Instrukcje. Spis treści. Hipoteza. Parametry

Wielkość: px
Rozpocząć pokaz od strony:

Download "Instrukcje. Spis treści. Hipoteza. Parametry"

Transkrypt

1 Spis treści 1 Instrukcje 1.1 Hipoteza 1.2 Parametry 1.3 Wyniki 2 Kod 3 Walidacja 3.1 Zastosowanie w naszym przykładzie Krzywa ROC Instrukcje W tym ćwiczeniu zbudujemy klasyfikator bazujący na regresji logistycznej. Jego zadaniem będzie określanie prawdopodobieństwa przyjęcia kandydata na studia na podstawie wyników z dwóch egzaminów maturalnych (każdy przeskalowany na zakres 0-100%): z matematyki i z biologii. Hipotetyczne dane znajdują się w pliku Plik:Reg log data1.txt. Dla przypomnienia: Hipoteza w regresji logistycznej ma postać:. ze względu na stabilność numeryczną obliczeń dobrze jest ograniczyć zakres zmienności exp np do zakresu [1e-8, 1e+8]: f = exp(x) if f < 1e-8: f = 1e-8 if f>1e8: f = 1e8 Parametry parametry regresji znajdujemy przez maksymalizację funkcji log-wiarygodności:

2 W tym ćwiczeniu zrobimy to za pomocą funkcji optymalizacyjnych z modułu scipy.optimize[1]. Wynikają z tego dwie konsekwencje: 1. Funkcje te są przystosowane do szukania minimów funkcji celu. Musimy więc podawać im jako argumenty funkcję minus log-wiarygodności 2. Niektóre algorytmy mogą działać szybciej jeśli zaimplementujemy jawnie postać pochodnej: Wyniki Wyniki regresji logistycznej możemy odbierać na dwa sposoby: Kod obliczyć wartość hipotezy dla badanego wejścia i dopasowanych parametrów: miara ta ma interpretację prawdopodobieństwa przynależności wejścia do klasy 1 dopisać funkcję wykonującą klasyfikację, tzn. porównanie wartości hipotezy z 1/2. Dla wartości hipotezy > 1/2 klasyfikacja zwraca 1, w przeciwnym razie 0. Ten kod pomoże Ci zapoznać się z regresją logistyczną. W tym celu będziesz misiał uzupełnić kody funkcji: sigmoida funkcjakosztu predykcja funkcjakosztureg Proponuję robić to stopniowo w miarę jak będę sie pojawiać wywołania tych funkcji. # -*- coding: utf-8 -*- # #importujemy potrzebne moduły i klasy import matplotlib matplotlib.use('tkagg') import numpy as np import pylab as py import scipy.optimize as so #=========================================== # definicje funkcji, które trzeba uzupełnić: #=========================================== def hipoteza(x, theta): '''ta funkcja zwraca wartość hipotezy dla danego wejścia x i parametrów

3 theta''' # zaimplementuj hipotezę dla regresji logistycznej zgodnie ze wzorami z wykładu: # ronowe/wyk%c5%82ad_6#hipoteza # return h pass def funkcjalogwiarygodnosci(theta, X, y): '''Ta funkcja oblicza wartość funkcji log-wiarygodności dla regresji logistycznej używając theta jako parametrów oraz X i y jako zbioru uczącego''' # zaimlementuj funkcję l(theta) z wykładu: # onowe/wyk%c5%82ad_6#funkcja_wiarygodno.c5.9bci ''' l=0.0 for j in range(len(y)): h = hipoteza(x[j,:],theta) l +=... return l''' pass def minusfunkcjalogwiarygodnosci(theta, X, y): return (-1.)*funkcjaLogWiarygodnosci(theta, X, y) def pochodnalogwiarygodnosci(theta, X, y): '''ta funkcja oblicza wartość pochodnej funkcji log-wiarygodności dla podaanych wartości theta, X i y''' # zaimplementuj wzory na dl/dtheta z # onowe/wyk%c5%82ad_6#funkcja_wiarygodno.c5.9bci ''' dl_dtheta = np.zeros(len(theta)) for i in range(len(theta)): for j in range(len(y)): dl_dtheta[i] +=... return dl_dtheta ''' pass def minuspochodnalogwiarygodnosci(theta, X, y): return (-1)*pochodnaLogWiarygodnosci(theta, X, y)

