Wykorzystanie architektury Intel MIC w obliczeniach typu stencil

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykorzystanie architektury Intel MIC w obliczeniach typu stencil"

Transkrypt

1 Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Kamil Halbiniak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok IV Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska kamil.halbiniak@wp.pl Streszczenie Obliczenia typu stencil wykonywane są dla n-wymiarowych tablic (najczęściej dwu lub trój wymiarowych), gdzie wartość danego elementu w tablicy wyjściowej obliczana jest na postawie danego elementu znajdującego się w tablicy wejściowej oraz jego sąsiadów. Artykuł przedstawia, sposoby dostosowania algorytmów typu stencil do wielordzeniowej architektury Intel MIC, która w zależności od modelu posiada jednostkę obliczeniową zawierającą od 57 do 61 rdzeni. Do osiągnięcia wysokiej wydajności obliczeń, wykorzystano standard OpenMP, który pozwala na tworzenie wielowątkowych aplikacji oraz zastosowano wektoryzację, która umożliwia wykonywanie kilku operacji zmiennoprzecinkowych w jednym cyklu zegara. Do zoptymalizowania algorytmu wykorzystano również affinity, które umożliwia określenie sposobu przypisania wątków do poszczególnych rdzeni koprocesora Intel Xeon Phi. W artykule zaprezentowano również czasy obliczeń poszczególnych wersji algorytmu wykonanych przez koprocesor oraz porównano je z wynikami otrzymanymi po wykonaniu obliczeń przez procesor hosta. 1 Wprowadzenie W ciągu ostatnich kilkunastu lat zaobserwować można bardzo intensywny rozwój architektur wielordzeniowych. Zjawisko to wynika faktu, iż zwiększenie liczby rdzeni znacząco wpływa na wydajność wykonywanych obliczeń. Rozwój jednostek wielordzeniowych umożliwia tworzenie wielowątkowych aplikacji działających w systemach równoległych. Należy jednak pamiętać, że zrównoleglenie obliczeń nie opiera się tylko na sprzęcie komputerowym. Istotnym aspektem w kwestii programowania równoległego jest dostosowanie algorytmu do wykorzystywanej architektury, tak aby uzyskać maksymalnie wysoką wydajność wykonywanych obliczeń. Zazwyczaj okazuje się, iż implementacja wysokowydajnych algorytmów równoległych jest znacznie trudniejsza w porównaniu z algorytmami sekwencyjnymi. Jednym ze sposobów osiągnięcia wysokiej wydajności jest ograniczenie komunikacji pomiędzy procesorem a pamięcią główną, poprzez efektywne wykorzystanie pamięci cache. Obecnie wiodącym producentem jednostek obliczeniowych opartych o architektury wielordzeniowe jest firma Intel. Doskonałym przykładem tego jest pojawienie się na rynku koprocesora Intel Xeon Phi, opartego o wielordzeniową architekturę Intel MIC. 1

2 2 Architektura Intel Many Integrated Core Architektura Intel Many Integrated Core to wielordzeniowa architektura wykorzystywana w koprocesorach należących do rodziny Intel Xeon Phi. Wyposażona jest jednostkę obliczeniową składającą się z, w zależności od modelu, od 57 do 61 rdzeni opartych o architekturę x86, taktowanych częstotliwością maksymalnie 1056 MHz [1]. Każdy z rdzeni umożliwia wykonanie 4 wątków sprzętowych, co daje możliwość uruchomienia maksymalnie 244 wątków jednocześnie. Każdy rdzeń posiada własny procesor wektorowy (VPU) oraz trzydzieści dwa 64-bajtowe rejestry, tworząc tym samym nowy zestaw instrukcji wektorowych zwany IMCI [3]. Umożliwiają one wykonanie 16 operacji zmiennoprzecinkowych pojedynczej precyzji oraz 8 operacji zmiennoprzecinkowych podwójnej precyzji w jednym cyklu [2]. VPU wspiera również instrukcje FMA, które pozwalają wykonać dwukrotnie więcej operacji pojedynczej oraz podwójnej precyzji, niż wspomniane wcześniej instrukcje IMCI. Intel MIC nie wspiera instrukcji wektorowych typu MMX, SSE oraz AVX. Każdy rdzeń posiada dwupoziomową pamięć podręczną o rozmiarach odpowiednio 32KB cache L1 oraz 512KB cache L2 [1]. W obu przypadkach jest to 8-drożna pamięć skojarzona o długości linii równej 64 bajty. Rdzenie połączone są ze sobą dwukierunkową magistralą pierścieniową, która umożliwia komunikację z pamięcią główną oraz światem zewnętrznym poprzez magistralę PCI. Magistrala pełni również ważną rolę w tworzeniu spójności pamięci podręcznej poziomu drugiego. Intel MIC posiada w zależności od modelu od 6 do 8 GB pamięci GDDR5. [3]. Intel Xeon Phi umożliwia wykonywanie aplikacji napisanych w trzech językach programowania C, C++ oraz Fortran. Kompilacja kodu źródłowego możliwa jest przy użyciu specjalnego kompilatora stworzonego przez firmę Intel Intel Composer XE [5]. Poniżej zaprezentowano trzy różne sposoby uruchamiania programu: Symetryczny program wykonywany jest jednocześnie przez hosta oraz koprocesor [5]. Obie strony komunikują się ze sobą wykorzystując interfejs umożliwiający przesyłanie komunikatów np: MPI. Odciążeniowy (offload) umożliwia przeniesienie części lub wszystkich z obliczeń z jednego lub kilku wąktów na koprocesor [3]. Dane potrzebne do ich wykonania przesyłane są do koprocesora w trakcie działania programu, który uruchamiany jest po stronie hosta. Natywny program wykonywany jest tylko przez koprocesor. Wymagane jest wykonanie cross kompilacji, aby dostosować aplikację do środowiska operacyjnego koprocesora [5]. 3 Algorytmy typu stencil Algorytmy typu stencil są powszechnie wykorzystywane w skomplikowanych obliczeniach naukowych oraz przetwarzaniu i filtrowaniu obrazów [7]. Algorytm wykonuje operacje na n wymiarowych tablicach (najczęściej dwu lub trój wymiarowych), gdzie wartość danego elementu w tablicy wyjściowej jest obliczana na podstawie danego elementu znajdującego się w tablicy wejściowej oraz jego sąsiadów [7]. Mianem n elementowego stencila określa się punkt oraz n 1 jego sąsiadów. Wyróżnia się różne rodzaje stencili, począwszy od prostych 5 punktowych, aż do bardzo złożonych 27 punktowych. Graficzną prezentację 5 punktowego stencila zaprezentowano na Rysunku 1. 2

