Instrukcje. Spis treści. Hipoteza. Parametry
|
|
- Marta Mikołajczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Spis treści 1 Instrukcje 1.1 Hipoteza 1.2 Parametry 1.3 Wyniki 2 Kod 3 Walidacja 3.1 Zastosowanie w naszym przykładzie Krzywa ROC Instrukcje W tym ćwiczeniu zbudujemy klasyfikator bazujący na regresji logistycznej. Jego zadaniem będzie określanie prawdopodobieństwa przyjęcia kandydata na studia na podstawie wyników z dwóch egzaminów maturalnych (każdy przeskalowany na zakres 0-100%): z matematyki i z biologii. Hipotetyczne dane znajdują się w pliku Plik:Reg log data1.txt. Dla przypomnienia: Hipoteza w regresji logistycznej ma postać:. ze względu na stabilność numeryczną obliczeń dobrze jest ograniczyć zakres zmienności exp np do zakresu [1e-8, 1e+8]: f = exp(x) if f < 1e-8: f = 1e-8 if f>1e8: f = 1e8 Parametry parametry regresji znajdujemy przez maksymalizację funkcji log-wiarygodności:
2 W tym ćwiczeniu zrobimy to za pomocą funkcji optymalizacyjnych z modułu scipy.optimize[1]. Wynikają z tego dwie konsekwencje: 1. Funkcje te są przystosowane do szukania minimów funkcji celu. Musimy więc podawać im jako argumenty funkcję minus log-wiarygodności 2. Niektóre algorytmy mogą działać szybciej jeśli zaimplementujemy jawnie postać pochodnej: Wyniki Wyniki regresji logistycznej możemy odbierać na dwa sposoby: Kod obliczyć wartość hipotezy dla badanego wejścia i dopasowanych parametrów: miara ta ma interpretację prawdopodobieństwa przynależności wejścia do klasy 1 dopisać funkcję wykonującą klasyfikację, tzn. porównanie wartości hipotezy z 1/2. Dla wartości hipotezy > 1/2 klasyfikacja zwraca 1, w przeciwnym razie 0. Ten kod pomoże Ci zapoznać się z regresją logistyczną. W tym celu będziesz misiał uzupełnić kody funkcji: sigmoida funkcjakosztu predykcja funkcjakosztureg Proponuję robić to stopniowo w miarę jak będę sie pojawiać wywołania tych funkcji. # -*- coding: utf-8 -*- # #importujemy potrzebne moduły i klasy import matplotlib matplotlib.use('tkagg') import numpy as np import pylab as py import scipy.optimize as so #=========================================== # definicje funkcji, które trzeba uzupełnić: #=========================================== def hipoteza(x, theta): '''ta funkcja zwraca wartość hipotezy dla danego wejścia x i parametrów
3 theta''' # zaimplementuj hipotezę dla regresji logistycznej zgodnie ze wzorami z wykładu: # ronowe/wyk%c5%82ad_6#hipoteza # return h pass def funkcjalogwiarygodnosci(theta, X, y): '''Ta funkcja oblicza wartość funkcji log-wiarygodności dla regresji logistycznej używając theta jako parametrów oraz X i y jako zbioru uczącego''' # zaimlementuj funkcję l(theta) z wykładu: # onowe/wyk%c5%82ad_6#funkcja_wiarygodno.c5.9bci ''' l=0.0 for j in range(len(y)): h = hipoteza(x[j,:],theta) l +=... return l''' pass def minusfunkcjalogwiarygodnosci(theta, X, y): return (-1.)*funkcjaLogWiarygodnosci(theta, X, y) def pochodnalogwiarygodnosci(theta, X, y): '''ta funkcja oblicza wartość pochodnej funkcji log-wiarygodności dla podaanych wartości theta, X i y''' # zaimplementuj wzory na dl/dtheta z # onowe/wyk%c5%82ad_6#funkcja_wiarygodno.c5.9bci ''' dl_dtheta = np.zeros(len(theta)) for i in range(len(theta)): for j in range(len(y)): dl_dtheta[i] +=... return dl_dtheta ''' pass def minuspochodnalogwiarygodnosci(theta, X, y): return (-1)*pochodnaLogWiarygodnosci(theta, X, y)
