Technologia doświadczalna wbudowywania elementów rezystywnych i pojemnościowych wewnątrz płytki drukowanej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Technologia doświadczalna wbudowywania elementów rezystywnych i pojemnościowych wewnątrz płytki drukowanej"

Transkrypt

1 INSTYTUT TELE- I RADIOTECHNICZNY Centrum Zaawansowanych Technologii Technologia doświadczalna wbudowywania elementów rezystywnych i pojemnościowych wewnątrz płytki drukowanej Projekt realizowany w ramach Programu Operacyjnego Innowacyjna Gospodarka, lata , Priorytet 1 Badania i Rozwój Nowoczesnych Technologii, Działanie 1.3 Wsparcie Projektów B+R na rzecz przedsiębiorców realizowanych przez jednostki naukowe, Poddziałanie Projekty rozwojowe (umowa nr UDA-POIG /08-04) Lublin, listopada 2011

2 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Do podstawowych powodów konstruowania planarnych podzespołów biernych i wbudowywania ich wewnątrz wielowarstwowej płytki drukowanej należą: zwolnienie powierzchni na warstwach zewnętrznych dla podzespołów czynnych; możliwość zwiększenia gęstości upakowania ścieżek na warstwach zewnętrznych płytki drukowanej; zmniejszenie wymiarów płytki i zmniejszenie liczby warstw; poprawa propagacji sygnałów o wysokiej szybkości narastania i częstotliwości; zmniejszenie liczby podzespołów w montażu i tym samym skrócenie czasu montażu oraz ułatwienie procesów lutowania i kontroli połączeń lutowanych; poprawa dopasowania impedancyjnego linii; krótsze ścieżki sygnałowe i zredukowanie szeregowej reaktancji; eliminacja reaktancji induktywnej podzespołów SMT; redukcja przesłuchów, szumu i EMI.

3 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Materiały i technologia wytwarzania elementów rezystywnych cienko- i grubowarstwowych

4 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Rezystory cienkowarstwowe

5 Do formowania rezystorów wykorzystywany jest materiał Ohmega-Ply RCM (Resistor Conductor Material) o grubości warstwy rezystywnej 0,4 lub 0,1 µm. Rezystywność tej warstwy wynosi odpowiednio 25 Ω/ lub 100 Ω/. Folia rezystywna jest nałożona na laminat FR-4. Cu NiP FR-4 Cu Konstrukcja podłoża z jednostronnie naniesioną warstwą rezystywną w systemie Ohmega-Ply RCM

6 Wygląd warstwy rezystywnej 25 Ω/, mikroskop skaningowy, pow. 500x.

7 Podstawowe właściwości materiałów systemu Ohmega-Ply RCM Typ materiału jednostronny dwustronny Rezystancja Tolerancja rezystancji Grubość warstwy rezystywnej Maksymalny współczynnik zmiany rezystancji w funkcji temperatury 1R10/1 1R10/1R10 10 Ω / ± 5 % 1,00 µm -50 ppm / C 1R25/1 1R25/1R25 25 Ω / ± 5 % 0,40 µm -50 ppm / C 1R50/1 1R50/1R50 50 Ω / ± 5 % 0,20 µm -60 ppm / C 1A100/1 1R100/1R Ω / ± 5 % 0,10 µm -80 ppm / C 1A250/1 1R250/1R Ω / ± 10 % 0,05 µm +100 ppm / C Laminaty mogą być wytwarzane z warstwą rezystywną z jednej lub obu stron. Proponowane podłoża obejmują szeroką gamę laminatów epoksydowych o różnych temperaturach zeszklenia, laminaty poliimidowe i laminaty bismaleimidowe (BT). Minimalna grubość rdzenia wynosi 0,63 mm. Maksymalna wielkość arkusza Omega-Ply wynosi 900x1180 mm.

8 Proces wytwarzania rezystorów cienkowarstwowych metodą trawienia warstwy rezystywnej Przygotowanie materiału Nakładanie fotorezystu Definiowanie szerokości rezystora Trawienie miedzi (1 etap) Stripowanie fotorezystu fotorezyst miedź warstwa rezystywna warstwa dielektryczna

9 Proces wytwarzania rezystorów cienkowarstwowych metodą trawienia warstwy rezystywnej (cd) Trawienie warstwy rezystywnej Nakładanie fotorezystu Definiowanie długości rezystora Trawienie miedzi (2 etap) Stripowanie fotorezystu fotorezyst miedź warstwa rezystywna warstwa dielektryczna

10 Wartość rezystancji elektrycznej projektowanego rezystora można wyznaczyć na podstawie poniższej zależności: gdzie: R zakładana rezystancja rezystora [Ω] ρ rezystywność materiału rezystywnego h grubość warstwy rezystywnej R s rezystywność warstwy rezystywnej [Ω / ] L długość rezystora [j.m.] W szerokość rezystora [j.m.] Co jest równoważne: R R S N gdzie: N liczba kwadratów

11 Konstrukcje cienkowarstwowych rezystorów wbudowanych Sztabka Wielosztabka Meander współczynnik 0,559

12 22 Ω 33 Ω 39 Ω 47 Ω 56 Ω 68 Ω 82 Ω 100 Ω 120 Ω 150 Ω 220 Ω 330 Ω 390 Ω 470 Ω 560 Ω 680 Ω 820 Ω 1,0 kω 1,2 kω 1,5 kω 2,2 kω 3,3 kω 3,9 kω 4,7 kω 5,6 kω 6,8 kω 10 Ω 12 Ω 15 Ω 22 Ω 33 Ω 39 Ω 47 Ω 56 Ω 68 Ω 82 Ω 100 Ω 120 Ω 150 Ω 220 Ω 330 Ω 390 Ω 470 Ω 560 Ω 680 Ω 820 Ω 1,0 kω 1,2 kω 1,5 kω Typowe konstrukcje rezystorów wbudowanych i ich zakładana rezystancja przy zastosowaniu laminatu z warstwą rezystywną 1R25/1-25 Ω/ (a) oraz 1A100/1-100 Ω/ (b) a) Typ konstrukcji rezystora Sztabka Wielosztabka Meander b) Typ konstrukcji rezystora Sztabka Wielosztabka Meander

13 Topografia panelu testowego z użyciem laminatu 1R25/1 25 Ω / (obok podano szerokość rezystorów) 1,40 mm 1,00 mm 0,75 mm 0,33 mm 0,50 mm 0,25 mm

14 Topografia panelu testowego z użyciem laminatu 1A100/1 100 Ω / (obok podano szerokość rezystorów) 1,40 mm 1,00 mm 0,25 mm 0,33 mm 0,75 mm 0,50 mm

15 Moc Typowo rozproszenie mocy dla większości rezystorów pracujących w temperaturze poniżej 70 C wynosi w przybliżeniu 1/10 do 1/8 W.

16 Koszt Koszt rezystorów przy $ 0,03 za podzespół przy $ 0,05 za podzespół zsumowanie kosztów małe serie średnio-niskie serie średnio-wysokie serie Centów/in 2 wysokie serie Zagęszczenie podzespołów/in 2

17 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Rezystory grubowarstwowe

18 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Do formowania rezystorów grubowarstwowych wykorzystywane są rezystywne materiały polimerowe. Zapewniają one zakresy rezystancji od 1 Ω/ do kilkudziesięciu MΩ/. Najczęściej są to materiały z wypełniaczem węglowym i grafitowym zawieszonym w żywicy epoksydowej. Dostarczane są w postaci ciekłych past, które nadają się do druku przez sita lub szablony i posiadają stosunkowo niską temperaturę utwardzania.

19 Podstawowe właściwości past rezystywnych węglowych i węglowo-srebrowych Electra Polymers ED Ω i ED Ω i ED7500 5kΩ. Właściwości ED Ω ED Ω / ED7500 5kΩ Wypełniacz Proszek węglowy Proszek węglowy Rezystancja Przyczepność Proces drukowania Proszek grafitowy 200 Ω/ /25µm (200 Ω/ /25µm 1 MΩ/ /25µm) Bardzo dobra (spełnia wymagania IPC D-320) do sztywnych podłóż FR4 Sito: siatka poliestrowa od 55 do 77T. W przypadku wymaganych ścisłych tolerancji rezystancji zaleca się siatkę ze stali nierdzewnej 200 mesh (mniejsze odkształcanie sita). Proszek grafitowy Proszek srebrny 20 Ω/ /25µm / 5 kω/ /25µm (1 Ω/ /25µm 1 MΩ/ /25µm) Odpowiednia w zastosowaniach na materiałach FR4, FR3, FR2, CEM1 i CEM3 Sito: 200 mesh (siatka stalowa) 195 mesh (siatka poliestrowa) 39 % otwarcia Emulsja na sicie: grubość µm Rakla: twardość wg. Shore Proces suszenia 10 min. w 160 C lub 15 min. w 140 C Od 5 min do 10 min w 120 C Proces utwardzania Od 1 h do 2,5 h w C Można utwardzać w piecu konwekcyjnym (30 min w C) lub w piecu tunelowym IR (6 min w 200 C ) Czas życia 6 miesięcy w temperaturze pokojowej, do 9 miesięcy w lodówce 12 miesięcy w temperaturze pokojowej

20 Pasty rezystywne i przewodzące firmy Acheson Industries Ltd. stosowane w technologii formowania polimerowych rezystorów grubowarstwowych. Charakterystyka ogólna Nazwa wyrobu Zastosowanie Wypełniacz Rezystancja [Ω/kwadrat/25 µm] Warunki utwardzania Electrodag 976SS HV Electrodag PR-011B Pasta srebrna na skrzyżowania ścieżek i do otworów przelotowych (zasysanie próżniowe) Pasta miedziano-srebrna do wypełniania otworów przelotowych Proszek srebrny <0,025 Suszenie wstępne 70 C/30 min Utwardzanie C/30 min Proszek srebrny Proszek miedziany powleczony srebrem <0,035 Suszenie wstępne 70 C/30 min Utwardzanie 150 C/30 min Electrodag PR-406B Standardowa pasta węglowa na skrzyżowania ścieżek i i osłonę kontaktów miedzianych Proszek węglowy < C/30 min Electrodag PR-400 Pasty do nadruku polimerowych Proszek węglowy < C/30 min Electrodag PR-401B warstw rezystywnych na sztywne podłoża z laminatów papierowo-fenolowych i szklano-epoksydowych weglowy/dielektryczny ok C/30 min Electrodag PR-402B weglowy/dielektryczny ok C/30 min Electrodag PR-403B weglowy/dielektryczny ok C/30 min Electrodag PR-404B weglowy/dielektryczny ok C/30 min Electrodag PR-405B Proszek dielektryczny > 2 x C/30 min

21 Pasty rezystywne i przewodzące firmy Asahi Chemical Research Laboratory, stosowane w technologii polimerowych rezystorów grubowarstwowych. Charakterystyka ogólna. PASTY PRZEWODZĄCE Nazwa materiału LS-506J ACP-051 TU-20S TU-10S Charakterystyka i zastosowanie Dobre przewodnictwo, na wyprowadzenia rezystora Dobre przewodnictwo, miedź lutowna Kontakty klawiszowe i obwody ze skrzyżowaniami ścieżek Kontakty klawiszowe i obwody ze skrzyżowaniami ścieżek Wypełniacz Proszek srebrny Proszek miedziany Węgiel/grafit Węgiel/grafit Proces utwardzania 150 Cx30 min 150 Cx30 min 150 Cx30 min 150 Cx30 min PASTY REZYSTYWNE Nazwa materiału TU- -5 BTU- -5 BTU- -7 Charakterystyka i zastosowanie Wypalane w wyższych temperaturach, zwykle na podłoża ceramiczne Rezystory obrotowe na płytkach ceramicznych Czujniki i urządzenia samochodowe o dobrej nieuszkadzalności Proces utwardzania w piecu komorowym 260 Cx5 min 260 Cx5 min 170 Cx1 h