3 Rysunek 1. 5 punktowy stencil W niniejszej pracy wykorzystano algorytm, wykonujący obliczenia przy użyciu 5 punktowych stencili, w którym wartość elementu znajdującego się w tablicy wyjściowej Out na pozycji (i, j) stanowi wartość maksymalną obliczaną na podstawie elementu znajdującego się w tablicy wejściowej In na pozycji (i, j) oraz jego 4 sąsiadów. Pseudokod algorytmu wykorzystanego w niniejszej pracy zaprezentowano na Listingu 1. for(i=0; i<m-1; ++i) for(j=0; j<n-1; ++j) Out[i, j] = Max(In[i, j], In[i+1, j], In[i-1, j], In[i, j+1], In[i,j-1]) Listing 1. Pseudokod algorytmu wykorzytanego w niniejszej pracy 4 Metoda dostosowania algorytmów typu stencil do architektury Intel MIC Sekwencyjny algorytm realizujący obliczenia przy pomocy 5 punktowych stencili zaprezentowano na Listingu 4.1 for(int i=1; i<m_real-1; ++i) for(int j=8; j<n+8; ++j) macierzout[i * n_real + j] = Max(macierzIn[i * n_real + j], macierzin[(i - 1) * n_real + j], macierzin[(i + 1) * n_real + j], macierzin[i * n_real + (j - 1)], macierzin[i * n_real + (j + 1)]); Listing 4.1 Sekwencyjna wersja algorytmu 3

4 W celu dostosowania algorytmu do architektury Intel MIC, tak aby uzyskać wysoką wydajność obliczeń algorytm zrównoleglono oraz zastosowano wektoryzację. Do zaimplementowania równoległej wersji algorytmu posłużono się standardem OpenMP (ang. Open Multi-Processing). Równoległy algorytm wykonuje obliczenia z wykorzystaniem wszystkich dostępnych zasobów, czyli 240 wątków. Dzięki wykorzystaniu dyrektywy schedule() możliwe było ustawienie sposobu podziału wykonywania pętli przez poszczególne wątki, tak aby kolejny wątek przetwarzał kolejny wiersz macierzy, co zmniejsza ilość odwołań do pamięci, a co za tym idzie zmniejsza czas potrzebny na wykonanie obliczeń. Równie istotne w kwestii przyspieszenia obliczeń, było zaimplementowanie schedulera tak, aby wątki uruchamiane były kolejno na kolejnych rdzeniach. Sposób przypisywania poszczególnych wątków do poszczególnych rdzeni przedstawiono na Rysunku 2. Rysunek 2. Sposób przydzielania wątków do rdzeni Wzrost wydajności obliczeń osiągnięto również poprzez zastosowanie technik wektoryzacji. Do tego celu wykorzystano specjalne funkcje, tak zwane intristic, które umożliwiają wykonanie operacji na 512 bitowych rejestrach. Wraz z wykorzystaniem wektoryzacji, dla macierzy przechowujących dane dodano dodatkowe kolumny, dzięki czemu niezależnie od rozmiaru wiersza uzyskano dopasowanie adresów. 5 Wyniki wydajnościowe Po uruchomieniu sekwencyjnej wersji algorytmu, która wykonana została przez jeden rdzeń dla macierzy M x N, gdzie M = N = wypełnionej liczbami zmiennoprzecinkowymi podwójnej precyzji, czas obliczeń wyniósł sekundy. W celu zwiększenia wydajności obliczeń, w sekwencyjnej wersji algorytmu wykorzystano instrukcje wektorowe, co sprawiło, że czas potrzebny do wykonania obliczeń zmalał do sekundy. W porównaniu z wersją sekwencyjną bez wektoryzacji osiągnięto przyspieszenie nieco ponad 6.7. Po uruchomieniu zrównoleglonej wersji algorytmu, która wykonała obliczenia przy użyciu 240 wątków, czas obliczeń wyniósł sekundy, co w odniesieniu do algorytmu sekwencyjnego daje przyspieszenie nieco ponad Największe przyspieszenie, zarówno względem algorytmu sekwencyjnego jak i równoległego, uzyskano poprzez implementacje technik wektoryzacji w algorytmie równoległym. W porównaniu do algorytmu sekwencyjnego uzyskano przyspieszenie równe Jednocześnie algorytm jest o 2.05 raza szybszy, niż algorytm równoległy bez wektoryzacji. W związku z tym, że rdzenie w architekturze Intel MIC oparte są o architekturę x86, możliwa była kompilacja kodu źródłowego na procesorze hosta Intel Xeon CPU E GHz. Czasy obliczeń poszczególnych wersji algorytmu dla koprocesora 4