4 def klasyfikacja(testx, theta): ''' Ta funkcja zwraca wynik klasyfikacji przykładu testx przy parametrach theta. Po obliczeniu hipotezy, jeśli otrzymane prawdopodobieństwo jest większe niż 0.5 to zwraca 1 w przeciwnym wypadku zwraca 0''' pass ##################################################################### # definicje funkcji pomocniczych, których nie musisz modyfikować #====================================================== def rysujdanegrup(x, y, marker, xlabel, ylabel,legend_list): '''X - macierz wartości wejściowych zorganizowana tak, że kolejne przykłady są w wierszach, kolumny to kolejne wynmiary wejścia, y - wektor określający przynależność do grupy, indeksy tego wektora odpowiadają wireszom macierzy X, marker - zestaw markerów do oznaczania elementów grup, markerów powinno być tyle ile jest grup''' p=[] for g in np.unique(y): g = int(g) tmp =py.plot(x[np.where(y==g),],x[np.where(y==g),1],marker[g]) p.append(tmp[]) py.legend(p,legend_list) # Dodajemy napisy py.xlabel(xlabel) py.ylabel(ylabel) def rysujgranice(theta, X, y, marker, xlabel, ylabel,legend_list): rysujdanegrup(x, y, marker, xlabel, ylabel,legend_list) # granica między obszarami dana jest równaniem # theta^t x = 0 x_plot = np.array([np.min(x[:,1]), np.max(x[:,1])]) y_plot = -1./theta[2]*(theta[1]*x_plot + theta[]) py.plot(x_plot,y_plot,'b') #===================================================
5 ######################### Program ################################# # Wczytanie danych # Pierwsze dwie kolumny zawierają wyniki egzaminów, # trzecia kolumna zawiera etykietę (przynależność do grupy) data = np.loadtxt('reg_log_data1.txt',delimiter=',') X = data[:, [, 1]] y = data[:, 2] ## ==================== Część1: Rysunki ==================== # Zawsze dobrze jest pooglądać dane aby nabrać wyczucia do problemu print 'rysujemy dane: "+" oznacza przykłady z gdzie y = 1 zaś "o" te z y = 0' rysujdanegrup(x, y,marker = ('bo','r+'),xlabel='wynik z matematyki', ylabel='wynik z biologii',legend_list=(u'nie przyjęty',u'przyjęty')); py.show() ## ============ Część 2: Obliczamy funkcję kosztu i gradient ============ # W tej części maksymalizujemy funkcję log-wiarygodności dla regresji logistycznej # Aby to zrobić musisz uzupełnić kody w funkcjach: # hipoteza # funkcjalogwiarygodnosci # pochodnalogwiarygodnosci # Szkielety tych funkcji znajdują sie na początku tego pliku # Teraz trzeba zmodyfikować macierz X i dodać jej z lewej strony kolumnę jedynek odopwiadającą # parametrow theta[0] N = len(y) # ilość przykładów w zbiorze uczącym XX = np.concatenate((np.ones((n,1)), X),axis = 1) # rozmiar wejścia rozszerzonego o jedynki xdim = XX.shape[1] # IInicjalizujemy parametry: theta0 = np.zeros((xdim, 1)); # Oblicz funkcje log-wiarygodności i jej pochodną dla danych początkowych logwiar = funkcjalogwiarygodnosci(theta0, XX, y) pochlogwiar = pochodnalogwiarygodnosci(theta0, XX, y) print 'wartość log-wiarygodności dla początkowej thety: '+ str(logwiar)
6 print 'pochodna log-wiarygodnosci dla poczatkowej thety: '+ str(pochlogwiar) ## ============= Część 3: Optymalizacja ============= # Funkcje optymalizujące zaczerpniemy z modułu scipy.optimize # ponieważ funkcje te są zaimplementowane do mnimalizowania # zamiast maksymalizować funkcję lowwiarygodności będziemy # minimalizować tą funkcje przemnożoną przez -1 # czyli minusfunkcjalogwiarygodnosci #fprime=minuspochodnalogwiarygodnosci, theta_opt = so.fmin_bfgs(minusfunkcjalogwiarygodnosci, theta0, fprime=minuspochodnalogwiarygodnosci, args=(xx,y), disp= True) # wypiszmy theta print 'Wartość log wiarygodnosci dla optymalnych parametrów: '+str(funkcjalogwiarygodnosci(theta_opt, XX, y)) print 'theta: '+str(theta_opt) # narysujmy uzyskany podział rysujgranice(theta_opt, X, y,marker = ('bo','r+'),xlabel='wynik z matematyki', ylabel='wynik z biologii',legend_list=(u'nie przyjęty',u'przyjęty')); py.show() ## ============== Część 4: Przewidywanie ============== # PO dopasowaniu parametrów nadszedł czas aby zrobić predykcję. # obliczmy jakie prawdopodobieństwo przyjęcia ma kandydat z wynikami # 20 z matematyki # 80 z biologii # Do przewidywania wykorzystujemy funkcję hipoteza, bo zgodnie z naszą interpretacją daje ona # prawdopodobieństwo przyjęcia prob = hipoteza([1, 20, 80], theta_opt) print 'dla kandydata z wymnikami 20 z matematyki i 80 z biologii prawdopodobieństwo przyjęcia wynosi: ' +str(prob)