22 Proces wytwarzania rezystorów grubowarstwowych metodą druku sitowego Wytrawienie mozaiki kontaktów Drukowanie pasty temp. temp Suszenie Wygrzewanie

23 Geometria i rodzaj wyprowadzeń 300 µm 50 µm kontakty Cu 50 µm 300 µm W 125 µm kontakty Cu 125 µm A warstwa rezystywna A A W warstwa rezystywna A 350 µm L 200 µm L 350 µm A - A A - A Rezystory nadrukowane na wyprowadzenia miedziane Rezystory nadrukowane na wyprowadzenia miedziane w postaci cienkich ścieżek

24 Geometria i rodzaj wyprowadzeń 300 µm 50 µm kontakty Cu pokryte warstwą Ni/Au 125 µm 300 µm 50 µm warstwa przewodząca (srebrowa) kontakt Cu 125 µm W W A warstwa rezystywna A A warstwa rezystywna A A - A 350 µm L Powłoka ochronna NiAu A - A 350 µm 350 µm 300 µm L Rezystory nadrukowane na wyprowadzenia zabezpieczone powłoką Ni/Au. Rezystory nadrukowane na wyprowadzenia srebrowe

25 Użyteczne zakresy rezystancji i tolerancja Użyteczny zakres rezystancji dla rezystorów cienkowarstwowych w przypadku posiadanych materiałów mieści się w przedziale 10 Ω 6,8 k Ω. Biorąc pod uwagę rezystancję dostępnych materiałów cienkowarstwowych OhmegaPly użyteczne zakresy rezystancji można rozszerzyć o rezystancje możliwe do uzyskania przy pomocy materiału 250 Ω /. Przewidywany zakres maksymalny wynosiłby w tym przypadku kω. Użyteczny zakres rezystancji dla rezystorów grubowarstwowych w przypadku posiadanych materiałów mieści się w przedziale 10 Ω 100 k Ω. Biorąc pod uwagę rezystancję dostępnych materiałów grubowarstwowych użyteczne zakresy rezystancji mogą wynosić 1Ω-kilkadziesiąt MΩ. Wielkość tolerancji rezystorów cienkowarstwowych wynosi 10%, natomiast grubowarstwowych poniżej 15%. Stosując korekcję laserową oraz ścisły reżim technologiczny tolerancja rezystancji rezystorów cienko- i grubowarstwowych wynosi co najmniej 5% (lepsze parametry są możliwe do osiągnięcia dla warstwy grubszej 25 Ω / oraz past o mniejszej rezystancji na kwadrat).

26 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Korekcja laserowa

27 Istota korekcji laserowej Istotą korekcji laserowej (ang. Triming) jest dokonywanie zmian geometrycznych wymiarów rezystora przez usuwanie części warstwy rezystywnej (ablacja). Usuwając część warstwy rezystywnej z wytwarzanego rezystora, można albo zmniejszyć jego szerokość albo zwiększyć jego długość, co w wyniku prowadzi do zwiększenia się rezystancji korygowanego rezystora do z góry założonej wartości. Aby uzyskać dostateczną precyzję korekcji lub by w ogóle była ona wykonalna wymiary elementu korygowanego muszą być znacznie większe od szerokości cięcia. Odpowiada ona w przybliżeniu średnicy wiązki lasera i minimalnie wynosi kilkanaście µm.

28 Rodzaje cięć korygujących Pojedyncze cięcie Cięcie w kształcie serpentyny Podwójne cięcie Cięcie prostokątne Cięcie w kształcie litery L

29 Rodzaje cięć korygujących Pojedyncze cięcie R [Ω] Wartość przed korekcją Szerokość rezystora

30 Rodzaje cięć korygujących Podwójne cięcie R [Ω] Wartość przed korekcją Cięcie I Cięcie II Szerokość rezystora

31 Cięcie w kształcie litery L Rodzaje cięć korygujących R [Ω ] Cięcie I Cięcie II

32 Schemat poglądowy stanowiska do korekcji rezystorów Stanowisko do korekcji składa się z dwóch podstawowych modułów: wykonawczego - urządzenie laserowe pomiarowo-przełączającego - układ opracowany w ITR

33 Stanowisko do korekcji rezystorówmoduł wykonawczy Moduł wykonawczy składa się z dwóch podstawowych podzespołów: części sterującej zawierającej zasilacze i układy elektroniczne oraz części laserowej zawierającej laser włóknowy z wbudowanym rozszerzaczem wiązki, obiektywem oraz głowicą skanującą

34 Stanowisko do korekcji rezystorów moduł pomiarowo-przełączający Moduł pomiarowo-przełączający został w całości zaprojektowany i wykonany w Instytucie Tele- i Radiotechnicznym. ZADANIA: stała kontrola rezystancji korygowanych rezystorów zakończenie procesu korekcji w chwili otrzymania z góry zakładanej wartości rezystancji

35 Stanowisko do korekcji rezystorów Parametry lasera Parametr Jednostka Wielkość Maksymalna moc lasera W 10 Długość fali nm 1062 Przewidywalny czas pracy h Zasilanie V/Hz 230/50 Pobór mocy W 400 Chłodzenie Powietrzem Temperatura pracy C 5 40 C Standard obudowy IP 52 Częstotliwość khz Prędkość przemieszczania wiązki mm/s

36 Dobór parametrów korekcji Nadtopienie podłoża (zbyt mała prędkość wiązki) Nie pełne usunięcie materiału rezystywnego (zbyt mała częstotliwość wiązki)

37 Parametry wiązki laserowej użytej podczas korekcji Parametr Jednostka Wielkość Długość fali nm 1062 Prędkość mm/s 100 Częstotliwość powtórzeń khz 35 Moc W 10 Liczba powtórzeń 1 Czas ustalenia ms 2 Zoffset mm 1,55

38 Wyniki tolerancji rezystorów po korekcji Rodzaj rezystora Tolerancja rezystorów po korekcji [%] Cięcie w kształcie litery L Pojedyncze cięcie Cienkowarstwowe z warstwą rezystywną 25Ω/ 0,4 1,2 11 Podwójne cięcie Cienkowarstwowe z warstwą rezystywną 100Ω/ 0,4 1,5 12 Grubowarstwowe 0,8 0,9 4

39 Zbudowane stanowisko do korekcji laserowej rezystorów pozwala na dokonywanie korekcji wartości rezystancji w sposób stabilny i powtarzalny. Dzięki stałej kontroli wartości rezystancji rezystora podczas procesu korygowania możliwe jest zakończenie tego procesu w chwili uzyskania zakładanej wartości rezystancji z dokładnością poniżej 1 %. W przypadku korekcji rezystorów grubo- jak i cienkowarstwowych najlepszym sposobem korekcji jest cięcie w kształcie litery L. Sposób ten pozwala, dzięki stałej kontroli wartości rezystancji rezystora podczas procesu korygowania, na wykonywanie korekcji z dokładnością poniżej 0,4% dla rezystorów cienkowarstwowych oraz poniżej 0,8% dla rezystorów grubowarstwowych. Opisane stanowisko do korekcji wartości rezystancji rezystorów przeznaczonych do wbudowania wewnątrz płytki zostało zgłoszone w Urzędzie Patentowym RP jako pracowniczy projekt wynalazczy.

40 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Technologia produkcji wielowarstwowych płytek drukowanych z wbudowanymi rezystorami na wewnętrznych warstwach płytki drukowanej

41 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Proces technologiczny wytwarzania płytek obwodów drukowanych z wbudowanymi cienkowarstwowymi elementami rezystywnymi różni się od procesu wytwarzania standardowych płytek wielowarstwowych kilkoma dodatkowymi operacjami technologicznymi, bez konieczności modyfikowania pozostałych operacji wspólnych dla obydwu technologii.

42 Podstawowe operacje technologiczne wytwarzania wielowarstwowych płytek obwodów drukowanych o budowie standardowej (a), oraz z cienkowarstwowymi wbudowanymi elementami rezystywnymi (b) Operacje technologiczne wytwarzania rezystorów cienkowarstwowych Przygotowanie laminatu Przygotowanie laminatu Nakładanie fotorezystu Nakładanie fotorezystu Definiowanie mozaiki (naświetlanie fotorezystu i wywoływanie) Trawienie miedzi Pierwsze naświetlanie i wywoływanie fotorezystu Pierwszy proces trawienia Drugi proces trawienia Stripowanie fotorezystu Nakładanie fotorezystu Drugie naświetlanie i wywoływanie fotorezystu Trzeci proces trawienia Definiowanie mozaiki Definiowanie mozaiki Stripowanie fotorezystu Stripowanie fotorezystu Nakładanie tlenków miedzi Nakładanie tlenków miedzi Laminowanie warstw zewnętrznych Laminowanie warstw zewnętrznych

43 Przygotowanie materiału kompozytowego z warstwą rezystywną Przygotowanie materiału należy przeprowadzić zgodnie z wymaganiami producenta wielowarstwowych płytek obwodów drukowanych przycinając kompozyt z warstwą rezystywną. Pierwszy proces naświetlania i wywoływania fotorezystu (definiowanie mozaiki i szerokości elementów rezystywnych) Do laminowania można zastosować dowolny fotopolimer o rozdzielczości, która powinna zapewnić dokładne odwzorowanie kształtu projektowanych rezystorów. Przykładowym fotorezystem jest materiał Kolon typu Dry Film Photoresist KP Pierwszy proces trawienia (trawienie miedzi) W procesie tym, metodą trawienia miedzi, odwzorowuje się w warstwie folii miedzianej obraz wytworzony na warstwie fotorezystu i definiuje, między innymi, szerokość formowanych rezystorów. W tym etapie można stosować standardowe media trawiące oraz urządzenia zapewniające równomierny proces z minimalnymi podtrawieniami. Zaleca sie stosowanie trawiarek zawierających moduł fine line.

44 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Topografia testowego panelu pilotażowego do kontroli procesu trawienia miedzi

45 Drugi proces trawienia (trawienie warstwy rezystywnej) Proces trawienia warstwy rezystywnej należy przeprowadzić przy użyciu roztworu zawierającego 250 g/l pięciowodnego siarczanu miedzi i 2 ml/l stężonego kwasu siarkowego, którego temperatura zawiera się w zakresie 94 ± 2 C. Czas prowadzenia procesu zależny jest od grubości warstwy rezystywnej materiału bazowego i stosowanego urządzenia do trawienia. Usuwanie (stripowanie) fotorezystu Operację usuwania fotorezystu należy prowadzić w urządzeniu zalecanym do zastosowanego materiału. Czas prowadzenia tego procesu powinien być ściśle określony tak, aby zapewniał dokładne usunięcie fotorezystu z całej powierzchni panelu produkcyjnego. Jednakże nie może on być zbyt długi, ponieważ warstwa dielektryka podtrzymująca krawędzie rezystora może zostać uszkodzona, co wpłynie na wartość otrzymanej rezystancji. Drugi proces naświetlania i wywoływania fotorezystu (definiowanie długości elementów rezystywnych) Zaleca się do tego celu zastosować fotorezyst, do zdejmowania, którego używany jest roztwór wodorotlenku sodu w stężeniu około 1%. Ustalono, że taki roztwór ma minimalny wpływ na rezystancję rezystorów. Rozdzielczość powinna być tak dobrana, aby zapewnić dokładne odwzorowanie kształtu projektowanych rezystorów.