5 oraz procesora hosta wykonanych dla macierzy wejściowej o wcześniej wspomnianych rozmiarach zestawiono w Tabeli 1. Tabela 1. Zestawienie czasów obliczeń dla koprocesora oraz procesora hosta Algorytm Intel Xeon Phi [s] Intel Xeon E [s] Sekwencyjny Sekwencyjny + SIMD Równoległy Równoległy + SIMD Graficzną prezentację danych znajdujących się w powyższej tabeli zaprezentowano na Rysunku 3. Rysunek 3. Graficzna prezentacja czasów obliczeń koprocesora oraz procesora hosta Wszystkie obliczenia wykonywane przez procesor hosta zostały dopasowane do jego architektury NUMA (2 CPU x 8 rdzeni). Jak widać w Tabeli 1, w przypadku algorytmu sekwencyjnego wykonywanego na jednym rdzeniu czas potrzebny do wykonania obliczeń przez koprocesor jest znacznie większy, niż w przypadku procesora. Powoduje to, że jest on o raza wolniejszy od procesora hosta. Zastosowanie technik wektoryzacji w pewnym stopniu minimalizuje ten problem. W przypadku koprocesora zauważyć można bardzo duży wzrost wydajności, który powoduje, że jest on tylko o 3.87 raza wolniejszy. W przypadku procesora Xeon E5-2665, wykorzystanie instrukcji wektorowych przyniosło minimalny wzrost wydajności. Po zrównolegleniu algorytmu zauważyć można, że czas potrzebny na wykonanie obliczeń przez koprocesor jest niewiele większy i jest on tylko o raza wolniejszy. Zastosowanie instrukcji wektorowych w algorytmie równoległym powoduje znaczący wzrost wydajności obliczeń wykonywanych przez koprocesor, w przeciwieństwie do procesora, gdzie wydajność obliczeń podobnie jak w przypadku algorytmu sekwencyjnego wzrasta minimalnie. Wykorzystanie technik wektoryzacji powoduje, że koprocesor jest o 1.7 raza szybszy od procesor hosta. 5

6 6 Podsumowanie Niniejszy artykuł przedstawia metodę dostosowania algorytmów typu stencil do wielordzeniowej architektury Intel MIC. W tym celu wykorzystano algorytm realizujący obliczenia przy użyciu 5 punktowych stencili, który zaimplementowany został w czterech wersjach: sekwencyjnej, sekwencyjnej + SIMD, równoległej oraz równoległej + SIMD. Na podstawie przeprowadzonych badań, zauważyć można, że pojedyncze rdzenie koprocesora Intel Xeon Phi są nieefektywne, co pokazuje czas obliczeń sekwencyjnej wersji algorytmu. Zwiększenie wydajności obliczeń możliwe jest również poprzez wykorzystanie technik wektoryzacji. Po zastosowaniu instrukcji wektorowych w sekwencyjnej wersji algorytmu czas obliczeń zmniejszył się. Zrównoleglenie algorytmu, tak aby obliczenia wykonane zostały przez 240 wątków, spowodowało znaczące przyspieszenie obliczeń w stosunku do algorytmu sekwencyjnego. Najefektywniejszym rozwiązaniem okazała się równoległa wersja algorytmu, wykorzystująca instrukcje wektorowe. Kod źródłowy algorytmu dostosowano dodatkowo do architektury procesora hosta Intel Xeon E Okazało się, że w przypadku algorytmu równoległego wykorzystującego wektoryzację koprocesor jest zdecydowanie szybszy. W pozostałych przypadkach szybszy okazał się procesor hosta. W przyszłości planowany jest dalszy rozwój algorytmu, w celu osiągnięcia jeszcze większej wydajności obliczeniowej. Uzyskanie jej możliwe jest poprzez efektywne wykorzystanie pamięci cache. Wymaga to zaimplementowania schedulera dostępu do danych w celu zredukowania liczby odwołań do pamięci głównej. Bibliografia [1] Intel Xeon Phi Coprocessor System Developers Guide, ware_developers_guide.pdf [2] Intel Xeon Phi Coprocessor - the Architecture, [3] MIC Architecture, [4] Intel Xeon Phi Core Micro Architecture, Core-Micro-architecture.pdf [5] Intel Xeon Phi Programming Enviroment, Programming-Environment.pdf [6] Shah M. Faizur Rahman, Qing Yi, Apan Qasem. Understanding Stencil Code Performance On MultiCore Architectures, 6