7 Walidacja Teoria do tej części znajduje się tu: wykład Zastosowanie w naszym przykładzie W części piątej naszego programu dodamy kross-walidację typu leave-one-out. Po kolei odłożymy po jednym przykładzie ze zbioru uczącego, na takim zredukownaym zbiorze nauczymy regresję, a następnie sprawdzimy która z poniższych możliwych sytuacji zachodzi: TP: stan faktyczny jest pozytywny (y=1) i klasyfikator się nie myli (wynik = 1) TN: stan faktyczny jest negatywny (y=0) i klasyfikator się nie myli (wynik = 0) FP: wynik fałszywie pozytywny (fałszywy alarm): stan faktyczny jest negatywny (y=0) ale klasyfikator się myli (wynik = 1) FN: przegapiony alarm: stan faktyczny jest pozytywny (y=1) i klasyfikator się myli (wynik = 0) ## =============Część 5: walidacja ============== # zastosujemy kross-walidację typu leave-one-out # przygotowujemy liczniki: TP = TN = FP = FN = for v in range(len(y)): print v,'/', len(y) # odkładamy przykład v do testowania testx = XX[v] testy = y[v] # robimy zredukowany zbiór uczący przez usunięcie przykładu v tenx = np.delete(xx,v,axis=) teny = np.delete(y,v) # uczymy regresję theta_opt = so.fmin_bfgs(minusfunkcjalogwiarygodnosci, theta0, fprime=minuspochodnalogwiarygodnosci, args=(tenx,teny), disp= False) # klasyfikujemy odłożony przykład : proszę uzupełnić funkcję klasyfikacja na początku pliku wynik = klasyfikacja(testx, theta_opt) # aktualizujemy liczniki; proszę uzupełnić kod: if testy == 1: if wynik == 1:... else:... else:
8 if wynik == 1:... else:... print 'TP: ', TP print 'FP: ', FP print 'TN: ', TN print 'FN: ', FN Dla naszego zbioru uczącego powinniśmy uzyskać: TP: 55 FP: 6 TN: 34 FN: 5 Krzywa ROC Aby wykreślić krzywą ROC należy przeprowadzić klasyfikację dla wielu możliwych wartości progu dla hipotezy, powyżej którego uznajemy przypadek za należący do klasy 1. Modyfikując funkcję klasyfikacja, uzyskujemy następującą funkcje klasyfikującą zależną od progu: def klasyfikacjaprog(testx, theta_opt,prog): prob = hipoteza(testx, theta_opt) if prob >prog: return 1 else: return Funkcję tą możemy wykorzystać do obliczenia liczebności poszczególnych przypadków klasyfikacji w zależności od progu: def liczroc(xx,y,progi): '''funkcja oblicza FPR i TPR dla zadanych progów''' TP = np.zeros(len(progi)) TN = np.zeros(len(progi)) FP = np.zeros(len(progi)) FN = np.zeros(len(progi)) for v in range(len(y)): print v,'/', len(y) testx = XX[v] testy = y[v] tenx = np.delete(xx,v,axis=) teny = np.delete(y,v) theta_opt = so.fmin_bfgs(minusfunkcjalogwiarygodnosci, theta0,
9 fprime=minuspochodnalogwiarygodnosci, args=(tenx,teny), disp= False) for ind, prog in enumerate(progi): wynik = klasyfikacjaprog(testx, theta_opt,prog) #========================== # tu wstaw odpowiedni kawałek kodu #========================== TPR = TP/(TP+FN) FPR = FP/(FP+TN) return (FPR,TPR) Do wykreślenia krzywej ROC możesz użyć następującego kodu. Zaznaczamy w nim na wykresie wartości progów dla których osiągnięto konkretne wartości FPR i TPR. progi = np.arange(0.0,1.1,0.1) FPR,TPR= liczroc(xx,y,progi) py.plot(fpr,tpr,'o') py.plot(fpr,tpr) for ind,pr in enumerate(progi): py.text(fpr[ind],tpr[ind],str(pr)) py.xlabel('fpr') py.ylabel('tpr') py.xlim((,1)) py.ylim((,1)) py.show() Dopisz powyższe funkcje do głównego modułu.
Zadania z rysowania i dopasowania funkcji