4 def klasyfikacja(testx, theta): ''' Ta funkcja zwraca wynik klasyfikacji przykładu testx przy parametrach theta. Po obliczeniu hipotezy, jeśli otrzymane prawdopodobieństwo jest większe niż 0.5 to zwraca 1 w przeciwnym wypadku zwraca 0''' pass ##################################################################### # definicje funkcji pomocniczych, których nie musisz modyfikować #====================================================== def rysujdanegrup(x, y, marker, xlabel, ylabel,legend_list): '''X - macierz wartości wejściowych zorganizowana tak, że kolejne przykłady są w wierszach, kolumny to kolejne wynmiary wejścia, y - wektor określający przynależność do grupy, indeksy tego wektora odpowiadają wireszom macierzy X, marker - zestaw markerów do oznaczania elementów grup, markerów powinno być tyle ile jest grup''' p=[] for g in np.unique(y): g = int(g) tmp =py.plot(x[np.where(y==g),],x[np.where(y==g),1],marker[g]) p.append(tmp[]) py.legend(p,legend_list) # Dodajemy napisy py.xlabel(xlabel) py.ylabel(ylabel) def rysujgranice(theta, X, y, marker, xlabel, ylabel,legend_list): rysujdanegrup(x, y, marker, xlabel, ylabel,legend_list) # granica między obszarami dana jest równaniem # theta^t x = 0 x_plot = np.array([np.min(x[:,1]), np.max(x[:,1])]) y_plot = -1./theta[2]*(theta[1]*x_plot + theta[]) py.plot(x_plot,y_plot,'b') #===================================================

5 ######################### Program ################################# # Wczytanie danych # Pierwsze dwie kolumny zawierają wyniki egzaminów, # trzecia kolumna zawiera etykietę (przynależność do grupy) data = np.loadtxt('reg_log_data1.txt',delimiter=',') X = data[:, [, 1]] y = data[:, 2] ## ==================== Część1: Rysunki ==================== # Zawsze dobrze jest pooglądać dane aby nabrać wyczucia do problemu print 'rysujemy dane: "+" oznacza przykłady z gdzie y = 1 zaś "o" te z y = 0' rysujdanegrup(x, y,marker = ('bo','r+'),xlabel='wynik z matematyki', ylabel='wynik z biologii',legend_list=(u'nie przyjęty',u'przyjęty')); py.show() ## ============ Część 2: Obliczamy funkcję kosztu i gradient ============ # W tej części maksymalizujemy funkcję log-wiarygodności dla regresji logistycznej # Aby to zrobić musisz uzupełnić kody w funkcjach: # hipoteza # funkcjalogwiarygodnosci # pochodnalogwiarygodnosci # Szkielety tych funkcji znajdują sie na początku tego pliku # Teraz trzeba zmodyfikować macierz X i dodać jej z lewej strony kolumnę jedynek odopwiadającą # parametrow theta[0] N = len(y) # ilość przykładów w zbiorze uczącym XX = np.concatenate((np.ones((n,1)), X),axis = 1) # rozmiar wejścia rozszerzonego o jedynki xdim = XX.shape[1] # IInicjalizujemy parametry: theta0 = np.zeros((xdim, 1)); # Oblicz funkcje log-wiarygodności i jej pochodną dla danych początkowych logwiar = funkcjalogwiarygodnosci(theta0, XX, y) pochlogwiar = pochodnalogwiarygodnosci(theta0, XX, y) print 'wartość log-wiarygodności dla początkowej thety: '+ str(logwiar)