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Trendy rozwoju współczesnych procesorów Budowa procesora CPU na przykładzie Intel Kaby Lake

Bardziej szczegółowo

Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC

Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC Architektura Systemów Komputerowych Rozwój architektury komputerów klasy PC 1 1978: Intel 8086 29tys. tranzystorów, 16-bitowy, współpracował z koprocesorem 8087, posiadał 16-bitową szynę danych (lub ośmiobitową

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC,

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, zapoczątkowana przez i wstecznie zgodna z 16-bitowym procesorem

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

i3: internet - infrastruktury - innowacje

i3: internet - infrastruktury - innowacje i3: internet - infrastruktury - innowacje Wykorzystanie procesorów graficznych do akceleracji obliczeń w modelu geofizycznym EULAG Roman Wyrzykowski Krzysztof Rojek Łukasz Szustak [roman, krojek, lszustak]@icis.pcz.pl

Bardziej szczegółowo

Obliczenia równoległe na klastrze opartym na procesorze CELL/B.E.

Obliczenia równoległe na klastrze opartym na procesorze CELL/B.E. Obliczenia równoległe na klastrze opartym na procesorze CELL/B.E. Łukasz Szustak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V szustak.lukasz@gmail.com Streszczenie W artykule

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Metodologia programowania równoległego Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional

Bardziej szczegółowo

Bibliografia: pl.wikipedia.org www.intel.com. Historia i rodzaje procesorów w firmy Intel

Bibliografia: pl.wikipedia.org www.intel.com. Historia i rodzaje procesorów w firmy Intel Bibliografia: pl.wikipedia.org www.intel.com Historia i rodzaje procesorów w firmy Intel Specyfikacja Lista mikroprocesorów produkowanych przez firmę Intel 4-bitowe 4004 4040 8-bitowe x86 IA-64 8008 8080

Bardziej szczegółowo

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Część teoretyczna Informacje i wstępne wymagania Cel przedmiotu i zakres materiału Zasady wydajnego

Bardziej szczegółowo

Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Programowanie równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 23 października 2009 Spis treści Przedmowa...................................................

Bardziej szczegółowo

System obliczeniowy laboratorium oraz. mnożenia macierzy

System obliczeniowy laboratorium oraz. mnożenia macierzy System obliczeniowy laboratorium.7. oraz przykładowe wyniki efektywności mnożenia macierzy opracował: Rafał Walkowiak Materiały dla studentów informatyki studia niestacjonarne październik 1 SYSTEMY DLA

Bardziej szczegółowo

Metody optymalizacji soft-procesorów NIOS

Metody optymalizacji soft-procesorów NIOS POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych Instytut Telekomunikacji Zakład Podstaw Telekomunikacji Kamil Krawczyk Metody optymalizacji soft-procesorów NIOS Warszawa, 27.01.2011

Bardziej szczegółowo

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania, Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią

Bardziej szczegółowo

Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych

Wysokowydajna implementacja kodów nadmiarowych typu erasure codes z wykorzystaniem architektur wielordzeniowych Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych Ł. Kuczyński, M. Woźniak, R. Wyrzykowski Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

Procesory. Schemat budowy procesora

Procesory. Schemat budowy procesora Procesory Procesor jednostka centralna (CPU Central Processing Unit) to sekwencyjne urządzenie cyfrowe którego zadaniem jest wykonywanie rozkazów i sterowanie pracą wszystkich pozostałych bloków systemu

Bardziej szczegółowo

Architektury komputerów Architektury i wydajność. Tomasz Dziubich

Architektury komputerów Architektury i wydajność. Tomasz Dziubich Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności oraz łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Wydajność programów sekwencyjnych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność programów sekwencyjnych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność programów sekwencyjnych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci i przetwarzania

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Dydaktyka Informatyki budowa i zasady działania komputera