Spis treści 1 Zadania z rysowania i dopasowania funkcji 1.1 Znajdowanie miejsca zerowego funkcji 1.2 Wczytywanie danych i wykres 1.3 Dopasowywanie krzywej do danych i wykres 1.3.1 Wskazówki Zadania z rysowania
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych.
Spis treści 1 Wstęp 1.1 Importy 2 Zbiór uczący 3 Klasyfikacja 3.1 Rysunki dodatkowe 4 Polecenia dodatkowe Wstęp Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych. Importy
Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.
Spis treści 1 Wstęp: generatywne algorytmy uczące 2 Gaussowska analiza dyskryminacyjna 2.1 Gaussowska analiza dyskryminacyjna a regresja logistyczna 3 Naiwny Klasyfikator Bayesa 3.1 Wygładzanie Laplace'a
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy
Klasyfikacja za pomocą algorytmu wektorów wspierających (SVM)
Uczenie_maszynowe_i_sztuczne_sieci_neuronowe_cw/SVM1 Spis treści 1 Klasyfikacja za pomocą algorytmu wektorów wspierających (SVM) 1.1 Materiały 1.2 Ćwiczenie 1: Dane separowalne liniowo 1.3 Ćwiczenie 2:
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów
Optymalizacja systemów
Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 3 Regresja logistyczna autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest zaimplementowanie modelu
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie
Data Mining Wykład 4. Plan wykładu
Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje
Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta
Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
Spis treści. Wstęp. Regresja
Spis treści 1 Wstęp 2 Regresja 2.1 Regresja liniowa 2.1.1 Przykład: Dopasowanie prostej do punktów (zakładamy jednakową wariancję Y dla każdego X) 2.1.2 Ocena jakości dopasownia 2.1.2.1 Współczynnik 2.1.2.2
Wykresy i interfejsy użytkownika
Wrocław, 07.11.2017 Wstęp do informatyki i programowania: Wykresy i interfejsy użytkownika Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Instrukcje sterujące Biblioteka
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Algorytm k-means jest zaimplementowany w module scipy.cluster.vq (vq: vector quantization) ([dokumentacja]). Mamy tam funkcję
Spis treści 1 Algorytm k-means 1.1 Przykładowy kod. 2 Segmentacja obrazu algorytmem k-means 3 Algorytm EM: implementacja 3.1 Funkcje pomocnicze 3.2 Szkielet algorytmu 3.3 Program Algorytm k-means Algorytm
WYKŁAD 7. Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria
Wrocław University of Technology WYKŁAD 7 Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria autor: Maciej Zięba Politechnika Wrocławska Testowanie modeli klasyfikacyjnych Dobór odpowiedniego
Podstawy biblioteki Matplotlib
Podstawy biblioteki Matplotlib Krzysztof Gdawiec Instytut Informatyki Uniwersytet Śląski Matplotlib jest biblioteką Pythona służącą do tworzenia różnego rodzaju wykresów. Biblioteka ta od samego początku
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Zadanie: Filtr adaptywny
Spis treści 1 Zadanie: Filtr adaptywny 1.1 Przygotuj sygnały: 1.2 Symulacja sieci 1.3 Wykresy 1.4 Szkielet rozwiązania: 1.5 Pytania Zadanie: Filtr adaptywny W tym zadaniu symulujemy działanie filtra, który
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Wstęp. Regresja logistyczna. Spis treści. Hipoteza. powrót
powrót Spis treści 1 Wstęp 2 Regresja logistyczna 2.1 Hipoteza 2.2 Estymacja parametrów 2.2.1 Funkcja wiarygodności 3 Uogólnione modele liniowe 3.1 Rodzina wykładnicza 3.1.1 Rozkład Bernouliego 3.1.2 Rozkład
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Wprowadzenie do klasyfikacji
Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator
Zadanie 2: Arytmetyka symboli