46 Trzeci proces trawienia (trawienie miedzi) Trzeci proces trawienia prowadzi się metodą trawienia alkalicznego. Zalecany skład roztworu: roztwór wodny amoniaku 5-10%, chlorek amonu 20-25%. Warunki prowadzenia procesu: temperatura roztworu C, ph 8,2-8,8 (optymalne 8,4), ciężar właściwy roztworu 1,20-1,22 g/cm3, ciśnienie natrysku kpa. Usuwanie (stripowanie) fotorezystu Operację usuwania fotorezystu należy przeprowadzać w roztworze alkalicznym, optymalnie 1% wodorotlenku sodu, w jak najkrótszym potrzebnym do tego procesu czasie. Przygotowanie powierzchni miedzi przed prasowaniem W celu zwiększenia przyczepności naprasowywanej warstwy dielektrycznej do folii miedzianej mozaiki ścieżek przewodzących należy powierzchnię miedzi rozwinąć poprzez nakładanie tlenków miedzi lub stosując inny proces chemiczny np. mikrotrawienie, tak jak to ma miejsce w standardowym procesie technologicznym produkcji wielowarstwowych płytek obwodów drukowanych.

47 Proces prasowania RCC FR-4 RCM Rezystor temp. ciśnienie RCC RCM FR-4 Rezystor RCC RCC Prasowanie płytki czterowarstwowej z RCC Cu 1080 RCM FR-4 temp. ciśnienie Rezystor 1080 Cu 1080 RCM FR-4 Rezystor 1080 Cu Cu Prasowanie płytki czterowarstwowej z preimpregnatem 1080 i folią Cu

48 Proces prasowania RCC FR-4 RCM Rezystor temp. ciśnienie RCC RCM FR-4 Rezystor RCC RCC RCC RCC RCM FR-4 Rezystor RCC RCC temp. ciśnienie RCC RCC RCM FR-4 Rezystor RCC RCC Prasowanie płytki sześciowarstwowej z RCC

49 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Rezystory grubowarstwowe

50 Podstawowe operacje technologiczne wytwarzania wielowarstwowych płytek obwodów drukowanych z wbudowanymi grubowarstwowymi elementami rezystywnymi Przygotowanie laminatu Nakładanie fotorezystu Definiowanie mozaiki (naświetlanie foforezystu i wywoływanie) Trawienie miedzi Przygotowanie powierzchni kontaktów miedzianych Drukowanie pasty rezystywnej Operacje technologiczne wytwarzania rezystorów grubowarstwowych Suszenie i wygrzewanie pasty Nakładanie tlenków miedzi Laminowanie warstw zewnętrznych płytki obwodu drukowanego

51 Przygotowanie powierzchni kontaktów miedzianych Przygotowanie polega na oczyszczeniu powierzchni miedzi z różnego rodzaju zanieczyszczeń a przede wszystkim warstwy tlenkowej i niewielkim rozwinięciu powierzchni. Przygotowanie powierzchni należy przeprowadzić bezpośrednio przed nadrukiem w roztworze do oczyszczania (np. roztwór wodny [woda dejonizowana 150l] kwasu siarkowego [9l] z nadsiarczanem sodowym [7,5kg]). Drukowanie pasty rezystywnej Newralgiczny proces wytwarzania rezystorów grubowarstwowych wymagający odpowiedniego przygotowania pasty rezystywnej i utrzymania optymalnych i powtarzalnych parametrów procesowych. Suszenie i wygrzewanie past Suszenie pozwala wstępnie utwardzić pastę i nadać jej stały kształt oraz odporność na uszkodzenia. Wygrzewanie prowadzi do całkowitej polimeryzacji pasty. Suszenie i wygrzewanie przeprowadza się w piecach (suszarkach) konwekcyjnych. Prasowane pakietu płytki z wbudowanymi rezystorami grubowarstwowymi

52 Zmiana rezystancji [%] Zmiana rezystancji [%] ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada 1.5 mm 1.0 mm 0.5 mm 1.0 mm Numer rezystora Po tlenkach Po prasowaniu 1.5 mm 1.0 mm 0.5 mm 1.0 mm Numer rezystora Po tlenkach Po prasowaniu Przykładowe zmiany rezystancji po procesie nakładania tlenków w technologii J-KEM i prasowaniu, 25 /. Przykładowe zmiany rezystancji po procesie nakładania tlenków w technologii J-KEM i prasowaniu, 25 /.

53 Zmiana Change rezystancji of resistance [%] [%] Zmiana Change rezystancji of resistance [%] [%] Zmiana Change rezystancji of resistance [%] [%] ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada mm 1.0 mm 0.5 mm 1.0 mm after Po tlenkach oxides Numer Number rezystora of resistor after Po prasowaniu lamination Przykładowe zmiany rezystancji po procesie nakładania tlenków w technologii J-KEM i prasowaniu, ED / mm 1.0 mm 0.5 mm 1.0 mm after Po tlenkach oxides Numer Number rezystora of resistor after Po prasowaniu lamianation Przykładowe zmiany rezystancji po procesie nakładania tlenków w technologii J-KEM i prasowaniu, ED / mm 1.0 mm 0.5 mm 1.0 mm after Po tlenkach oxides Numer Number rezystora of resistor after Po prasowaniu lamination Przykładowe zmiany rezystancji po procesie nakładania tlenków w technologii J-KEM i prasowaniu, ED k /.

54 Zmiana Change rezystancji of resistance[%] Zmiana Change rezystancji of resistance[%] ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada mm 1.0 mm 0.5 mm 1.0 mm NiP 25 ohm NiP 100 ohm Numer rezystora Number of resistor ED7100_200ohm ED7500_20ohm ED7500_5kohm 1.5 mm 1.0 mm 0.5 mm 1.0 mm Numer Number rezystora of resistor Przykładowe zmiany rezystancji po procesie dwukrotnego lutowania rozpływowego, NiP 25 / i 100 /. Przykładowe zmiany rezystancji po procesie dwukrotnego lutowania rozpływowego, ED7100, ED7500.

55 Wartość rezystancji [Ω] ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Płytki poddane były narażeniom temperaturowym - zmian temperatury z zakresu ( 40) C + 85 C następowały zgodnie ze schematem. Wykonano 120 cykli narażeń. Czas trwania cyklu to 8,5 godziny. 1700,0 1650,0 1600,0 1550,0 1500, ,0 1400,0 1350,0 1300,0 1250,0 Temperatura [ C] W czasie jednego cyklu narażeń temperat. Wartość teoretyczna

56 Zmiana Change rezystancji of resistance [%] Zmiana Change rezystancji of resistance [%] [%] Zmiana Change rezystancji of resistance [%] [%] Zmiana Change rezystancji of resistance [%] [%] ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 NiP 25 ohm NiP 100 ohm 1.5 mm 1.0 mm 0.5 mm 1.0 mm Numer Number rezystora of resistor Cu asymmetric Cu Au Ag 1.5 mm 1.0 mm 0.5 mm 1.0 mm Numer Number rezystora of resistor Przykładowe zmiany rezystancji po 120 cyklach testów klimatycznych, NiP 25 / i 100 /. Przykładowe zmiany rezystancji po 120 cyklach testów klimatycznych, ED /. 100 Cu asymmetric Cu Au Ag 100 Cu asymmetric Cu Au Ag mm 1.0 mm 0.5 mm 1.0 mm Numer Number rezystora of resistor mm 1.0 mm 0.5 mm 1.0 mm Numer Number rezystora of resistor Przykładowe zmiany rezystancji po 120 cyklach testów klimatycznych, ED /. Przykładowe zmiany rezystancji po 120 cyklach testów klimatycznych, ED k /.

57 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada W przypadku rezystorów grubowarstwowych stwierdzono, że są one mniej podatne na roztwory do osadzania tlenków na powierzchni miedzi w linii technologicznej niż rezystory cienkowarstwowe Ni-P 25 Ω/ i 100 Ω/. Rezystory drukowane pastą ED7100 i ED7500(20Ω i 5kΩ) na mozaice srebrnej wykazują bardzo małe zmiany wartości rezystancji po procesie rozwijania powierzchni miedzi (poniżej 1%). Wpływa to bardzo korzystnie na późniejsze pomiary rezystancji po procesie prasowania. Maksymalne różnice wbudowanych rezystorów dla nadruku tą samą pastą wynoszą do 1%. W przypadku rezystorów grubowarstwowych najbardziej znaczący wpływ na zmiany rezystancji ma proces prasowania. Notowano znaczący spadek wartości rezystancji w przedziale od -10% do -0,7%. Jedynie pasta ED7100 na druku miedzianym wykazała podwyższenie wartości rezystancji o wielkości mieszczące się w przedziale od 0 do 6,8 %. Uzyskane zmiany procentowe wartości rezystancji rezystorów podczas pomiarów na każdym etapie produkcyjnym tworzenia płytki drukowanej powinny zostać uwzględnione podczas korekty wartości rezystancji w procesie technologicznym.

58 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Na podstawie przeprowadzonych badań stwierdzono, że zarówno kształt jak i materiał wyprowadzeń mają wpływ na stabilność rezystancji rezystorów grubowarstwowych w warunkach narażeń klimatycznych. Większą stabilnością w warunkach narażeń klimatycznych odznaczają się rezystory wykonane na wyprowadzeniach miedzianych w postaci sztabek niezależnie od zastosowanej pasty. W przypadku rezystorów wykonanych na wyprowadzeniach miedzianych w postaci cienkich ścieżek, a w szczególności w przypadku rezystorów o wielkości 0,5 mm x 1 kw zaobserwowano znaczne zmiany rezystancji w porównaniu z rezystorami o większych rozmiarach w szczególności przy zastosowaniu do ich wykonania past ED7500-5kΩ i ED Ω. Powłoka zabezpieczająca Ni/Au skutecznie zmniejsza wzajemnie oddziaływanie chemiczne materiału ścieżki rezystywnej i przewodzącej ścieżki miedzianej. Rezystory wykonane na tych wyprowadzeniach, niezależnie od ich wielkości, odznaczają się znacznie większą stabilnością w warunkach narażeń klimatycznych niż rezystory wykonane na wyprowadzeniach miedzianych bez powłoki zabezpieczającej. Podobne wyniki obserwowano dla rezystorów wykonanych na wyprowadzeniach z pasty srebrowej PF-050. W warunkach narażeń klimatycznych największą stabilnością charakteryzują się rezystory wykonane z pasty ED Ω, niezależnie od wielkości rezystorów jak i od rodzaju wyprowadzenia, na którym zostały wykonane.

59 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Na końcową wartość rezystancji rezystorów wbudowanych w wielowarstwową płytkę drukowaną ma wpływ bardzo wiele czynników, przede wszystkim jest to dokładność odwzorowania parametrów geometrycznych rezystora, ale także chemiczne, mechaniczne i cieplne narażenia podczas procesu przygotowania do prasowania i samego procesu prasowania. Dużą dokładność wymiarową rezystora można uzyskać optymalizując procesy trawienia poprzez zastosowanie płytek testowych, a uwzględnienie współczynników zmiany rezystancji podczas procesów technologicznych daje możliwość zaprojektowania rezystora tak, aby jego rezystancja po prasowaniu mieściła się w pożądanym zakresie tolerancji.