Dydaktyka Informatyki budowa i zasady działania komputera Dydaktyka Informatyki budowa i zasady działania komputera Instytut Matematyki Uniwersytet Gdański System komputerowy System komputerowy układ współdziałania dwóch składowych: szprzętu komputerowego oraz

Bardziej szczegółowo

Algorytmy dla maszyny PRAM

Algorytmy dla maszyny PRAM Instytut Informatyki 21 listopada 2015 PRAM Podstawowym modelem służącym do badań algorytmów równoległych jest maszyna typu PRAM. Jej głównymi składnikami są globalna pamięć oraz zbiór procesorów. Do rozważań

Bardziej szczegółowo

Larrabee GPGPU. Zastosowanie, wydajność i porównanie z innymi układami

Larrabee GPGPU. Zastosowanie, wydajność i porównanie z innymi układami Larrabee GPGPU Zastosowanie, wydajność i porównanie z innymi układami Larrabee a inne GPU Różnią się w trzech podstawowych aspektach: Larrabee a inne GPU Różnią się w trzech podstawowych aspektach: Larrabee

Bardziej szczegółowo

Tesla. Architektura Fermi

Tesla. Architektura Fermi Tesla Architektura Fermi Tesla Tesla jest to General Purpose GPU (GPGPU), GPU ogólnego przeznaczenia Obliczenia dotychczas wykonywane na CPU przenoszone są na GPU Możliwości jakie daje GPU dla grafiki

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

PRZETWARZANIE RÓWNOLEGŁE I ROZPROSZONE. Mnożenie macierzy kwadratowych metodą klasyczną oraz blokową z wykorzystaniem OpenMP.

PRZETWARZANIE RÓWNOLEGŁE I ROZPROSZONE. Mnożenie macierzy kwadratowych metodą klasyczną oraz blokową z wykorzystaniem OpenMP. P O L I T E C H N I K A S Z C Z E C I Ń S K A Wydział Informatyki PRZETWARZANIE RÓWNOLEGŁE I ROZPROSZONE. Mnożenie macierzy kwadratowych metodą klasyczną oraz blokową z wykorzystaniem OpenMP. Autor: Wojciech

Bardziej szczegółowo

RECENZJA ROZPRAWY DOKTORSKIEJ

RECENZJA ROZPRAWY DOKTORSKIEJ Lublin, 27 kwietnia 2019 dr hab. Przemysław Stpiczyński, prof. UMCS Instytut Informatyki Uniwersytet Marii Curie-Skłodowskiej Ul. Akademicka 9/519 20-033 Lublin Email: przem@hektor.umcs.lublin.pl RECENZJA

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

AMD Ryzen recenzja procesora. Wpisany przez Mateusz Ponikowski Piątek, 11 Październik :47

AMD Ryzen recenzja procesora. Wpisany przez Mateusz Ponikowski Piątek, 11 Październik :47 Sprawdzamy niedrogi procesor od AMD. Składając niedrogi komputer do pracy z multimediami i okazjonalnego grania musimy zacząć od wyboru platformy i tutaj pojawia się odwieczne pytanie, Intel czy AMD? Budując

Bardziej szczegółowo

Architektura systemów informatycznych

Architektura systemów informatycznych Architektura systemów informatycznych Architektura i organizacja pamięci Literatura: Hyde R. 2005, Zrozumieć komputer, Profesjonalne programowanie Część 1, Helion, Gliwice Podstawowe elementy systemu komputerowego

Bardziej szczegółowo

Zegar - układ wysyłający regularne impulsy o stałej szerokości (J) i częstotliwości (f)

Zegar - układ wysyłający regularne impulsy o stałej szerokości (J) i częstotliwości (f) Zegar Zegar - układ wysyłający regularne impulsy o stałej szerokości (J) i częstotliwości (f) http://en.wikipedia.org/wiki/computer_clock umożliwia kontrolę relacji czasowych w CPU pobieranie, dekodowanie,

Bardziej szczegółowo

Julia 4D - raytracing

Julia 4D - raytracing i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

Dr inż. hab. Siergiej Fialko, IF-PK,

Dr inż. hab. Siergiej Fialko, IF-PK, Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Konsekwencje prawa Moore'a 4 Procesory wielordzeniowe 5 Intel Nehalem 6 Architektura Intel Nehalem

Bardziej szczegółowo

ARCHITEKTURA PROCESORA,

ARCHITEKTURA PROCESORA, ARCHITEKTURA PROCESORA, poza blokami funkcjonalnymi, to przede wszystkim: a. formaty rozkazów, b. lista rozkazów, c. rejestry dostępne programowo, d. sposoby adresowania pamięci, e. sposoby współpracy

Bardziej szczegółowo

Mikroprocesory rodziny INTEL 80x86

Mikroprocesory rodziny INTEL 80x86 Mikroprocesory rodziny INTEL 80x86 Podstawowe wła ciwo ci procesora PENTIUM Rodzina procesorów INTEL 80x86 obejmuje mikroprocesory Intel 8086, 8088, 80286, 80386, 80486 oraz mikroprocesory PENTIUM. Wprowadzając