1 Cel ćwiczenia Zadanie 2: Arytmetyka symboli Wykształcenie umiejętności abstrahowania operacji arytmetycznych. Zapoznanie się i przećwiczenie mechanizmu tworzenia przeciążeń funkcji operatorowych. Utrwalenie
Pakiety Matematyczne - R Zestaw 2.
Pakiety Matematyczne - R Zestaw 2. Część przykładów pochodzi z helpa do R i z książki: R.Biecek, Przewodnik po pakiecie R, GIS 2014, strona www: http://www.biecek.pl, Instrukcje warunkowe Składnia instrukcji
Spis treści. Optymalizacja jednowymiarowa
Spis treści 1 Optymalizacja jednowymiarowa 2 Optymalizacja wielowymiarowa 2.1 Zadanie - rozkład Cauchy'ego 2.2 Rozwiązanie 2.3 Zadanie - Data Container 2.4 Rozwiązanie Optymalizacja jednowymiarowa Omawianie
Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym
1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ Arkusz I. Czas pracy: 60 minut Liczba punktów do uzyskania: 15
Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
Ćwiczenia z przetwarzania tablic 2D
Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie
Pytania dla języka Python
XIV OIJ, zawody I stopnia, tura testowa 16 września 2019 1 stycznia 2020 Poniżej znajdują się pytania testowe z zawodów I stopnia XIV Olimpiady Informatycznej Juniorów () na teście wiedzy (do rozwiązania
Optymalizacja systemów
Optymalizacja systemów Laboratorium Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania binarnego.
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];
4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?
Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest
Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne Zajmiemy się teraz problemem numerycznego rozwiązywania równań różniczkowych zwyczajnych o postaci: z warunkeim początkowym. Zauważmy że przykładowe równanie różniczkowe
utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy,
Lista 3 Zestaw I Zadanie 1. Zaprojektować i zaimplementować funkcje: utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy, zapisz
Krzywe ROC i inne techniki oceny jakości klasyfikatorów
Krzywe ROC i inne techniki oceny jakości klasyfikatorów Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 20 maja 2009 1 2 Przykład krzywej ROC 3 4 Pakiet ROCR Dostępne metryki Krzywe
Wprowadzenie do Python
Wprowadzenie do Python Marcin Orchel 1 Środowisko Python Zalecane korzystanie z dystrybucji Anaconda. W systemie linux może być już dostępny Python. Sprawdzenie wersji Pythona, python -V. Uruchomienie
Quick Launch Manual:
egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Wstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
4. Funkcje. Przykłady
4. Funkcje Przykłady 4.1. Napisz funkcję kwadrat, która przyjmuje jeden argument: długość boku kwadratu i zwraca pole jego powierzchni. Używając tej funkcji napisz program, który obliczy pole powierzchni
Podstawy Pythona. Krzysztof Gdawiec. Instytut Informatyki Uniwersytet Śląski
Podstawy Pythona Krzysztof Gdawiec Instytut Informatyki Uniwersytet Śląski Słownik jest typem mutowalnym. Każdy element to para: klucz wartość. W celu stworzenia słownika pary klucz wartość umieszczamy
wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis
i cz. 2 Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 i cz. 2 2 i cz. 2 3 Funkcje i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje instrukcje } i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje
Ocena dokładności diagnozy
Ocena dokładności diagnozy Diagnoza medyczna, w wielu przypadkach może być interpretowana jako działanie polegające na podjęciu jednej z dwóch decyzji odnośnie stanu zdrowotnego pacjenta: 0 pacjent zdrowy
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Kurs języka Python. Wykład 11. Marcin Młotkowski. 4 stycznia Kontrola poprawności podczas biegu programu. 2 Testowanie oprogramowania
Wykład 11. 4 stycznia 2010 1 Kontrola poprawności podczas biegu programu 2 3 4 Asercje Asercja to formuła logiczna; Asercji używa się do kontrolowania czy np. wartość zmiennej ma odpowiedni typ lub mieści
Laboratorium kryptograficzne dla licealistów 4
Laboratorium kryptograficzne dla licealistów 4 Projekt Matematyka dla ciekawych świata Łukasz Mazurek 20.04.2017 1 Poszukiwanie klucza Szyfr Cezara udało nam się złamać już kilkukrotnie. Za każdym razem
Warsztaty dla nauczycieli
WPROWADZENIE Wyprowadzanie danych: Wyprowadzanie na ekran komunikatów i wyników umożliwia instrukcja wyjścia funkcja print(). Argumentami funkcji (podanymi w nawiasach) mogą być teksty, wyrażenia arytmetyczne
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Jakość uczenia i generalizacja
Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Programowanie w języku Python. Grażyna Koba
Programowanie w języku Python Grażyna Koba Kilka definicji Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Optymalizacja systemów
Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania
Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T )
Joanna Berlińska Algorytmika w projektowaniu systemów - ćwiczenia 1 1 Problem 1 prec f max 1 procesor (ich zbiór oznaczamy przez T ) czas wykonania zadania T j wynosi p j z zadaniem T j związana jest niemalejąca
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,
W ostatnim wykładzie doszliśmy do tego, że problem znalezienia klasyfikatora optymalnego pod względem marginesów można wyrazić w następujący sposób:
Spis treści 1 Maszyny Wektorów Wspierających 2 1.1 SVM w formaliźmie Lagranga 1.2 Przejście do pstaci dualnej 1.2.1 Wyznaczenie parametrów modelu: 1.2.2 Klasyfikacja: 2 Funkcje jądrowe 2.1 Mapowanie do
Metody Metody, parametry, zwracanie wartości
Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Metody Metody, parametry, zwracanie wartości Metody - co to jest i po co? Metoda to wydzielona część klasy, mająca
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl
ROBOTYKA Odwrotne zadanie kinematyki - projekt Zawartość. Wstęp...... Proste zadanie kinematyki cel...... Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki....
Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl
Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów
Wrocław, Wstęp do informatyki i programowania: liczby pierwsze. Wydział Matematyki Politechniki Wrocławskiej.
Wrocław, 28.11.2017 Wstęp do informatyki i programowania: liczby pierwsze Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Zajmiemy się liczbami pierwszymi... liczby
Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej
Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty
Zadanie Zawijasy LOGIA 18 (2017/18), etap 2 Treść zadania Tablica Polibiusza jest kwadratową tabelą zawierającą litery alfabetu łacińskiego. Kolumny numerujemy od 0 do 4, a wiersze od 1 do 5. Kodujemy
Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Metody matematyczne w transporcie Mathematical methods in transport A.
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Entropia Renyi ego, estymacja gęstości i klasyfikacja
Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 16 listopada 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Uogólniony model liniowy
Uogólniony model liniowy Ogólny model liniowy y = Xb + e Każda obserwacja ma rozkład normalny Każda obserwacja ma tą samą wariancję Dane nienormalne Rozkład binomialny np. liczba chorych krów w stadzie
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)
Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017
Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x