6 print 'pochodna log-wiarygodnosci dla poczatkowej thety: '+ str(pochlogwiar) ## ============= Część 3: Optymalizacja ============= # Funkcje optymalizujące zaczerpniemy z modułu scipy.optimize # ponieważ funkcje te są zaimplementowane do mnimalizowania # zamiast maksymalizować funkcję lowwiarygodności będziemy # minimalizować tą funkcje przemnożoną przez -1 # czyli minusfunkcjalogwiarygodnosci #fprime=minuspochodnalogwiarygodnosci, theta_opt = so.fmin_bfgs(minusfunkcjalogwiarygodnosci, theta0, fprime=minuspochodnalogwiarygodnosci, args=(xx,y), disp= True) # wypiszmy theta print 'Wartość log wiarygodnosci dla optymalnych parametrów: '+str(funkcjalogwiarygodnosci(theta_opt, XX, y)) print 'theta: '+str(theta_opt) # narysujmy uzyskany podział rysujgranice(theta_opt, X, y,marker = ('bo','r+'),xlabel='wynik z matematyki', ylabel='wynik z biologii',legend_list=(u'nie przyjęty',u'przyjęty')); py.show() ## ============== Część 4: Przewidywanie ============== # PO dopasowaniu parametrów nadszedł czas aby zrobić predykcję. # obliczmy jakie prawdopodobieństwo przyjęcia ma kandydat z wynikami # 20 z matematyki # 80 z biologii # Do przewidywania wykorzystujemy funkcję hipoteza, bo zgodnie z naszą interpretacją daje ona # prawdopodobieństwo przyjęcia prob = hipoteza([1, 20, 80], theta_opt) print 'dla kandydata z wymnikami 20 z matematyki i 80 z biologii prawdopodobieństwo przyjęcia wynosi: ' +str(prob)

7 Walidacja Teoria do tej części znajduje się tu: wykład Zastosowanie w naszym przykładzie W części piątej naszego programu dodamy kross-walidację typu leave-one-out. Po kolei odłożymy po jednym przykładzie ze zbioru uczącego, na takim zredukownaym zbiorze nauczymy regresję, a następnie sprawdzimy która z poniższych możliwych sytuacji zachodzi: TP: stan faktyczny jest pozytywny (y=1) i klasyfikator się nie myli (wynik = 1) TN: stan faktyczny jest negatywny (y=0) i klasyfikator się nie myli (wynik = 0) FP: wynik fałszywie pozytywny (fałszywy alarm): stan faktyczny jest negatywny (y=0) ale klasyfikator się myli (wynik = 1) FN: przegapiony alarm: stan faktyczny jest pozytywny (y=1) i klasyfikator się myli (wynik = 0) ## =============Część 5: walidacja ============== # zastosujemy kross-walidację typu leave-one-out # przygotowujemy liczniki: TP = TN = FP = FN = for v in range(len(y)): print v,'/', len(y) # odkładamy przykład v do testowania testx = XX[v] testy = y[v] # robimy zredukowany zbiór uczący przez usunięcie przykładu v tenx = np.delete(xx,v,axis=) teny = np.delete(y,v) # uczymy regresję theta_opt = so.fmin_bfgs(minusfunkcjalogwiarygodnosci, theta0, fprime=minuspochodnalogwiarygodnosci, args=(tenx,teny), disp= False) # klasyfikujemy odłożony przykład : proszę uzupełnić funkcję klasyfikacja na początku pliku wynik = klasyfikacja(testx, theta_opt) # aktualizujemy liczniki; proszę uzupełnić kod: if testy == 1: if wynik == 1:... else:... else:

8 if wynik == 1:... else:... print 'TP: ', TP print 'FP: ', FP print 'TN: ', TN print 'FN: ', FN Dla naszego zbioru uczącego powinniśmy uzyskać: TP: 55 FP: 6 TN: 34 FN: 5 Krzywa ROC Aby wykreślić krzywą ROC należy przeprowadzić klasyfikację dla wielu możliwych wartości progu dla hipotezy, powyżej którego uznajemy przypadek za należący do klasy 1. Modyfikując funkcję klasyfikacja, uzyskujemy następującą funkcje klasyfikującą zależną od progu: def klasyfikacjaprog(testx, theta_opt,prog): prob = hipoteza(testx, theta_opt) if prob >prog: return 1 else: return Funkcję tą możemy wykorzystać do obliczenia liczebności poszczególnych przypadków klasyfikacji w zależności od progu: def liczroc(xx,y,progi): '''funkcja oblicza FPR i TPR dla zadanych progów''' TP = np.zeros(len(progi)) TN = np.zeros(len(progi)) FP = np.zeros(len(progi)) FN = np.zeros(len(progi)) for v in range(len(y)): print v,'/', len(y) testx = XX[v] testy = y[v] tenx = np.delete(xx,v,axis=) teny = np.delete(y,v) theta_opt = so.fmin_bfgs(minusfunkcjalogwiarygodnosci, theta0,

9 fprime=minuspochodnalogwiarygodnosci, args=(tenx,teny), disp= False) for ind, prog in enumerate(progi): wynik = klasyfikacjaprog(testx, theta_opt,prog) #========================== # tu wstaw odpowiedni kawałek kodu #========================== TPR = TP/(TP+FN) FPR = FP/(FP+TN) return (FPR,TPR) Do wykreślenia krzywej ROC możesz użyć następującego kodu. Zaznaczamy w nim na wykresie wartości progów dla których osiągnięto konkretne wartości FPR i TPR. progi = np.arange(0.0,1.1,0.1) FPR,TPR= liczroc(xx,y,progi) py.plot(fpr,tpr,'o') py.plot(fpr,tpr) for ind,pr in enumerate(progi): py.text(fpr[ind],tpr[ind],str(pr)) py.xlabel('fpr') py.ylabel('tpr') py.xlim((,1)) py.ylim((,1)) py.show() Dopisz powyższe funkcje do głównego modułu.

Zadania z rysowania i dopasowania funkcji

Zadania z rysowania i dopasowania funkcji Spis treści 1 Zadania z rysowania i dopasowania funkcji 1.1 Znajdowanie miejsca zerowego funkcji 1.2 Wczytywanie danych i wykres 1.3 Dopasowywanie krzywej do danych i wykres 1.3.1 Wskazówki Zadania z rysowania

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe

Bardziej szczegółowo

Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych.

Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych. Spis treści 1 Wstęp 1.1 Importy 2 Zbiór uczący 3 Klasyfikacja 3.1 Rysunki dodatkowe 4 Polecenia dodatkowe Wstęp Celem tych ćwiczeń jest zapoznanie się z klasyfikacją za pomocą sieci neuronowych. Importy

Bardziej szczegółowo

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi. Spis treści 1 Wstęp: generatywne algorytmy uczące 2 Gaussowska analiza dyskryminacyjna 2.1 Gaussowska analiza dyskryminacyjna a regresja logistyczna 3 Naiwny Klasyfikator Bayesa 3.1 Wygładzanie Laplace'a

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy

Bardziej szczegółowo

Klasyfikacja za pomocą algorytmu wektorów wspierających (SVM)

Klasyfikacja za pomocą algorytmu wektorów wspierających (SVM) Uczenie_maszynowe_i_sztuczne_sieci_neuronowe_cw/SVM1 Spis treści 1 Klasyfikacja za pomocą algorytmu wektorów wspierających (SVM) 1.1 Materiały 1.2 Ćwiczenie 1: Dane separowalne liniowo 1.3 Ćwiczenie 2:

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 3 Regresja logistyczna autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest zaimplementowanie modelu

Bardziej szczegółowo

Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek

Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie

Bardziej szczegółowo

Data Mining Wykład 4. Plan wykładu

Data Mining Wykład 4. Plan wykładu Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje

Bardziej szczegółowo

Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta

Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych

Bardziej szczegółowo

9. Praktyczna ocena jakości klasyfikacji

9. Praktyczna ocena jakości klasyfikacji Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 8

Indukowane Reguły Decyzyjne I. Wykład 8 Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne

Bardziej szczegółowo

Spis treści. Wstęp. Regresja

Spis treści. Wstęp. Regresja Spis treści 1 Wstęp 2 Regresja 2.1 Regresja liniowa 2.1.1 Przykład: Dopasowanie prostej do punktów (zakładamy jednakową wariancję Y dla każdego X) 2.1.2 Ocena jakości dopasownia 2.1.2.1 Współczynnik 2.1.2.2

Bardziej szczegółowo

Wykresy i interfejsy użytkownika

Wykresy i interfejsy użytkownika Wrocław, 07.11.2017 Wstęp do informatyki i programowania: Wykresy i interfejsy użytkownika Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Instrukcje sterujące Biblioteka

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2

Bardziej szczegółowo

Algorytm k-means jest zaimplementowany w module scipy.cluster.vq (vq: vector quantization) ([dokumentacja]). Mamy tam funkcję

Algorytm k-means jest zaimplementowany w module scipy.cluster.vq (vq: vector quantization) ([dokumentacja]). Mamy tam funkcję Spis treści 1 Algorytm k-means 1.1 Przykładowy kod. 2 Segmentacja obrazu algorytmem k-means 3 Algorytm EM: implementacja 3.1 Funkcje pomocnicze 3.2 Szkielet algorytmu 3.3 Program Algorytm k-means Algorytm

Bardziej szczegółowo

WYKŁAD 7. Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria

WYKŁAD 7. Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria Wrocław University of Technology WYKŁAD 7 Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria autor: Maciej Zięba Politechnika Wrocławska Testowanie modeli klasyfikacyjnych Dobór odpowiedniego

Bardziej szczegółowo

Podstawy biblioteki Matplotlib

Podstawy biblioteki Matplotlib Podstawy biblioteki Matplotlib Krzysztof Gdawiec Instytut Informatyki Uniwersytet Śląski Matplotlib jest biblioteką Pythona służącą do tworzenia różnego rodzaju wykresów. Biblioteka ta od samego początku

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Zadanie: Filtr adaptywny

Zadanie: Filtr adaptywny Spis treści 1 Zadanie: Filtr adaptywny 1.1 Przygotuj sygnały: 1.2 Symulacja sieci 1.3 Wykresy 1.4 Szkielet rozwiązania: 1.5 Pytania Zadanie: Filtr adaptywny W tym zadaniu symulujemy działanie filtra, który

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Wstęp. Regresja logistyczna. Spis treści. Hipoteza. powrót

Wstęp. Regresja logistyczna. Spis treści. Hipoteza. powrót powrót Spis treści 1 Wstęp 2 Regresja logistyczna 2.1 Hipoteza 2.2 Estymacja parametrów 2.2.1 Funkcja wiarygodności 3 Uogólnione modele liniowe 3.1 Rodzina wykładnicza 3.1.1 Rozkład Bernouliego 3.1.2 Rozkład

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

Wprowadzenie do klasyfikacji

Wprowadzenie do klasyfikacji Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator

Bardziej szczegółowo

Zadanie 2: Arytmetyka symboli

Zadanie 2: Arytmetyka symboli 1 Cel ćwiczenia Zadanie 2: Arytmetyka symboli Wykształcenie umiejętności abstrahowania operacji arytmetycznych. Zapoznanie się i przećwiczenie mechanizmu tworzenia przeciążeń funkcji operatorowych. Utrwalenie

Bardziej szczegółowo

Pakiety Matematyczne - R Zestaw 2.

Pakiety Matematyczne - R Zestaw 2. Pakiety Matematyczne - R Zestaw 2. Część przykładów pochodzi z helpa do R i z książki: R.Biecek, Przewodnik po pakiecie R, GIS 2014, strona www: http://www.biecek.pl, Instrukcje warunkowe Składnia instrukcji

Bardziej szczegółowo

Spis treści. Optymalizacja jednowymiarowa

Spis treści. Optymalizacja jednowymiarowa Spis treści 1 Optymalizacja jednowymiarowa 2 Optymalizacja wielowymiarowa 2.1 Zadanie - rozkład Cauchy'ego 2.2 Rozwiązanie 2.3 Zadanie - Data Container 2.4 Rozwiązanie Optymalizacja jednowymiarowa Omawianie

Bardziej szczegółowo

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym 1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ Arkusz I. Czas pracy: 60 minut Liczba punktów do uzyskania: 15

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ Arkusz I. Czas pracy: 60 minut Liczba punktów do uzyskania: 15 Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

Bardziej szczegółowo

Algorytm grupowania danych typu kwantyzacji wektorów

Algorytm grupowania danych typu kwantyzacji wektorów Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych

Bardziej szczegółowo

Ćwiczenia z przetwarzania tablic 2D

Ćwiczenia z przetwarzania tablic 2D Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie

Bardziej szczegółowo

Pytania dla języka Python

Pytania dla języka Python XIV OIJ, zawody I stopnia, tura testowa 16 września 2019 1 stycznia 2020 Poniżej znajdują się pytania testowe z zawodów I stopnia XIV Olimpiady Informatycznej Juniorów () na teście wiedzy (do rozwiązania

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania binarnego.

Bardziej szczegółowo

Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości

Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry

Bardziej szczegółowo

//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];

//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5]; 4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?

Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne Zajmiemy się teraz problemem numerycznego rozwiązywania równań różniczkowych zwyczajnych o postaci: z warunkeim początkowym. Zauważmy że przykładowe równanie różniczkowe

Bardziej szczegółowo

utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy,

utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy, Lista 3 Zestaw I Zadanie 1. Zaprojektować i zaimplementować funkcje: utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy, zapisz

Bardziej szczegółowo

Krzywe ROC i inne techniki oceny jakości klasyfikatorów

Krzywe ROC i inne techniki oceny jakości klasyfikatorów Krzywe ROC i inne techniki oceny jakości klasyfikatorów Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 20 maja 2009 1 2 Przykład krzywej ROC 3 4 Pakiet ROCR Dostępne metryki Krzywe

Bardziej szczegółowo

Wprowadzenie do Python

Wprowadzenie do Python Wprowadzenie do Python Marcin Orchel 1 Środowisko Python Zalecane korzystanie z dystrybucji Anaconda. W systemie linux może być już dostępny Python. Sprawdzenie wersji Pythona, python -V. Uruchomienie

Bardziej szczegółowo

Quick Launch Manual:

Quick Launch Manual: egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

4. Funkcje. Przykłady

4. Funkcje. Przykłady 4. Funkcje Przykłady 4.1. Napisz funkcję kwadrat, która przyjmuje jeden argument: długość boku kwadratu i zwraca pole jego powierzchni. Używając tej funkcji napisz program, który obliczy pole powierzchni

Bardziej szczegółowo

Podstawy Pythona. Krzysztof Gdawiec. Instytut Informatyki Uniwersytet Śląski

Podstawy Pythona. Krzysztof Gdawiec. Instytut Informatyki Uniwersytet Śląski Podstawy Pythona Krzysztof Gdawiec Instytut Informatyki Uniwersytet Śląski Słownik jest typem mutowalnym. Każdy element to para: klucz wartość. W celu stworzenia słownika pary klucz wartość umieszczamy

Bardziej szczegółowo

wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis

wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis i cz. 2 Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 i cz. 2 2 i cz. 2 3 Funkcje i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje instrukcje } i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje

Bardziej szczegółowo

Ocena dokładności diagnozy

Ocena dokładności diagnozy Ocena dokładności diagnozy Diagnoza medyczna, w wielu przypadkach może być interpretowana jako działanie polegające na podjęciu jednej z dwóch decyzji odnośnie stanu zdrowotnego pacjenta: 0 pacjent zdrowy

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Kurs języka Python. Wykład 11. Marcin Młotkowski. 4 stycznia Kontrola poprawności podczas biegu programu. 2 Testowanie oprogramowania

Kurs języka Python. Wykład 11. Marcin Młotkowski. 4 stycznia Kontrola poprawności podczas biegu programu. 2 Testowanie oprogramowania Wykład 11. 4 stycznia 2010 1 Kontrola poprawności podczas biegu programu 2 3 4 Asercje Asercja to formuła logiczna; Asercji używa się do kontrolowania czy np. wartość zmiennej ma odpowiedni typ lub mieści

Bardziej szczegółowo

Laboratorium kryptograficzne dla licealistów 4

Laboratorium kryptograficzne dla licealistów 4 Laboratorium kryptograficzne dla licealistów 4 Projekt Matematyka dla ciekawych świata Łukasz Mazurek 20.04.2017 1 Poszukiwanie klucza Szyfr Cezara udało nam się złamać już kilkukrotnie. Za każdym razem

Bardziej szczegółowo

Warsztaty dla nauczycieli

Warsztaty dla nauczycieli WPROWADZENIE Wyprowadzanie danych: Wyprowadzanie na ekran komunikatów i wyników umożliwia instrukcja wyjścia funkcja print(). Argumentami funkcji (podanymi w nawiasach) mogą być teksty, wyrażenia arytmetyczne

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

Jakość uczenia i generalizacja

Jakość uczenia i generalizacja Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Programowanie w języku Python. Grażyna Koba

Programowanie w języku Python. Grażyna Koba Programowanie w języku Python Grażyna Koba Kilka definicji Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania

Bardziej szczegółowo

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T )

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T ) Joanna Berlińska Algorytmika w projektowaniu systemów - ćwiczenia 1 1 Problem 1 prec f max 1 procesor (ich zbiór oznaczamy przez T ) czas wykonania zadania T j wynosi p j z zadaniem T j związana jest niemalejąca

Bardziej szczegółowo

Programowanie dynamiczne cz. 2

Programowanie dynamiczne cz. 2 Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.

Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,

Bardziej szczegółowo

W ostatnim wykładzie doszliśmy do tego, że problem znalezienia klasyfikatora optymalnego pod względem marginesów można wyrazić w następujący sposób:

W ostatnim wykładzie doszliśmy do tego, że problem znalezienia klasyfikatora optymalnego pod względem marginesów można wyrazić w następujący sposób: Spis treści 1 Maszyny Wektorów Wspierających 2 1.1 SVM w formaliźmie Lagranga 1.2 Przejście do pstaci dualnej 1.2.1 Wyznaczenie parametrów modelu: 1.2.2 Klasyfikacja: 2 Funkcje jądrowe 2.1 Mapowanie do

Bardziej szczegółowo

Metody Metody, parametry, zwracanie wartości

Metody Metody, parametry, zwracanie wartości Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Metody Metody, parametry, zwracanie wartości Metody - co to jest i po co? Metoda to wydzielona część klasy, mająca

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl

ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl ROBOTYKA Odwrotne zadanie kinematyki - projekt Zawartość. Wstęp...... Proste zadanie kinematyki cel...... Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki....

Bardziej szczegółowo

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Wrocław, Wstęp do informatyki i programowania: liczby pierwsze. Wydział Matematyki Politechniki Wrocławskiej.

Wrocław, Wstęp do informatyki i programowania: liczby pierwsze. Wydział Matematyki Politechniki Wrocławskiej. Wrocław, 28.11.2017 Wstęp do informatyki i programowania: liczby pierwsze Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Zajmiemy się liczbami pierwszymi... liczby

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.

Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne. Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.

Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów

Bardziej szczegółowo

Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty

Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty Zadanie Zawijasy LOGIA 18 (2017/18), etap 2 Treść zadania Tablica Polibiusza jest kwadratową tabelą zawierającą litery alfabetu łacińskiego. Kolumny numerujemy od 0 do 4, a wiersze od 1 do 5. Kodujemy

Bardziej szczegółowo

Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Metody matematyczne w transporcie Mathematical methods in transport A.

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Entropia Renyi ego, estymacja gęstości i klasyfikacja

Entropia Renyi ego, estymacja gęstości i klasyfikacja Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,

Bardziej szczegółowo

Klasyfikacja LDA + walidacja

Klasyfikacja LDA + walidacja Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 16 listopada 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Uogólniony model liniowy

Uogólniony model liniowy Uogólniony model liniowy Ogólny model liniowy y = Xb + e Każda obserwacja ma rozkład normalny Każda obserwacja ma tą samą wariancję Dane nienormalne Rozkład binomialny np. liczba chorych krów w stadzie

Bardziej szczegółowo

Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed

Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x

Bardziej szczegółowo