Bardziej szczegółowo

Nowinki technologiczne procesorów

Nowinki technologiczne procesorów Elbląg 22.04.2010 Nowinki technologiczne procesorów Przygotował: Radosław Kubryń VIII semestr PDBiOU 1 Spis treści 1. Wstęp 2. Intel Hyper-Threading 3. Enhanced Intel Speed Technology 4. Intel HD Graphics

Bardziej szczegółowo

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Nowinki technologiczne procesorów

Nowinki technologiczne procesorów Elbląg 22.04.2010 Nowinki technologiczne procesorów Przygotował: Radosław Kubryń VIII semestr PDBiOU 1 Spis treści 1. Wstęp 2. Intel Hyper-Threading 3. Enhanced Intel Speed Technology 4. Intel HD Graphics

Bardziej szczegółowo

Programowanie Rozproszone i Równoległe

Programowanie Rozproszone i Równoległe Programowanie Rozproszone i Równoległe OpenMP (www.openmp.org) API do pisania wielowątkowych aplikacji Zestaw dyrektyw kompilatora oraz procedur bibliotecznych dla programistów Ułatwia pisanie programów

Bardziej szczegółowo

Zrównoleglenie i przetwarzanie potokowe

Zrównoleglenie i przetwarzanie potokowe Zrównoleglenie i przetwarzanie potokowe Zrównoleglenie wysoka wydajność pozostaje osiągnięta w efekcie jednoczesnego wykonania różnych części zagadnienia. Przetwarzanie potokowe proces jest rozdzielony

Bardziej szczegółowo

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu Literatura 1. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 2. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010. 3. Designing

Bardziej szczegółowo

Podstawy Informatyki Systemy sterowane przepływem argumentów

Podstawy Informatyki Systemy sterowane przepływem argumentów Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 14 Procesory równoległe Klasyfikacja systemów wieloprocesorowych Luźno powiązane systemy wieloprocesorowe Każdy procesor ma własną pamięć główną i kanały wejścia-wyjścia.

Bardziej szczegółowo

Literatura. 3/26/2018 Przetwarzanie równoległe - wstęp 1

Literatura. 3/26/2018 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system.

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Wstęp Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Przedstawienie architektur sprzętu wykorzystywanych do

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń

Bardziej szczegółowo

Chipset i magistrala Chipset Mostek północny (ang. Northbridge) Mostek południowy (ang. Southbridge) -

Chipset i magistrala Chipset Mostek północny (ang. Northbridge) Mostek południowy (ang. Southbridge) - Chipset i magistrala Chipset - Układ ten organizuje przepływ informacji pomiędzy poszczególnymi podzespołami jednostki centralnej. Idea chipsetu narodziła się jako potrzeba zintegrowania w jednym układzie

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 8 Magistrale systemowe Magistrala Układy składające się na komputer (procesor, pamięć, układy we/wy) muszą się ze sobą komunikować, czyli być połączone. Układy łączymy ze

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

Dariusz Brzeziński. Politechnika Poznańska, Instytut Informatyki

Dariusz Brzeziński. Politechnika Poznańska, Instytut Informatyki Dariusz Brzeziński Politechnika Poznańska, Instytut Informatyki Język programowania prosty bezpieczny zorientowany obiektowo wielowątkowy rozproszony przenaszalny interpretowany dynamiczny wydajny Platforma

Bardziej szczegółowo

Wykład 6. Mikrokontrolery z rdzeniem ARM

Wykład 6. Mikrokontrolery z rdzeniem ARM Wykład 6 Mikrokontrolery z rdzeniem ARM Plan wykładu Cortex-A9 c.d. Mikrokontrolery firmy ST Mikrokontrolery firmy NXP Mikrokontrolery firmy AnalogDevices Mikrokontrolery firmy Freescale Mikrokontrolery

Bardziej szczegółowo

Architektura mikroprocesorów TEO 2009/2010

Architektura mikroprocesorów TEO 2009/2010 Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład

Bardziej szczegółowo

16. Taksonomia Flynn'a.

16. Taksonomia Flynn'a. 16. Taksonomia Flynn'a. Taksonomia systemów komputerowych według Flynna jest klasyfikacją architektur komputerowych, zaproponowaną w latach sześćdziesiątych XX wieku przez Michaela Flynna, opierająca się

Bardziej szczegółowo

Wersje desktopowe (Kaby Lake-S)

Wersje desktopowe (Kaby Lake-S) Wprawdzie pierwsze procesory Intel Core 7-ej generacji zadebiutowały już jakiś czas temu ale coo nowego przygotował dla nas producent? Wersje desktopowe (Kaby Lake-S) Model Core i7 7700K Core i7 7700 Core

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych. Instytut Telekomunikacji Zakład Podstaw Telekomunikacji

POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych. Instytut Telekomunikacji Zakład Podstaw Telekomunikacji POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych Instytut Telekomunikacji Zakład Podstaw Telekomunikacji Kamil Krawczyk Metody optymalizacji soft-procesorów NIOS Opiekun naukowy: dr

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Intel Nehalem 4 5 NVIDIA Tesla 6 ATI FireStream 7 NVIDIA Fermi 8 Sprzętowa wielowątkowość 9 Architektury

Bardziej szczegółowo

Architektura systemów informatycznych

Architektura systemów informatycznych Architektura systemów informatycznych Architektura i organizacja pamięci Literatura: Hyde R. 2005, Zrozumieć komputer, Profesjonalne programowanie Część 1, Helion, Gliwice Podstawowe elementy systemu komputerowego

Bardziej szczegółowo

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PROGRAMOWANIE WSPÓŁBIEŻNE I ROZPROSZONE I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez studentów wiedzy na temat architektur systemów równoległych i rozproszonych,

Bardziej szczegółowo

Programowanie aplikacji na iphone. Wstęp do platformy ios. Łukasz Zieliński

Programowanie aplikacji na iphone. Wstęp do platformy ios. Łukasz Zieliński Programowanie aplikacji na iphone. Wstęp do platformy ios. Łukasz Zieliński Plan Prezentacji. Programowanie ios. Jak zacząć? Co warto wiedzieć o programowaniu na platformę ios? Kilka słów na temat Obiective-C.

Bardziej szczegółowo

Sprawdzian test egzaminacyjny GRUPA I

Sprawdzian test egzaminacyjny GRUPA I ... nazwisko i imię ucznia Sprawdzian test egzaminacyjny GRUPA I 1. Na rys. 1 procesor oznaczony jest numerem A. 2 B. 3 C. 5 D. 8 2. Na rys. 1 karta rozszerzeń oznaczona jest numerem A. 1 B. 4 C. 6 D.

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Budowa i użytkowanie klastrów w opaciu o układy Cell BE oraz GPU

Budowa i użytkowanie klastrów w opaciu o układy Cell BE oraz GPU Budowa i użytkowanie klastrów w opaciu o układy Cell BE oraz GPU Daniel Kubiak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V sor@czlug.icis.pcz.pl Streszczenie Celem pracy jest

Bardziej szczegółowo

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 MMX i SSE Zbigniew Koza Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wrocław, 10 marca 2011 Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 Spis treści Spis treści 1 Wstęp Zbigniew Koza (WFiA UWr) MMX

Bardziej szczegółowo

Informatyka - studium realizacji dźwięku -

Informatyka - studium realizacji dźwięku - Informatyka - studium realizacji dźwięku - mgr inż. Jan Madej www.janmadej.pl Informatyka (computer science) (2h) Audio FX (2h) poznanie środowiska Octave tworzenie własnych algorytmów przetwarzających

Bardziej szczegółowo

Procesy i wątki. Krzysztof Banaś Obliczenia równoległe 1

Procesy i wątki. Krzysztof Banaś Obliczenia równoległe 1 Procesy i wątki Krzysztof Banaś Obliczenia równoległe 1 Procesy i wątki Proces: ciąg rozkazów (wątek główny) i ewentualnie inne wątki stos (wątku głównego) przestrzeń adresowa dodatkowe elementy tworzące

Bardziej szczegółowo

Sprawdzian test egzaminacyjny 2 GRUPA I

Sprawdzian test egzaminacyjny 2 GRUPA I ... nazwisko i imię ucznia Sprawdzian test egzaminacyjny 2 GRUPA I 1. Na rys. 1 procesor oznaczony jest numerem A. 2 B. 3 C. 5 D. 8 2. Na rys. 1 karta rozszerzeń oznaczona jest numerem A. 1 B. 4 C. 6 D.

Bardziej szczegółowo

Przykładowe sprawozdanie. Jan Pustelnik

Przykładowe sprawozdanie. Jan Pustelnik Przykładowe sprawozdanie Jan Pustelnik 30 marca 2007 Rozdział 1 Sformułowanie problemu Tematem pracy jest porównanie wydajności trzech tradycyjnych metod sortowania: InsertionSort, SelectionSort i BubbleSort.

Bardziej szczegółowo

Wykład 2. Mikrokontrolery z rdzeniami ARM

Wykład 2. Mikrokontrolery z rdzeniami ARM Źródło problemu 2 Wstęp Architektura ARM (Advanced RISC Machine, pierwotnie Acorn RISC Machine) jest 32-bitową architekturą (modelem programowym) procesorów typu RISC. Różne wersje procesorów ARM są szeroko

Bardziej szczegółowo

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej

Bardziej szczegółowo

Kryptografia na procesorach wielordzeniowych

Kryptografia na procesorach wielordzeniowych Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Kryptografia na procesorach wielordzeniowych p. 1 Plan prezentacji

Bardziej szczegółowo

Wykorzystanie układów FPGA w implementacji systemów bezpieczeństwa sieciowego typu Firewall

Wykorzystanie układów FPGA w implementacji systemów bezpieczeństwa sieciowego typu Firewall Grzegorz Sułkowski, Maciej Twardy, Kazimierz Wiatr Wykorzystanie układów FPGA w implementacji systemów bezpieczeństwa sieciowego typu Firewall Plan prezentacji 1. Architektura Firewall a załoŝenia 2. Punktu

Bardziej szczegółowo

Podsystem graficzny. W skład podsystemu graficznego wchodzą: karta graficzna monitor

Podsystem graficzny. W skład podsystemu graficznego wchodzą: karta graficzna monitor Plan wykładu 1. Pojęcie podsystemu graficznego i karty graficznej 2. Typy kart graficznych 3. Budowa karty graficznej: procesor graficzny (GPU), pamięć podręczna RAM, konwerter cyfrowo-analogowy (DAC),

Bardziej szczegółowo

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów Studia Podyplomowe INFORMATYKA Architektura komputerów Wykład I Podstawowe pojęcia 1, Cyfrowe dane 2 Wewnątrz komputera informacja ma postać fizycznych sygnałów dwuwartościowych (np. dwa poziomy napięcia,

Bardziej szczegółowo

Organizacja pamięci w procesorach graficznych

Organizacja pamięci w procesorach graficznych Organizacja pamięci w procesorach graficznych Pamięć w GPU przechowuje dane dla procesora graficznego, służące do wyświetlaniu obrazu na ekran. Pamięć przechowuje m.in. dane wektorów, pikseli, tekstury

Bardziej szczegółowo

NOWE TRENDY ROZWOJU MIKROPROCESORÓW

NOWE TRENDY ROZWOJU MIKROPROCESORÓW NOWE TRENDY ROZWOJU MIKROPROCESORÓW Marcin LORENC, Krzysztof CEGIELSKI Streszczenie: Celem artykułu jest zaprezentowanie kierunków rozwoju mikrokontrolerów. Przedstawiono krótką historię procesorów, pojęcie

Bardziej szczegółowo

Bajt (Byte) - najmniejsza adresowalna jednostka informacji pamięci komputerowej, z bitów. Oznaczana jest literą B.

Bajt (Byte) - najmniejsza adresowalna jednostka informacji pamięci komputerowej, z bitów. Oznaczana jest literą B. Jednostki informacji Bajt (Byte) - najmniejsza adresowalna jednostka informacji pamięci komputerowej, składająca się z bitów. Oznaczana jest literą B. 1 kb = 1024 B (kb - kilobajt) 1 MB = 1024 kb (MB -

Bardziej szczegółowo

Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski

Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski Układ sterowania, magistrale i organizacja pamięci Dariusz Chaberski Jednostka centralna szyna sygnałow sterowania sygnały sterujące układ sterowania sygnały stanu wewnętrzna szyna danych układ wykonawczy

Bardziej szczegółowo

Systemy operacyjne. Paweł Pełczyński

Systemy operacyjne. Paweł Pełczyński Systemy operacyjne Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie Struktura systemów operacyjnych Procesy i Wątki Komunikacja międzyprocesowa Szeregowanie procesów Zarządzanie

Bardziej szczegółowo

Architektura systemów komputerowych. dr Artur Bartoszewski

Architektura systemów komputerowych. dr Artur Bartoszewski Architektura systemów komputerowych dr Artur Bartoszewski Rozwój płyt głównych - część 2 Magistrale kart rozszerzeń Rozwój magistral komputera PC Płyta główna Czas życia poszczególnych magistral Pentium

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ

REFERAT PRACY DYPLOMOWEJ REFERAT PRACY DYPLOMOWEJ Temat pracy: Implementacja i porównanie wydajności wybranych algorytmów grafowych w warunkach obliczeń równoległych Autor pracy: Michał Podstawski Promotor: Prof. WSTI, dr hab.

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE

Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PROGRAMOWANIE ROZPROSZONE I RÓWNOLEGŁE Distributed and parallel programming Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Projektowanie. Projektowanie mikroprocesorów

Projektowanie. Projektowanie mikroprocesorów WYKŁAD Projektowanie mikroprocesorów Projektowanie układ adów w cyfrowych - podsumowanie Algebra Boole a Bramki logiczne i przerzutniki Automat skończony System binarny i reprezentacja danych Synteza logiczna

Bardziej szczegółowo

Technika mikroprocesorowa. Linia rozwojowa procesorów firmy Intel w latach

Technika mikroprocesorowa. Linia rozwojowa procesorów firmy Intel w latach mikrokontrolery mikroprocesory Technika mikroprocesorowa Linia rozwojowa procesorów firmy Intel w latach 1970-2000 W krótkim pionierskim okresie firma Intel produkowała tylko mikroprocesory. W okresie

Bardziej szczegółowo