60 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Kondensatory wbudowane

61 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Materiały i technologia wytwarzania elementów pojemnościowych

62 Właściwości materiałów z warstwą pojemnościową FaradFlex oferowane przez firmę Oak-Mitsui Właściwości Grubość dielektryka [µm] Cp@ 1MHz/1GHz [pf/cm 2 ) Dk@ 1MHz/1GHz Tangens kąta stratności Wytrzymałość na odrywanie [ft/cal] Wtrzymałość elektryczna [kv/mil] Wytrzymałośc na rozciąganie [MPa(kpsi)] Wydłużenie [%] Metoda badania Norma IPC lub inne Wartość bazowa IPC-TM IPC-TM IPC-TM IPC-TM IPC-TM ASTM D- 882A ASTM D- 882A BC24 BC16 BC12 BC8 BC12TM BC16T / / / / / / / / / /4.0 10/8,5 30/ / / / / / / >8 >8 >8 >8 >4 > (22.0) 164(23.8) 194(28.2) 126(18.3) 110(16.0) NA NA Temperatura rozkładu (5% utraty wagi w N 2 /O 2 ] TGA 390/ / / / / /350 Test gorącej wody i zanurzenia w lutowiu [gotowanie 2 godziny w gorącej wodzie i zanurzenie 20 - pozytywny pozytywny pozytywny pozytywny pozytywny pozytywny sekund w lutowiu o temp. 260 C Szoki termiczne [20 sekund na stopie o temp. 288 C] razy - >10 >10 >10 >10 >10 >10 Migracja [85 C/85%RH/DC 35V] - >1000 >1000 >1000 >1000 >1000 >1000 Palność/Temp. zapłonu UL-94/UL746 V0 V0 V0 V0 V0 V0 130 C 130 C 130 C 125 C 130 C 130 C Sposób wytwarzania Dwustronne Dwustronne Dwustronne Dwustronne Dwustronne Sekwencyjn - kondensatorów trawienie trawienie trawienie trawienie trawienie a laminacja

63 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Folia miedziana (18 µm, 35 µm lub 70 µm) Warstwa dielektryka 8 do 24 µm Folia miedziana (18 µm, 35 µm lub 70 µm) Konstrukcja ultra cienkiego materiału FaradFlex

64 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Sanmina-SCI Materiał ZBC 2000 Pojemność jednostkowa 506 pf/cal2 [78 pf/cm2], Żywica epoksydowa o wysokiej temperaturze zeszklenia 170 C, Grubość dielektryka 50 µm, Spełnia wymagania próby napięciowej 500 VDC, Folia Cu o grubości 17,5 µm, 35 µm lub 70 µm (dwukrotnie obrabiana lub z obróbką nisko profilową z jednej strony). 3M Materiał C-Ply Dielektryk epoksydowy z wypełniaczem BaTiO3, niewzmacniany, Grubość warstwy od 4 µm do 25 µm (materiał handlowy 16 µm), Grubość Cu 35 µm, Spełnia wymagania próby napięciowej 100 VDC

65 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada DuPont Materiał HK 4 Dielektryk poliimidowy, bez wypełniacza, Grubość dielektryka 25 µm, Stała dielektryczna 3,5 Pojemność jednostkowa do 800pF/cal2 (122 pf/cm2), Spełnia wymagania próby napięciowej 500 VDC. Materiał HK 11 Dielektryk poliamidowy, z wypełniaczem Grubość dielektryka 14 µm, Stała dielektryczna 11, Pojemność jednostkowa do 4500pF/cal2 (698 pf/cm2), Spełnia wymagania próby napięciowej 100 VDC.

66 Konstrukcje cienkowarstwowych kondensatorów wbudowanych iinne połączenia sieci elektrycznej obwodu płytki drukowanej

67 Konstrukcja wyprowadzeń kondensatorów planarnych wyprowadzenie kondensatora okładki kondensatora

68 Typowe konstrukcje płytek obwodów drukowanych z wbudowanymi elementami pojemnościowymi Płytka czterowarstwowa Materiał FaradFlex Płytka ośmiowarstwowa Materiał FaradFlex Materiał FaradFlex

69 Warianty mikropołączeń międzywarstwowych w płytce obwodu drukowanego zawierającej wbudowane elementy pojemnościowe Mikrootwory nieprzelotowe; po obydwu stronach laminat typu RCC laminat typu RCC laminat z wbudowaną warstwą pojemnościową stanowiący rdzeń płytki metalizowany mikrootwór nieprzelotowy metalizowany mikrootwór nieprzelotowy obszar kondensatora laminat typu RCC

70 Warianty mikropołączeń międzywarstwowych w płytce obwodu drukowanego zawierającej wbudowane elementy pojemnościowe Mikrootwór nieprzelotowy i otwór przelotowy; po obydwu stronach laminat typu RCC metalizowany otwór przelotowy laminat typu RCC laminat z wbudowaną warstwą pojemnościową stanowiący rdzeń płytki metalizowany mikrootwór nieprzelotowy obszar kondensatora laminat typu RCC

71 Warianty mikropołączeń międzywarstwowych w płytce obwodu drukowanego zawierającej wbudowane elementy pojemnościowe Mikrootwór nieprzelotowy i otwór przelotowy; po jednej stronie laminat typu RCC po drugiej typu FR-4 metalizowany otwór przelotowy laminat typu RCC laminat z wbudowaną warstwą pojemnościową stanowiący rdzeń płytki metalizowany mikrootwór nieprzelotowy prepreg 106 obszar kondensatora laminat typu FR-4

72 Przykładowe konstrukcje płytki wielowarstwowej z wbudowanymi elementami pojemnościowymi z przelotowymi połączeniami miedzywarstwowymi; z nieprzelotowymi mikropołączeniami międzywarstwowymi

73 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Pojemność formowanego elementu pojemnościowego uzależniona jest od wielu czynników, na które składają się: odległość pomiędzy okładkami kondensatora; medium wypełniające przestrzeń między okładkami (powietrze; materiał dielektryczny); właściwości materiału dielektrycznego; wielkość powierzchni wzajemnego pokrywania się obszarów okładek kondensatora. Pierwsze trzy czynniki wynikają z przyjętej konstrukcji i materiałów użytych do budowy formowanego kondensatora, natomiast ostatni z wymienionych czynników (powierzchnia wzajemnego pokrywania się obszarów okładek) zależy w dużej mierze od przyjętej technologii, sposobu wykonania i dokładności możliwej do osiągnięcia w danej technologii.

74 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada podtrawienie okładek kondensatora przesunięcie jednej z okładek kondensatora obszar czynny kondensatora niedotrawienie okładek kondensatora przesunięcie drugiej okładki kondensatora Wpływ podtrawień i położenia okładek kondensatora na tolerancję jego pojemności

75 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada podtrawienie okładek kondensatora przesunięcie jednej z okładek kondensatora Zdjęcia rentgenowskie kondensatorów wbudowanych

76 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada ramka 295 (dla F2) obszar arkusza cienkiego laminatu (dla F3) Konstrukcja pozwalająca na niezakłócony transport cienkich laminatów w urządzeniach technologicznych do produkcji płytek wielowarstwowych (rysunek poglądowy)

77 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Prawidłowy sposób przenoszenia laminatu Nieprawidłowe chwytanie na dwóch bokach Nieprawidłowe chwytanie jedną ręką Zasady obchodzenia się z bardzo cienkimi laminatami podczas procesu produkcji wielowarstwowej płytki obwodu drukowanego

78 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Użyteczne zakresy pojemności i tolerancja Użyteczny zakres pojemności dla kondensatorów cienkowarstwowych w przypadku posiadanych materiałów mieści się w przedziale <1 pf 5000 pf. Biorąc pod uwagę rezystancję dostępnych materiałów pojemnościowych FaradFlex użyteczne zakresy pojemności można rozszerzyć o pojemności możliwe do uzyskania przy pomocy materiału BC16T. Przewidywany zakres maksymalny wynosiłby w tym przypadku 10 nf. Wielkość tolerancji pojemności kondensatorów wynosi 10%. Lepszą tolerancję uzyskuje się dla kondensatorów wykonanych z materiału BC24M i dla kondensatorów o powierzchni okładek powyżej 0,25 cm 2. Tolerancja wykonania w tym przypadku jest poniżej 2%.

79 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Proces technologiczny wytwarzania płytek obwodów drukowanych z wbudowanymi cienkowarstwowymi elementami pojemnościowymi nie różni się od procesu wytwarzania standardowych płytek wielowarstwowych. Stosowany materiał nie wymaga dodatkowych operacji technologicznych a operacja trawienie samych kondensatorów odbywa się w sposób identyczny jak trawinie mozaiki obwodu drukowanego. Podstawowym problemem w obróbce kompozytów z warstwą pojemnościową jest fakt, że są to materiały bardzo cienkie. Z tego też powodu urządzenia technologiczne powinny być przystosowane do procesów obróbki tego typu materiałów. Podejmując się wdrożenia wbudowywania elementów biernych wewnątrz płytki drukowanej producent powinien dysponować pracownikami o dużym doświadczeniu w manipulowaniu bardzo cienkimi materiałami.

80 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Wytyczne konstrukcyjne Aby kondensator miał określoną pojemność, jak również, aby ona była możliwa do uzyskania w sposób powtarzalny należy zadbać o to, aby obszar wspólnego pokrywania się przewodników był regularny i możliwie powtarzalny (kwadrat, prostokąt), a doprowadzenia elektryczne do okładek kondensatora możliwie najkrótsze. Celem wyeliminowania lub jak największego ograniczenia wpływu obecności wyprowadzeń kondensatora na jego pojemność konieczne jest, aby wyprowadzenia te były formowane z możliwie cienkiego przewodnika (wąska ścieżka sygnałowa, np. o szerokości 0,125 mm) i były one usytuowane w obszarze przeciwległych boków lub narożników okładek kondensatora Proces fotochemiczny W tym procesie definiowane są wymiary okładek kondensatora oraz wzajemnie położenie ich względem siebie. Konieczna jest ścisła kontrola stanu klisz i naświetlanie mozaiki z największą możliwa dokładnością.

81 Proces trawienia Optymalizacja procesów trawienia to przede wszystkim ścisła kontrola szybkości trawienia roztworu trawiącego wykonywana poprzez pomiar wymiarów wytrawionej mozaiki wykonywanych płytek. Wszelkie podtrawienia i niedotrawienia zmieniają wymiary okładek kondensatora a tym samym zmieniają jego pojemność. W przypadku trawienia cienkiego laminatu, którego grubość jest na poziomie µm, należy umieścić go w sztywnej ramce, ponieważ pod wpływem ciśnienia strumienia medium trawiącego może on ulec deformacji. Proces nakładania tlenków miedzi Podczas nakładania czarnych tlenków należy zachować szczególną ostrożność, aby nie uszkodzić formatki materiału pojemnościowego. Materiał po wytrawieniu jest wyjątkowo podatny na zniszczenie ze względu na odsłoniętą bardzo cienką warstwę dielektryczną. Stwierdzono, że proces nakładania tlenków nie powodował planarnych zmian wymiarowych okładek kondensatora ani nie wpływał na materiał dielektryka. Różnice pojemności kondensatorów przed i po nakładaniu tlenków w większości przypadków nie przekraczały procenta. Proces prasowania Podczas prasowania nie dochodziło do zmian wymiarowych grubości dielektryka (pomiar na zgładach metalograficznych przed i po prasowaniu) oraz przesunięć okładek kondensatorów.

82 warstwa z proszkiem ceramicznym FR4 2x106 Cu dielektryk Cu 2x106 FR4 Zgład kondensatora wykonanego z materiału FaradFlex BC12TM pomiędzy laminatami FR4, powiększenie 100x (200x), widoczna warstwowa budowa dielektryka, dwie warstwy wypełnione ceramicznym proszkiem i rdzeń bez wypełnienia.

83 Różnica procentowa [%] Różnica procentowa [%] Różnica procentowa [%] ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Zamiany wartosci pojemności po procesie trawienia Różnica wartości pojemności kondensatorów do pojemności projektowanej Zamiany wartosci pojemności po procesie nakładnaia brązowych tlenków 4,00 BC_24M BC_12TM 2,00 BC_24M BC_12TM 2,00 1,50 0,00-2, ,00 0,50-4,00-6,00 0,00-0, ,00-1,00-10,00-1,50-12,00 Numer kondensatora -2,00 Numer kondensatora Zamiany wartosci pojemności po procesie prasowania 3,50 BC_24M BC_12TM 3,00 2,50 2,00 1,50 1,00 0,50 0,00-0, Numer kondensatora

84 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Porównując wyniki dla kondensatorów z warstwą pojemnościową BC24M oraz BC12TM można stwierdzić, że większą stabilnością w procesie wytwarzania wielowarstwowej płytki drukowanej odznaczają się kondensatory z warstwą pojemnościową BC12TM. W przypadku kondensatorów z warstwą pojemnościową BC24M zaobserwowano wyraźnie wyższe (do 3 %) zmiany pojemności w porównaniu z kondensatorami z warstwą pojemnościową BC12TM, gdzie zmiany te były pomijalnie małe i wynosiły poniżej 0,5%. Kondensatory wytwarzane z materiału BC24M odznaczają się natomiast lepszą tolerancją wykonania. Procentowa tolerancja wykonania badanych kondensatorów wykonanych z materiału BC24M mieści się w zakresie 2%, natomiast kondensatorów wytwarzanych z materiału BC12TM w granicach 9% do wartości zakładanej.

85 Tolerancja wykonania [%] Tolerancja wykonania [%] Tolerancja wykonania [%] Tolerancja wykonania [%] ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada I seria II seria ,5 1,5 1,5 2,8 2,8 2,8 5,5 5,5 5, ,7 5,7 5, ,9 10,9 10,9 21,4 21,4 21,4 43,8 43,8 43,8 85,8 85,8 85,8 85,8 11,3 11,3 11,3 22,1 22,1 22,1 22,1 pojemność [pf] 45,0 45,0 45,0 45,0 45,0 45,0 88,2 88,2 180,0 180,0 352,8 352,8 175,0 175,0 175,0 175,0 175,0 175,0 343,0 343,0 700,0 700,0 1372,0 1372,0 BC24M 6 4 1,5 1,5 1,5 2,8 2,8 2,8 5,5 5,5 5, ,7 5,7 5, ,9 10,9 10,9 21,4 21,4 21,4 43,8 43,8 43,8 85,8 85,8 85,8 85,8 11,3 11,3 11,3 22,1 22,1 pojemność [pf] 22,1 22,1 45,0 45,0 45,0 45,0 45,0 45,0 88,2 88,2 180,0 180,0 352,8 175,0 175,0 175,0 175,0 175,0 175,0 343,0 343,0 700,0 700,0 1372,0 1372,0 352, pojemność [pf] -30 pojemność [pf] BC12TM

86 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada W przypadku najmniejszych kondensatorów (poniżej 0,25 cm2) niedokładności fotochemigrafii i trawienia skutkowały powstawaniem nawet kilkukrotnie większej różnicy między pojemnością uzyskaną a projektowaną niż w przypadku kondensatorów o stosunkowo dużych okładkach (w przybliżeniu 8% do 2% dla kondensatorów z materiału BC24M). Wszelkie odchyłki pojemności kondensatorów związane z niedotrawieniem, przetrawieniem czy przesunięciem okładek względem siebie można minimalizować poprzez dokładne i precyzyjne ustawienie dolnej i górnej kliszy względem siebie podczas naświetlania fotopolimeru oraz dokładną kontrolę procesu trawienia (prędkości transportera w trawiarce, dokładność pomiarów elementów mozaiki na płytkach testowych (± 2 µm)). Stwierdzono, że kondensatory wykonane z materiału BC24M wykazywały mniejszy rozrzut pojemności i lepszą tolerancję wykonania niż kondensatory wykonane z materiału BC12TM. Tolerancja wykonania w przypadku pierwszego materiału (BC24M) mieści się w 10%. Uzyskiwane pojemności kondensatorów przy zastosowaniu tego materiału były wyższe niż projektowane. Natomiast w przypadku drugiego materiału (BC12TM) tolerancja wykonania osiągała wartości nawet 25% (po optymalizacji 15%) a uzyskiwane pojemności kondensatorów były niższe niż projektowane.

87 Trawienie laminatów standardowych Trawienie laminatów ultra cienkich Rozwiązania konstrukcji podajników urządzeń trawiących w zależności od ich przeznaczenia

88 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Kompozyt warstwy rezystywnej i warstwy pojemnościowej

89 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Folia Cu stanowiąca okładkę kondensatora zbudowanego z dielektryka FaradFlex Warstwa rezystywna OhmegaPly zbudowana z materiału NiP Warstwa dielektryczna FaradFlex stanowiąca rdzeń kondensatora Budowa kompozytu R/C Kompozyt warstwy rezystywnej i pojemnościowej jest zbudowany z dwóch arkuszy folii miedzianej, między którymi znajduje się cienka warstwa dielektryka. Na jedną z tych folii naniesiono uprzednio cienką warstwę rezystywną NiP.

90 1. Przygotowanie materiału 5. Nakładanie fotopolimeru 9. Trzecie trawienie miedzi 2. Nakładanie fotopolimeru 6. Drugie trawienie miedzi 10. Rezystory i kondensatory wytworzone z kompozytu FaradFlex/Ohmega kondensator rezystor 3. Pierwsze trawienie miedzi 7. Trawienie warstwy NiP Prasowanie (wbudowywanie do wnętrza płytki drukowanej elementów biernych) 4. Prasowanie kompozytu FaradFlex/Ohmega ze sztywnym laminatem 8. Nakładanie fotopolimeru fotopolimer Cu NiP dielektryk Cu preimpregnat 106 FR4 fotopolimer Schemat procesu wytwarzania rezystorów i kondensatorów z materiału FaradFlex/Ohmega

91 ENERGETICS 2011 IV Lubelskie Targi Energetyczne listopada Według powyższej technologi zaprojektowano płytki testowe z filtrami dolnoprzepustowymi. Parametry zaprojektowanych filtrów: Lp. R [kω] R długość [mm] C [pf] C wymiary [mm] f graniczna [Hz] 1. 1,000 20,00 318,31 13,68x13, , ,330 6,60 482,29 16,84x16, , ,150 3,00 212,21 11,17x11, , ,082 1,64 194,09 10,69x10, , ,056 1,12 56,84 5,78x5, ,851 Topografia płytki testowej wykonanej z materiału R/C

92 Informacje kontaktowe Biuro projektu Instytut Tele- i Radiotechniczny, ul. Ratuszowa 11, Warszawa Tel. (48-22) Fax (48-22) itr@itr.org.pl Realizatorzy projektu Kierownik zadania dr Grażyna Kozioł Zespół naukowy prof. dr hab. inż. Andrzej Dziedzic dr inż. Krystyna Kujawa-Bukat dr inż. Janusz Sitek dr inż. Janusz Borecki mgr inż. Aneta Araźna mgr inż. Wojciech Stęplewski mgr inż. Kamil Janeczek mgr inż. Tomasz Serzysko mgr inż. Krzysztof Lipiec mgr inż. Konrad Futera Osoby kontaktowe: Wojciech Stęplewski wojciech.steplewski@itr.org.pl Tomasz Serzysko tomasz.serzysko@itr.org.pl

Warsztaty Technologia doświadczalna wbudowywania elementów rezystywnych i pojemnościowych wewnątrz płytki drukowanej POIG

Warsztaty Technologia doświadczalna wbudowywania elementów rezystywnych i pojemnościowych wewnątrz płytki drukowanej POIG INSTYTUT TELE- I RADIOTECHNICZNY Centrum Zaawansowanych Technologii Warsztaty Technologia doświadczalna wbudowywania elementów rezystywnych i pojemnościowych wewnątrz płytki drukowanej POIG.01.03.01-00-031/08

Bardziej szczegółowo

INSTYTUT TELE- I RADIOTECHNICZNY

INSTYTUT TELE- I RADIOTECHNICZNY INSTYTUT TELE- I RADIOTECHNICZNY Technologia doświadczalna wbudowywania elementów rezystywnych i pojemnościowych wewnątrz płytki drukowanej POIG.01.03.01-00-031/08 OPIS PRZEPROWADZONYCH PRAC B+R W PROJEKCIE

Bardziej szczegółowo

INSTYTUT TELE- I RADIOTECHNICZNY

INSTYTUT TELE- I RADIOTECHNICZNY INSTYTUT TELE- I RADIOTECHNICZNY Program Operacyjny Innowacyjna Gospodarka, lata 2007-2013, Priorytet 1 Badania i Rozwój Nowoczesnych Technologii, Działanie 1.3 Wsparcie Projektów B+R na rzecz przedsiębiorców

Bardziej szczegółowo

INSTYTUT TELE- I RADIOTECHNICZNY

INSTYTUT TELE- I RADIOTECHNICZNY INSTYTUT TELE- I RADIOTECHNICZNY Program Operacyjny Innowacyjna Gospodarka, lata 2007-2013, Priorytet 1 Badania i Rozwój Nowoczesnych Technologii, Działanie 1.3 Wsparcie Projektów B+R na rzecz przedsiębiorców

Bardziej szczegółowo

INSTYTUT TELE- I RADIOTECHNICZNY

INSTYTUT TELE- I RADIOTECHNICZNY INSTYTUT TELE- I RADIOTECHNICZNY Program Operacyjny Innowacyjna Gospodarka, lata 2007-2013, Priorytet 1 Badania i Rozwój Nowoczesnych Technologii, Działanie 1.3 Wsparcie Projektów B+R na rzecz przedsiębiorców

Bardziej szczegółowo

INSTYTUT TELE- I RADIOTECHNICZNY

INSTYTUT TELE- I RADIOTECHNICZNY INSTYTUT TELE- I RADIOTECHNICZNY Program Operacyjny Innowacyjna Gospodarka, lata 2007-2013, Priorytet 1 Badania i Rozwój Nowoczesnych Technologii, Działanie 1.3 Wsparcie Projektów B+R na rzecz przedsiębiorców

Bardziej szczegółowo

INSTYTUT TELE- I RADIOTECHNICZNY

INSTYTUT TELE- I RADIOTECHNICZNY INSTYTUT TELE- I RADIOTECHNICZNY Program Operacyjny Innowacyjna Gospodarka, lata 2007-2013, Priorytet 1 Badania i Rozwój Nowoczesnych Technologii, Działanie 1.3 Wsparcie Projektów B+R na rzecz przedsiębiorców

Bardziej szczegółowo

Technologie mikro- nano-

Technologie mikro- nano- Technologie mikro- nano- część Prof. Golonki 1. Układy wysokotemperaturowe mogą być nanoszone na następujące podłoże ceramiczne: a) Al2O3 b) BeO c) AlN 2. Typowe grubości ścieżek w układach grubowarstwowych:

Bardziej szczegółowo

WYKŁAD 2 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 2 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 2 Dr hab. inż. Karol Malecha, prof. Uczelni Plan wykładu - Podstawy technologii grubowarstwowej - Materiały i procesy TECHNOLOGIA GRUBOWARSTWOWA Układy grubowarstwowe wytwarza

Bardziej szczegółowo

METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI. Wykład piąty Materiały elektroniczne płyty z obwodami drukowanymi PCB (Printed Circuit Board)

METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI. Wykład piąty Materiały elektroniczne płyty z obwodami drukowanymi PCB (Printed Circuit Board) METODYKA PROJEKTOWANIA I TECHNIKA REALIZACJI Wykład piąty Materiały elektroniczne płyty z obwodami drukowanymi PCB (Printed Circuit Board) Co to jest płyta z obwodem drukowanym? Obwód drukowany (ang. Printed

Bardziej szczegółowo

RoHS Laminaty Obwód drukowany PCB

RoHS Laminaty Obwód drukowany PCB Mini słownik RoHS Restriction of Hazardous Substances - unijna dyrektywa (2002/95/EC), z 27.01.2003. Nowy sprzęt elektroniczny wprowadzany do obiegu na terenie Unii Europejskiej począwszy od 1 lipca 2006

Bardziej szczegółowo

Kondensatory. Konstrukcja i właściwości

Kondensatory. Konstrukcja i właściwości Kondensatory Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Podstawowe techniczne parametry

Bardziej szczegółowo

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 dr inż. ALEKSANDER LISOWIEC dr hab. inż. ANDRZEJ NOWAKOWSKI Instytut Tele- i Radiotechniczny Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 W artykule przedstawiono

Bardziej szczegółowo

Badanie Podstawowych Właściwości Atramentów Przewodzących Prąd Elektryczny dla Technologii Ink-Jet.

Badanie Podstawowych Właściwości Atramentów Przewodzących Prąd Elektryczny dla Technologii Ink-Jet. www.amepox-mc.com www.amepox.com.pl Badanie Podstawowych Właściwości Atramentów Przewodzących Prąd Elektryczny dla Technologii Ink-Jet. Andrzej Kinart, Andrzej Mościcki, Anita Smolarek Amepox Microelectronics,

Bardziej szczegółowo

Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP

Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP Plan wykładu Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP Montaż drutowy i flip-chip struktur nie obudowanych Tworzywa sztuczne i lepkospręż

Bardziej szczegółowo

PARAMETRY TECHNICZNO UŻYTKOWE Zadanie nr 7 Ploter laserowy 1 szt.

PARAMETRY TECHNICZNO UŻYTKOWE Zadanie nr 7 Ploter laserowy 1 szt. Załącznik nr 7 + OPZ + formularz szacowanie wartości zamówienia PARAMETRY TECHNICZNO UŻYTKOWE Zadanie nr 7 Ploter laserowy 1 szt. Urządzenie musi być fabrycznie nowe, nie dopuszcza się urządzeń powystawowych,

Bardziej szczegółowo

Czujnik Rezystancyjny

Czujnik Rezystancyjny Czujnik Rezystancyjny Slot RTD Punktowy w dodatkowej obudowie, Karta katalogowa, Edycja 016 Zastosowanie Silniki elektryczne Generatory Właściwości techniczne Wykonania pojedyncze i podwójne Obwód pomiarowy

Bardziej szczegółowo

Kompensatory stalowe. Produkcja. Strona 1 z 76

Kompensatory stalowe. Produkcja. Strona 1 z 76 Strona 1 z 76 Kompensatory stalowe Jeśli potencjalne odkształcenia termiczne lub mechaniczne nie mogą być zaabsorbowane przez system rurociągów, istnieje konieczność stosowania kompensatorów. Nie przestrzeganie

Bardziej szczegółowo

PORADNIK PROJEKTANTA PCB. Projektowanie obwodów drukowanych wielowarstwowych

PORADNIK PROJEKTANTA PCB. Projektowanie obwodów drukowanych wielowarstwowych 1 PORADNIK PROJEKTANTA PCB Projektowanie obwodów drukowanych wielowarstwowych 2 Firma Nanotech Elektronik Sp. z o.o. jest profesjonalnym dostawcą obwodów drukowanych dowolnego typu i klasy złożoności.

Bardziej szczegółowo

ĆW. 11. TECHNOLOGIA I WŁAŚCIWOŚCI POLIMEROWYCH REZYSTORÓW

ĆW. 11. TECHNOLOGIA I WŁAŚCIWOŚCI POLIMEROWYCH REZYSTORÓW ĆW.. TECHNOLOGIA I WŁAŚCIWOŚCI POLIMEROWYCH REZYSTORÓW CEL ĆWICZENIA. Zapoznanie się z technologią polimerowych warstw grubych na przykładzie elementów rezystywnych. Określenie wpływu rodzaju i zawartości

Bardziej szczegółowo

Załącznik I do SIWZ. Część I zamówienia. Lp. Opis Pow. łączna [dm 2 ]

Załącznik I do SIWZ. Część I zamówienia. Lp. Opis Pow. łączna [dm 2 ] Załącznik I do SIWZ Część I zamówienia Lp. Opis Pow. łączna [dm 2 ] 1. rodzaje obwodów: 1-warstwowa metalizacja 2. 3. rodzaje obwodów: 2 -warstwowa metalizacja rodzaje obwodów: 4-warstwowa metalizacja

Bardziej szczegółowo

Czujnik Rezystancyjny

Czujnik Rezystancyjny Czujnik Rezystancyjny Slot RTD Bifilarny w dodatkowej obudowie, TOPE60 Karta katalogowa TOPE60, Edycja 016 Zastosowanie Silniki elektryczne Generatory Właściwości techniczne Wykonania pojedyncze i podwójne

Bardziej szczegółowo

Badanie Podstawowych Właściwości Atramentów Przewodzących Prąd Elektryczny dla Technologii Ink-Jet.

Badanie Podstawowych Właściwości Atramentów Przewodzących Prąd Elektryczny dla Technologii Ink-Jet. www.amepox-mc.com www.amepox.com.pl Badanie Podstawowych Właściwości Atramentów Przewodzących Prąd Elektryczny dla Technologii Ink-Jet. Andrzej Kinart, Andrzej Mościcki, Anita Smolarek Amepox Microelectronics,

Bardziej szczegółowo

LTCC. Low Temperature Cofired Ceramics

LTCC. Low Temperature Cofired Ceramics LTCC Low Temperature Cofired Ceramics Surowa ceramika - green tape Folia LTCC: 100-200µm, mieszanina ceramiki, szkła i nośnika ceramicznego Technika sitodruku: warstwy (ścieŝki przewodzące, rezystory,

Bardziej szczegółowo

Standardowy rezystor kontrolny Model CER6000

Standardowy rezystor kontrolny Model CER6000 Kalibracja Standardowy rezystor kontrolny Model CER6000 Karta katalogowa WIKA CT 70.30 Zastosowanie Wzorzec pierwotny dla napięcia i rezystancji w laboratoriach kalibracyjnych na całym świecie Wzorzec

Bardziej szczegółowo

LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE

LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE 1 OGÓLNE DANE TECHNICZNE Mierzone parametry Typ układu pomiarowego L/C/R/D/Q/θ Indukcyjność (L) Tryb domyślny układ szeregowy Pojemność / rezystancja

Bardziej szczegółowo

C/Bizkargi, 6 Pol. Ind. Sarrikola E LARRABETZU Bizkaia - SPAIN

C/Bizkargi, 6 Pol. Ind. Sarrikola E LARRABETZU Bizkaia - SPAIN Mosiądz Skład chemiczny Oznaczenia Skład chemiczny w % (mm) EN Symboliczne Numeryczne Cu min. Cu maks. Al maks. Fe maks. Ni maks. Pb min. Pb maks. Sn maks. Zn min. Inne, całkowita maks. CuZn10 CW501L EN

Bardziej szczegółowo

Instytut Technologii Materiałów Elektronicznych

Instytut Technologii Materiałów Elektronicznych WPŁYW TRAWIENIA CHEMICZNEGO NA PARAMETRY ELEKTROOPTYCZNE KRAWĘDZIOWYCH OGNIW FOTOWOLTAICZNYCH Joanna Kalbarczyk, Marian Teodorczyk, Elżbieta Dąbrowska, Konrad Krzyżak, Jerzy Sarnecki kontakt srebrowy kontakt

Bardziej szczegółowo

2.3. Bierne elementy regulacyjne rezystory, Rezystancja znamionowa Moc znamionowa, Napięcie graniczne Zależność rezystancji od napięcia

2.3. Bierne elementy regulacyjne rezystory, Rezystancja znamionowa Moc znamionowa, Napięcie graniczne Zależność rezystancji od napięcia 2.3. Bierne elementy regulacyjne 2.3.1. rezystory, Rezystory spełniają w laboratorium funkcje regulacyjne oraz dysypacyjne (rozpraszają energię obciążenia) Parametry rezystorów. Rezystancja znamionowa

Bardziej szczegółowo

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze

Bardziej szczegółowo

ZASTOSOWANIE NAŚWIETLANIA LASEROWEGO DO BLOKADY PROPAGACJI PĘKNIĘĆ ZMĘCZENIOWYCH

ZASTOSOWANIE NAŚWIETLANIA LASEROWEGO DO BLOKADY PROPAGACJI PĘKNIĘĆ ZMĘCZENIOWYCH Sylwester KŁYSZ *, **, Anna BIEŃ **, Janusz LISIECKI *, Paweł SZABRACKI ** * Instytut Techniczny Wojsk Lotniczych, Warszawa ** Uniwersytet Warmińsko-Mazurski, Olsztyn ZASTOSOWANIE NAŚWIETLANIA LASEROWEGO

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 045

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 045 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 045 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 15 Data wydania: 1 września 2016 r. Nazwa i adres AB 045 Kod

Bardziej szczegółowo

Rezystory bezindukcyjne RD3x50W

Rezystory bezindukcyjne RD3x50W Rezystory bezindukcyjne RD3x50W 1 1. ZASTOSOWANIE Przekładniki prądowe jak i napięciowe gwarantują poprawne warunki pracy przy obciążeniu w przedziale 25 100 % mocy znamionowej. W przypadku przekładników

Bardziej szczegółowo

STRUCTUM - TECHNOLOGIE JUTRA DZISIAJ. Structum Sp. z o.o., ul. Niepodległości 30/59, Lublin, Poland

STRUCTUM - TECHNOLOGIE JUTRA DZISIAJ. Structum Sp. z o.o., ul. Niepodległości 30/59, Lublin, Poland Opis produktu Dobeckan FT 2002/120EK Lakier impregnujący Impregnacja nakapywaniem Wysoka reaktywność Uzyskanie twardego materiału Silnie wiążący system Klasa termiczna H (180 C) Uznanie UL Dobeckan FT

Bardziej szczegółowo

Komputerowe wspomaganie projektowania systemów elektronicznych

Komputerowe wspomaganie projektowania systemów elektronicznych Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej Wprowadzenie Komputerowe wspomaganie projektowania systemów elektronicznych dr inż. Piotr Pietrzak pietrzak@dmcs.pl pok., tel. 1

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Montaż w elektronice_cz.03_elementy elektroniczne w obudowach BGA i CSP.ppt. Plan wykładu

Montaż w elektronice_cz.03_elementy elektroniczne w obudowach BGA i CSP.ppt. Plan wykładu Plan wykładu Wprowadzenie Elementy elektroniczne w obudowach SO, CC i QFP Elementy elektroniczne w obudowach BGA i CSP Montaż drutowy i flip-chip struktur nie obudowanych Tworzywa sztuczne i lepkospręż

Bardziej szczegółowo

Symboliczne Numeryczne EN Cu min. Cu maks. Fe maks. Mn maks. Ni min. Ni maks. Pb maks. Sn maks. Zn min. Szacunkowe odpowiedniki międzynarodowe

Symboliczne Numeryczne EN Cu min. Cu maks. Fe maks. Mn maks. Ni min. Ni maks. Pb maks. Sn maks. Zn min. Szacunkowe odpowiedniki międzynarodowe Taśmy nowe srebro Skład chemiczny Oznaczenie Skład chemiczny w % (mm) Symboliczne Numeryczne EN Cu min. Cu maks. Fe maks. Mn maks. Ni min. Ni maks. Pb maks. Sn maks. Zn min. Inne, całkowita maks. CuNi12Zn24

Bardziej szczegółowo

Jak przygotować projekt pod kątem montażu elektronicznego?

Jak przygotować projekt pod kątem montażu elektronicznego? Jak przygotować projekt pod kątem montażu elektronicznego? Projektując obwód drukowany pod montaż SMT projektant powinien dostosować go do normy: IPC-SM-782A. Poniżej prezentujemy główne zasady projektowania

Bardziej szczegółowo

Cu min. Fe maks. Ni maks. P min. P maks. Pb maks. Sn min. Sn maks. Zn min. Zn maks.

Cu min. Fe maks. Ni maks. P min. P maks. Pb maks. Sn min. Sn maks. Zn min. Zn maks. Taśmy z brązu Skład chemiczny Oznaczenie Skład chemiczny w % (mm) Klasyfikacja symboliczna Klasyfikacja numeryczna Norma Europejska (EN) Cu min. Fe maks. Ni maks. P min. P maks. Pb maks. Sn min. Sn maks.

Bardziej szczegółowo

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:

Bardziej szczegółowo

OPORNIKI POŁĄCZONE SZEREGOWO: W połączeniu szeregowym rezystancja zastępcza jest sumą poszczególnych wartości:

OPORNIKI POŁĄCZONE SZEREGOWO: W połączeniu szeregowym rezystancja zastępcza jest sumą poszczególnych wartości: REZYSTOR Opornik (rezystor) najprostszy, rezystancyjny element bierny obwodu elektrycznego. Jest elementem liniowym: spadek napięcia jest wprost proporcjonalny do prądu płynącego przez opornik. Przy przepływie

Bardziej szczegółowo

VIGOTOR VPT-13. Elektroniczny przetwornik ciśnienia 1. ZASTOSOWANIA. J+J AUTOMATYCY Janusz Mazan

VIGOTOR VPT-13. Elektroniczny przetwornik ciśnienia 1. ZASTOSOWANIA. J+J AUTOMATYCY Janusz Mazan Elektroniczny przetwornik ciśnienia W przetwornikach VPT 13 ciśnienie medium pomiarowego (gazu lub cieczy) o wielkości do 2.5 MPa mierzone w odniesieniu do ciśnienia atmosferycznego jest przetwarzane na

Bardziej szczegółowo

szkło klejone laminowane szkło klejone z użyciem folii na całej powierzchni.

szkło klejone laminowane szkło klejone z użyciem folii na całej powierzchni. SZKŁO LAMINOWANE dokument opracowany przez: w oparciu o Polskie Normy: PN-B-13083 Szkło budowlane bezpieczne PN-EN ISO 12543-5, 6 Szkło warstwowe i bezpieczne szkło warstwowe PN-EN 572-2 Szkło float definicje

Bardziej szczegółowo

GENERATORY KWARCOWE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego

GENERATORY KWARCOWE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego Politechnika Wrocławska Instytut Telekomunikacji, Teleinformatyki i Akustyki Zakład Układów Elektronicznych Instrukcja do ćwiczenia laboratoryjnego GENERATORY KWARCOWE 1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Poniżej przedstawiony jest zakres informacji technicznych obejmujących funkcjonowanie w wysokiej temperaturze:

Poniżej przedstawiony jest zakres informacji technicznych obejmujących funkcjonowanie w wysokiej temperaturze: ARPRO jest uniwersalnym materiałem o szerokiej gamie zastosowań (motoryzacja, budownictwo, ogrzewanie, wentylacja i klimatyzacja, wyposażenie wnętrz, zabawki i in.), a wytrzymałość cieplna ma zasadnicze

Bardziej szczegółowo

WYKŁAD 4 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 4 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 4 Dr hab. inż. Karol Malecha, prof. Uczelni Plan wykładu - Podstawy technologii LTCC (Low Temperature Cofired Ceramics, niskotemperaturowa współwypalana ceramika) Wykonywanie

Bardziej szczegółowo

Pojemnościowy przetwornik wilgotności oraz wilgotności i temperatury do zastosowań w klimatyzacji

Pojemnościowy przetwornik wilgotności oraz wilgotności i temperatury do zastosowań w klimatyzacji Karta kat. 90.7021 Str. 1/6 Pojemnościowy przetwornik wilgotności oraz wilgotności i temperatury do zastosowań w klimatyzacji Pomiar wilgotności względnej i temperatury powietrza Do grzejnictwa, klimatyzacji

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 300055 (22) Data zgłoszenia: 12.08.1993 (5 1) IntCl6: H01L21/76 (54)

Bardziej szczegółowo

Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak

Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak Nasdaq: IPG Photonics(IPGP) Zasada działania laserów włóknowych Modułowość laserów włóknowych IPG

Bardziej szczegółowo

zużycie około: Grunt MasterTop P 621 0,3-0,5 kg/m², bezbarwny, epoksydowy, dwuskładnikowy, bezrozpuszczalnikowy (charakterystyka Total Solid )

zużycie około: Grunt MasterTop P 621 0,3-0,5 kg/m², bezbarwny, epoksydowy, dwuskładnikowy, bezrozpuszczalnikowy (charakterystyka Total Solid ) Zakres zastosowań: Posadzki przemysłowe, ochrona pośrednia przy narażeniu na zużycie mechaniczne i środki chemiczne. zużycie około: Grunt MasterTop P 621 0,3-0,5 kg/m², bezbarwny, epoksydowy, dwuskładnikowy,

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

WYKŁAD 6 Dr hab. inż. Karol Malecha, prof. Uczelni

WYKŁAD 6 Dr hab. inż. Karol Malecha, prof. Uczelni Mikrosystemy ceramiczne WYKŁAD 6 Dr hab. inż. Karol Malecha, prof. Uczelni Wykład 6 Wykonywanie struktur przestrzennych Laminacja wysoko i niskociśnieniowa (przypomnienie) Laminacja wieloetapowa Laminacja

Bardziej szczegółowo

PORÓWNANIE METOD NAKŁADANIA SOLDERMASEK

PORÓWNANIE METOD NAKŁADANIA SOLDERMASEK PORÓWNANIE METOD NAKŁADANIA SOLDERMASEK KOSZTY POCZĄTKOWE (waga cechy: 3) około 120 zł (piecyk) około 120 zł (piecyk) około 120 zł (piecyk) około 200 zł (laminator, naświetarka) około 100 zł (naświetarka)

Bardziej szczegółowo

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ Ewa Teper PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ WIELKOŚĆ I RODZAJE PRÓBEK Maksymalne wymiary próbki, którą można umieścić na stoliku mikroskopu skaningowego są następujące: Próbka powinna się

Bardziej szczegółowo

Przetworniki ciśnienia do zastosowań ogólnych typu MBS 1700 i MBS 1750

Przetworniki ciśnienia do zastosowań ogólnych typu MBS 1700 i MBS 1750 Karta katalogowa Przetworniki ciśnienia do zastosowań ogólnych typu MBS 1700 i MBS 1750 Kompaktowe przetworniki ciśnienia typu MBS 1700 i MBS 1750 przeznaczone są do pracy w większości typowych aplikacji.

Bardziej szczegółowo

Generatory kwarcowe Generator kwarcowy Colpittsa-Pierce a z tranzystorem bipolarnym

Generatory kwarcowe Generator kwarcowy Colpittsa-Pierce a z tranzystorem bipolarnym 1. Cel ćwiczenia Generatory kwarcowe Celem ćwiczenia jest zapoznanie się z zagadnieniami dotyczącymi generacji przebiegów sinusoidalnych w podstawowych strukturach generatorów kwarcowych. Ponadto ćwiczenie

Bardziej szczegółowo

Seria 6100. Prowadnice siłownika zaprojektowano w dwóch wersjach:

Seria 6100. Prowadnice siłownika zaprojektowano w dwóch wersjach: Seria 600 mocowanie górne przyłącza górne rowek pod czujnik mocowanie boczne alternatywne przyłącza boczne (zakorkowane) mocowanie dolne rowek kształtu T do mocowania dolnego rowek pod czujnik Siłowniki

Bardziej szczegółowo

PRACA DYPLOMOWA W BUDOWIE WKŁADEK FORMUJĄCYCH. Tomasz Kamiński. Temat: ŻYWICE EPOKSYDOWE. dr inż. Leszek Nakonieczny

PRACA DYPLOMOWA W BUDOWIE WKŁADEK FORMUJĄCYCH. Tomasz Kamiński. Temat: ŻYWICE EPOKSYDOWE. dr inż. Leszek Nakonieczny Politechnika Wrocławska - Wydział Mechaniczny Instytut Technologii Maszyn i Automatyzacji PRACA DYPLOMOWA Tomasz Kamiński Temat: ŻYWICE EPOKSYDOWE W BUDOWIE WKŁADEK FORMUJĄCYCH Promotor: dr inż. Leszek

Bardziej szczegółowo

zużycie około: Grunt MasterTop P 621 0,3-0,5 kg/m², bezbarwny, epoksydowy, dwuskładnikowy, bezrozpuszczalnikowy (charakterystyka Total Solid )

zużycie około: Grunt MasterTop P 621 0,3-0,5 kg/m², bezbarwny, epoksydowy, dwuskładnikowy, bezrozpuszczalnikowy (charakterystyka Total Solid ) Zakres zastosowań: Przemysłowe posadzki antypoślizgowe lub ochrona pośrednia w warunkach narażenia na zużycie mechaniczne i środki chemiczne. System 1**: obowiązkowy, jeśli wymagana jest aprobata DIBt

Bardziej szczegółowo

(62) Numer zgłoszenia, z którego nastąpiło wydzielenie:

(62) Numer zgłoszenia, z którego nastąpiło wydzielenie: PL 223874 B1 RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 223874 (21) Numer zgłoszenia: 413547 (22) Data zgłoszenia: 10.05.2013 (62) Numer zgłoszenia,

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

RD PRZEZNACZENIE RD-50. ZPrAE Sp. z o.o. 1

RD PRZEZNACZENIE RD-50. ZPrAE Sp. z o.o. 1 1. PRZEZNACZENIE RD-50. RD-50 Zestawy rezystorów dociążających typu RD-50 stosowane są w celu zapewnienia właściwych parametrów pracy przekładników pomiarowych (prądowych i napięciowych). Współczesne liczniki,

Bardziej szczegółowo

2. Oferta usług. 3. Partnerzy

2. Oferta usług. 3. Partnerzy 2. Oferta usług Oferujemy naszym klientom współpracę w następujących dziedzinach: Rozwój, produkcja i próby prototypów Analizy obliczeniowe, opracowanie dokumentacji technicznych Analizy projektowe, projekty

Bardziej szczegółowo

MATERIAŁY SPIEKANE (SPIEKI)

MATERIAŁY SPIEKANE (SPIEKI) MATERIAŁY SPIEKANE (SPIEKI) Metalurgia proszków jest dziedziną techniki, obejmującą metody wytwarzania proszków metali lub ich mieszanin z proszkami niemetali oraz otrzymywania wyrobów z tych proszków

Bardziej szczegółowo

Pomiar grubości pokrycia :

Pomiar grubości pokrycia : Pomiar grubości pokrycia : Na folii, papierze a także na metalizowanych powierzchniach Potrzeba pomiaru w czasie rzeczywistym. Pomiar i kontrola grubości pokrycia na foli, papierze w produkcji różnego

Bardziej szczegółowo

Moduł 2/3 Projekt procesu technologicznego obróbki przedmiotu typu bryła obrotowa

Moduł 2/3 Projekt procesu technologicznego obróbki przedmiotu typu bryła obrotowa Moduł 2/3 Projekt procesu technologicznego obróbki przedmiotu typu bryła obrotowa Zajęcia nr: 2 Temat zajęć: Określenie klasy konstrukcyjno-technologicznej przedmiotu. Dobór postaci i metody wykonania

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Przetwornik ciśnienia Rosemount 951 do suchego gazu

Przetwornik ciśnienia Rosemount 951 do suchego gazu Przetwornik ciśnienia do suchego gazu CHARAKTERYSTYKA PRZETWORNIKA ROSEMOUNT 951 Wyjątkowa stabilność zmniejsza częstotliwość kalibracji Cyfrowa komunikacja HART zwiększa łatwość stosowania Duża zakresowość

Bardziej szczegółowo

Elementy indukcyjne. Konstrukcja i właściwości

Elementy indukcyjne. Konstrukcja i właściwości Elementy indukcyjne Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elementy indukcyjne Induktor

Bardziej szczegółowo

Rysunek Techniczny. Podstawowe definicje

Rysunek Techniczny. Podstawowe definicje Rysunek techniczny jest to informacja techniczna podana na nośniku informacji, przedstawiona graficznie zgodnie z przyjętymi zasadami i zwykle w podziałce. Rysunek Techniczny Podstawowe definicje Szkic

Bardziej szczegółowo

ZAPYTANIA DO SPECYFIKACJI ISTOTNYCH WARUNKÓW ZAMÓWIENIA I WYJAŚNIENIA ZAMAWIAJĄCEGO

ZAPYTANIA DO SPECYFIKACJI ISTOTNYCH WARUNKÓW ZAMÓWIENIA I WYJAŚNIENIA ZAMAWIAJĄCEGO ZAPYTANIA DO SPECYFIKACJI ISTOTNYCH WARUNKÓW ZAMÓWIENIA I WYJAŚNIENIA ZAMAWIAJĄCEGO W postępowaniu o zamówienie publiczne nr sprawy: CTM/BZ/ZZ/141/15, którego przedmiotem jest dostawa pieca rozpływowego

Bardziej szczegółowo

Obwody drukowane. dr inż. Piotr Pietrzak. Wprowadzenie. Budowa obwodu wielowarstwowego. Rodzaje. Laminat. Budowa obwodu wielowarstwowego

Obwody drukowane. dr inż. Piotr Pietrzak. Wprowadzenie. Budowa obwodu wielowarstwowego. Rodzaje. Laminat. Budowa obwodu wielowarstwowego Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej Wprowadzenie Obwody drukowane dr inż. Piotr Pietrzak pietrzak@dmcs.pl pok. 54, tel. 631 6 0 www.dmcs.p.lodz.pl Obwód drukowany (ang.

Bardziej szczegółowo

ZASADA DZIAŁANIA miernika V-640

ZASADA DZIAŁANIA miernika V-640 ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,

Bardziej szczegółowo

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Ryszard Kostecki Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Warszawa, 3 kwietnia 2 Streszczenie Celem tej pracy jest zbadanie własności filtrów rezonansowego, dolnoprzepustowego,

Bardziej szczegółowo

Subminiaturowy czujnik do montażu w trudnych warunkach

Subminiaturowy czujnik do montażu w trudnych warunkach Ultramały indukcyjny czujnik zbliżeniowy Subminiaturowy czujnik do montażu w trudnych warunkach Głowica detekcyjna o średnicy mm do montażu w najtrudniejszych warunkach Ultrakrótka obudowa M12 długości

Bardziej szczegółowo

Cylindryczny czujnik zbliżeniowy w plastikowej obudowie E2F

Cylindryczny czujnik zbliżeniowy w plastikowej obudowie E2F Cylindryczny czujnik zbliżeniowy w plastikowej obudowie Wysokiej jakości plastikowa obudowa całego korpusu gwarantująca dużą wodoodporność Obudowa z poliarylanu zapewniająca w pewnym stopniu odporność

Bardziej szczegółowo

MG-02L SYSTEM LASEROWEGO POMIARU GRUBOŚCI POLON-IZOT

MG-02L SYSTEM LASEROWEGO POMIARU GRUBOŚCI POLON-IZOT jednoczesny pomiar grubości w trzech punktach niewrażliwość na drgania automatyczna akwizycja i wizualizacja danych pomiarowych archiwum pomiarów analizy statystyczne dla potrzeb systemu zarządzania jakością

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

BADANIE PARAMETRÓW PROCESU SUSZENIA

BADANIE PARAMETRÓW PROCESU SUSZENIA BADANIE PARAMETRÓW PROCESU SUSZENIA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania suszarki konwekcyjnej z mikrofalowym wspomaganiem oraz wyznaczenie krzywej suszenia dla suszenia

Bardziej szczegółowo

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 ALEKSANDER KAROLCZUK a) MATEUSZ KOWALSKI a) a) Wydział Mechaniczny Politechniki Opolskiej, Opole 1 I. Wprowadzenie 1. Technologia zgrzewania

Bardziej szczegółowo

Okres realizacji projektu: r r.

Okres realizacji projektu: r r. PROJEKT: Wykorzystanie modułowych systemów podawania i mieszania materiałów proszkowych na przykładzie linii technologicznej do wytwarzania katod w bateriach termicznych wraz z systemem eksperckim doboru

Bardziej szczegółowo

LYNX FL. Laser światłowodowy LVDGROUP.COM CIĘCIE LASEROWE W ZASIĘGU RĘKI

LYNX FL. Laser światłowodowy LVDGROUP.COM CIĘCIE LASEROWE W ZASIĘGU RĘKI Laser światłowodowy LYNX FL CIĘCIE LASEROWE W ZASIĘGU RĘKI LVDGROUP.COM LYNX FL WEJDŹ DO ŚWIATA LASERÓW ŚWIATŁOWODOWYCH Zaprojektowany dla obniżenia kosztów cięcia laser światłowodowy LYNX oferuje obróbkę

Bardziej szczegółowo

JUMO MAERA S25. Sonda do pomiaru poziomu. Zastosowanie. Opis skrócony. Korzyści dla Klienta. Właściwości. Karta katalogowa 40.

JUMO MAERA S25. Sonda do pomiaru poziomu. Zastosowanie. Opis skrócony. Korzyści dla Klienta. Właściwości. Karta katalogowa 40. +44 279 63 55 33 +44 279 63 52 62 sales@jumo.co.uk www.jumo.co.uk Karta katalogowa 40.05 Strona /8 JUMO MAERA S25 Sonda do pomiaru poziomu Zastosowanie Hydrostatyczny pomiar poziomu cieczy w zbiornikach

Bardziej szczegółowo

Instrukcja "Jak stosować preparat CerMark?"

Instrukcja Jak stosować preparat CerMark? Instrukcja "Jak stosować preparat CerMark?" Co to jest CerMark? Produkt, który umożliwia znakowanie metali w technologii laserowej CO 2. Znakowanie uzyskane w technologii CerMark charakteryzuje idealna

Bardziej szczegółowo

UKŁADY KONDENSATOROWE

UKŁADY KONDENSATOROWE UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej

Bardziej szczegółowo

Specyfikacja Zdolności i Osiągów dla Sztywnych Płyt Drukowanych

Specyfikacja Zdolności i Osiągów dla Sztywnych Płyt Drukowanych IPC-6012D PL If a conflict occurs between the English and translated versions of this document, the English version will take precedence. W przypadku, gdy pomiędzy wersją angielską, a wersją przetłumaczoną

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Escort 3146A - dane techniczne

Escort 3146A - dane techniczne Escort 3146A - dane techniczne Dane wstępne: Zakres temperatur pracy od 18 C do 28 C. ormat podanych dokładności: ± (% wartości wskazywanej + liczba cyfr), po 30 minutach podgrzewania. Współczynnik temperaturowy:

Bardziej szczegółowo

KWDI. Wykład 6/2016. Literatura do zagadnień montażu: J. Felba, Montaż w elektronice, Wrocław, O/W PWr, 2010

KWDI. Wykład 6/2016. Literatura do zagadnień montażu: J. Felba, Montaż w elektronice, Wrocław, O/W PWr, 2010 KWDI Wykład 6/2016 Literatura do zagadnień montażu: J. Felba, Montaż w elektronice, Wrocław, O/W PWr, 2010 Ścieżki Ścieżki można podzielić na -Sygnałowe mogą być wąskie, nawet kilka mils (np. 8 mils),

Bardziej szczegółowo

7 czerwca

7 czerwca www.puds.pl 7 czerwca 2008 LDX 2101 i 2304 Wysoko opłacalne stale Duplex, jako alternatywa dla austenitycznych gatunków w stali nierdzewnych www.outokumpu.com Zagadnienia Omawiane gatunki stali Korozja

Bardziej szczegółowo

Maksymalna różnica pomiędzy wymiarami dwóch przekątnych płyty drogowej nie powinna przekraczać następujących wartości: Tablica 1 Odchyłki przekątnych

Maksymalna różnica pomiędzy wymiarami dwóch przekątnych płyty drogowej nie powinna przekraczać następujących wartości: Tablica 1 Odchyłki przekątnych M-23.03.05 NAWIERZCHNIA Z ELEMENTÓW KAMIENNYCH 1. WSTĘP 1.1. Przedmiot Specyfikacji Technicznej Przedmiotem niniejszej Specyfikacji Technicznej (ST) są wymagania dotyczące wykonania i odbioru robót związanych

Bardziej szczegółowo

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Poznanie zasady działania układów komparatorów. Prześledzenie zależności napięcia

Bardziej szczegółowo

NORMA ZAKŁADOWA. 2.2 Grubość szkła szlifowanego oraz jego wymiary

NORMA ZAKŁADOWA. 2.2 Grubość szkła szlifowanego oraz jego wymiary NORMA ZAKŁADOWA I. CEL: Niniejsza Norma Zakładowa Diversa Diversa Sp. z o.o. Sp.k. stworzona została w oparciu o Polskie Normy: PN-EN 572-2 Szkło float. PN-EN 12150-1 Szkło w budownictwie Norma Zakładowa

Bardziej szczegółowo

0,3-0,8 mm, równomiernie rozprowadzony (nie w nadmiarze)

0,3-0,8 mm, równomiernie rozprowadzony (nie w nadmiarze) Zakres zastosowań: Posadzki przemysłowe, ochrona pośrednia przy narażeniu na zużycie mechaniczne i środki chemiczne, gdzie wymagane są właściwości antypoślizgowe System 1**: obowiązkowy, jeśli wymagana

Bardziej szczegółowo

GRAFITOWE USZCZELNIENIE ARMATURY - ARMET-BA

GRAFITOWE USZCZELNIENIE ARMATURY - ARMET-BA GRAFITOWE USZCZELNIENIE ARMATURY - ARMET-BA Konstrukcja praktycznie wszystkich zaworów energetycznych przewidzianych do pracy w środowisku pary wodnej przewiduje obecność dławnicy służącej do uszczelniania

Bardziej szczegółowo

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 19/09. MACIEJ KOKOT, Gdynia, PL WUP 03/14. rzecz. pat.

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 19/09. MACIEJ KOKOT, Gdynia, PL WUP 03/14. rzecz. pat. PL 216395 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216395 (13) B1 (21) Numer zgłoszenia: 384627 (51) Int.Cl. G01N 27/00 (2006.01) H01L 21/00 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

U 2 B 1 C 1 =10nF. C 2 =10nF

U 2 B 1 C 1 =10nF. C 2 =10nF Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika

Bardziej szczegółowo

STYCZNIK PRÓŻNIOWY CXP 630A kV INSTRUKCJA OBSŁUGI

STYCZNIK PRÓŻNIOWY CXP 630A kV INSTRUKCJA OBSŁUGI STYCZNIK PRÓŻNIOWY CXP 630A 630-12kV INSTRUKCJA OBSŁUGI Olsztyn, 2011 1. SPRAWDZENIE, KWALIFIKACJA Przed zainstalowaniem urządzenia należy sprawdzić, czy jest on zgodny z zamówieniem, w szczególności w

Bardziej szczegółowo