punktów 60 90% 54pkt KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Schemat punktowania zadań Uwaga! 1. Wszystkie
Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną.
FiIS PRAONIA FIZYZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆIZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OENA el ćwiczenia: Zapoznanie się ze
Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych
Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze
LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ
VIII-EW ELEKTROWNIA WIATROWA LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ Katedra Aparatury i Maszynoznawstwa Chemicznego Instrukcja ćwiczenia nr 8. EW 1 8 EW WYZNACZENIE ZAKRESU PRACY I
Promieniowanie elektromagnetyczne w środowisku pracy. Ocena możliwości wykonywania pracy w warunkach oddziaływania pól elektromagnetycznych
Promieniowanie elektromagnetyczne w środowisku pracy Ocena możliwości wykonywania pracy w warunkach oddziaływania pól elektromagnetycznych Charakterystyka zjawiska Promieniowanie elektromagnetyczne jest
Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0
2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki
SC45MB2 Nowy produkt. linea. Kuchenka mikrofalowa, wysokość 45 cm 6 funkcji 3 poziomy pieczenia
SC45MB2 Nowy produkt Kuchenka mikrofalowa, wysokość 45 cm 6 funkcji 3 poziomy pieczenia EAN13: 8017709170837 ESTETYKA / STEROWANIE Białe szkło Podświetlane pokrętła Wyświetlacz: LED Sterowanie za pomocą
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Anna Szabłowska. Łódź, r
Rozporządzenie MŚ z dnia 30 października 2003r. W sprawie dopuszczalnych poziomów pól elektromagnetycznych oraz sposobów sprawdzania dotrzymywania tych poziomów (Dz.U. 2003 Nr 192 poz. 1883) 1 Anna Szabłowska
LABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
Fale elektromagnetyczne
Podstawy elektromagnetyzmu Wykład 11 Fale elektromagnetyczne Równania Maxwella H=J D t E= B t D= B=0 D= E J= E B= H Ruch ładunku jest źródłem pola magnetycznego Zmiana pola magnetycznego w czasie jest
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
SF4604MCNX. Functions. Dolce Stil Novo
Piekarnik elektryczny z funkcją mikrofali, wysokość: 45 cm, kolorowy wyświetlacz TFT EasyGuide, czyszczenie parowe, zawiasy Silent Close, pojemność netto: 40 l EAN13: 8017709223618 WZORNICTWO / OBSŁUGA
Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego
Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia
MP822PO Nowość. coloniale. Kuchenka mikrofalowa, wysokość 40 cm, 6 funkcji, powierzchnia typu PLUS (bez talerza obrotowego)
MP822PO Nowość Kuchenka mikrofalowa, wysokość 40 cm, 6 funkcji, powierzchnia typu PLUS (bez talerza obrotowego) EAN13: 8017709198749 ESTETYKA / STEROWANIE Kremowy Sterowanie za pomocą złotych pokręteł
MP122. linea. Kuchenka mikrofalowa, wysokość 40 cm 6 funkcji Powierzchnia typu PLUS (bez talerza obrotowego)
Kuchenka mikrofalowa, wysokość 40 cm 6 funkcji Powierzchnia typu PLUS (bez talerza obrotowego) EAN13: 8017709165116 ESTETYKA / STEROWANIE Srebrne szkło Stopsol + stal nierdzewna Podświetlane pokrętła Wyświetlacz:
Zjawisko termoelektryczne
34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów
Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)
1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.
Ćwiczenie 15. Sprawdzanie watomierza i licznika energii
Ćwiczenie 15 Sprawdzanie watomierza i licznika energii Program ćwiczenia: 1. Sprawdzenie błędów podstawowych watomierza analogowego 2. Sprawdzanie jednofazowego licznika indukcyjnego 2.1. Sprawdzenie prądu
Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy
Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne
ELEKTRYCZNY SPRZĘT AGD UŻYWANY W KUCHNI DO PRZYGOTOWYWANIA POTRAW I WYKONYWANIA PODOBNYCH CZYNNOŚCI.
ELEKTRYCZNY SPRZĘT AGD UŻYWANY W KUCHNI DO PRZYGOTOWYWANIA POTRAW I WYKONYWANIA PODOBNYCH CZYNNOŚCI. 1. POLSKIE NORMY NA BEZPIECZEŃSTWO: 1.1. PN-EN 60335-1:2004+A1:2005+Ap1:2005+Ap2:2006+A2:2008+A12:2008+A13:2009+
I. Pomiary charakterystyk głośników
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 4 Pomiary charakterystyk częstotliwościowych i kierunkowości mikrofonów i głośników Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem pierwszej części ćwiczenia
Wykład 2 Silniki indukcyjne asynchroniczne
Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa
39 DUALIZM KORPUSKULARNO FALOWY.
Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)
POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C
ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.
POMIARY TERMOWIZYJNE. Rurzyca 2017
Rurzyca 2017 WPROWADZENIE DO TERMOGRAFII Termografia polega na rejestrowaniu elektronicznymi przyrządami optycznymi temperatur powierzchni mierzonego obiektu przez pomiary jego promieniowania. Promieniowanie
KATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować