Projektowanie i badanie liczników synchronicznych i asynchronicznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projektowanie i badanie liczników synchronicznych i asynchronicznych"

Transkrypt

1 Laboratorium Podstaw Techniki Cyfrowej dr Marek Siłuszyk mgr Arkadiusz Wysokiński Ćwiczenie 08 PTC Projektowanie i badanie liczników synchronicznych i asynchronicznych opr. tech. Mirosław Maś Uniwersytet Przyrodniczo Humanistyczny Siedlce 2019

2 1. Wstęp W ćwiczeniu badamy działania liczników asynchronicznych i synchronicznych. Układy sprawdzane są pod kątem sprawdzenia poprawności generowania sygnałów na wyjściach na podstawie wartości sygnałów podawanych na linie sterujące oraz linie zegarowe. Przeprowadzamy symulację wykorzystując komputerowy program PSpice, oraz praktycznie testujemy różne konfiguracje połączeń liczników w celu poznania praktycznego ich zastosowania. W skład zestawu laboratoryjnego wchodzą: 1. Komputer PC z programem PSpice Generator sygnałowy NDN DF1641B 3. Zasilacz NDN DF1731SB3A 4. Próbnik stanów logicznych GLP-1A 5. Platforma laboratoryjna 6. Przewody połączeniowe zwykłe i koncentryczne. UWAGA: Wyniki symulacji programu PSpice zapisuj w katalogu roboczym. Przed rozpoczęciem ćwiczenia sprawdź czy zestaw na stanowisku jest kompletny. Do ćwiczenia należy opanować następujące zagadnienia teoretyczne: Co to jest układ sekwencyjny. Liczniki zasada działania, podział, Układy asynchroniczne zalety i wady. Układy synchroniczne podaj kiedy następuje zmiana na wyjściu Co to jest układ statyczny, dynamiczny. 2

3 2. Wprowadzenie Układem sekwencyjnym nazywa się taki układ cyfrowy, którego stan wyjść w danym momencie zależy od stanu wejść w danej chwili, jak również poprzedniego stanu układu. Układy sekwencyjne oparte są na przerzutnikach i zdolne są do zapamiętania wartości poprzedniego stanu układu. Przykładowymi układami sekwencyjnymi są omawiane w ćwiczeniu liczniki. Liczniki są to układy cyfrowe, zdolne do zliczania wystąpień sygnału zegarowego. Liczniki złożone są najczęściej z kilku przerzutników. Działanie licznika cyfrowego opiera się najczęściej na układzie dzielnika częstotliwości. Przerzutnik typu JK podaje na wyjście Q sygnał o częstotliwości będącej połową częstotliwości zegara. Następny przerzutnik również dzieli częstotliwość na połowę itd. Bramki AND w układzie powodują, że przełączenie przerzutnika starszego bitu następuje tylko wtedy, gdy wszystkie młodsze bity będą ustawione na 1. Liczniki często też posiadają wejście RESET kasujące aktualny stan licznika, wejście SET które ustawia odpowiednią wartość na wyjściu Q, oraz wejście Up/Down pozwalające przestawić stan pracy licznika, aby liczył w górę lub w dół. Układy asynchroniczne to takie, w których zmiana sygnałów wejściowych powoduje natychmiastową zmianę wyjść Y. Takie układy pracują z dużą szybkością, jednak podatne są na zjawisko hazardu i wyścigu, związane z niezerowym czasem przełączania sygnałów. Układy synchroniczne to takie, których zmiana sygnału wyjściowego następuje wyłącznie w określonych chwilach, które wyznacza sygnał zegara. Dla takich układów charakterystyczne jest to, że nawet, gdy stan wejść w pewnym odcinku czasu jest stały, to stan wewnętrzny układu, w kolejnych taktach zegara, może ulec zmianie. Jeżeli układ reaguje na określony stan logiczny zegara, to mówi się, że układ jest statyczny (wyzwalany poziomem). Jeśli zaś układ reaguje na zmianę sygnału zegarowego jest dynamiczny (wyzwalany zboczem). Układ dynamiczny może być wyzwalany zboczem opadającym, narastającym albo impulsem 3

4 Opis badanych układów UCY 7490 Jest to układ scalony pełniący funkcję asynchronicznego licznika dekadowego. Składa się z czterech przerzutników master-slave oraz bramek logicznych NAND. Układ sterowany jest dwoma liniami zegara CKA i CKB oraz liniami SET/RESET. Jego konstrukcja umożliwia cykliczne zliczanie wystąpień sygnału zegarowego. Na wyjściach QD QA otrzymywana jest liczba binarna z przedziału 0;9. Poprzez spięcie odpowiednich linii, układ umożliwia zliczanie np. co 2 lub co 5. Układ realizuje też podział częstotliwości wejściowej, podanej na zegar. Schemat podłączeniowy układu pokazuje (Rys.1). (Rys.1) Schemat układu A Sygnał zegara CKA. B Sygnał zegara CKB. R01, R02 Sterowanie RESET. Gdy R01 R02 = 1 to QD,QC,QB,QA = 0,0,0,0 R91, R92 Sterowanie SET. Gdy R91 R92 = 1 to QD,QC,QB,QA = 1,0,0,1 QD,QC,QB,QA Stany na wyjściu układu. VCC i GND Zasilanie układu. NC Wyjście nieużywane. UCY 7493 Jest to asynchroniczny licznik binarny. Zawiera cztery przerzutniki master slave. Trzy przerzutniki są połączone szeregowo, tworząc licznik mod8, a czwarty przerzutnik jest dwójką liczącą, która może być wykorzystana wspólnie z licznikiem mod8, celem stworzenia układu liczącego mod16. Zerowanie układu odbywa się przez podanie na wejścia R01 i R02 stanu wysokiego. Układ realizuje też podział częstotliwości wejściowej, podanej na zegar. Schemat podłączeniowy układu pokazuje (Rys.2). (Rys.2) Schemat układu A Sygnał zegara CKA. B Sygnał zegara CKB. R01, R02 Sterowanie RESET. Gdy R01 R02 = 1 to QD,QC,QB,QA = 0,0,0,0 QD,QC,QB,QA Stany na wyjściu układu. VCC i GND Zasilanie układu. 4

5 NC Wyjście nieużywane. UCY Całkowity, synchroniczny czterobitowy licznik dwójkowy z wejściem zerującym oraz przepełnieniem Ripple Carry Out. Poza standardowymi funkcjami zliczającymi, układ wyposażony jest w czterobitowe przeniesienie kaskadowe, uruchamiane linią LOAD. W przypadku, gdy na tej linii pojawi się zero, w momencie gdy licznik CLK zostaje wzbudzony do stanu wysokiego, bity A D zostają skopiowane na wyjścia QA QD. Schemat podłączeniowy układu pokazuje Rys.3. (Rys.3) Schemat układu UCY Synchroniczny czterobitowy licznik dwójkowy z wejściem zerującym oraz dwoma liniami zegara CLK1 i CLK2, dzięki którym możliwa jest praca układu w trybie mod16, jak również trybach pochodnych. Poza standardowymi funkcjami zliczającymi, układ wyposażony jest w czterobitowe przeniesienie kaskadowe, uruchamiane linią LOAD. W przypadku, gdy na tej linii pojawi się zero, w momencie gdy licznik CLK zostaje wzbudzony do stanu wysokiego, bity A D zostają skopiowane na wyjścia QA QD. Schemat podłączeniowy układu pokazuje Rys.4. (Rys.4) Schemat układu

6 3. Przebieg ćwiczenia: Ćwiczący ma do dyspozycji następujące układy scalone: 1. UCY UCY UCY UCY Ćwiczący ma wykonać następujące doświadczenie - eksperyment: I. Zbadać działanie liczników wykorzystując odpowiednie układy scalone: 1. PSpice: Zaprojektować schemat badanego układu, wykonać analizę stanów logicznych układu, zapisać otrzymane wyniki: schemat oraz graficzne przedstawienie przebiegów logicznych. 2. Wykonać analogiczne badanie układu na platformie laboratoryjnej. Wyniki: 1. Z PSpice zapisać zrzuty ekranu: (schemat układu, tablicę stanów (przebiegi)) dla układów UCY 7490 i UCY Schemat elektryczny zmontowanego układu, tabelka zaobserwowanych przebiegów rzeczywistych. 3. Cały przebieg ćwiczenia powinien być dobrze udokumentowany przez tabelki, zrzuty, opis słowny. 4. W sprawozdaniu powinien być zamieszczony spis urządzeń i przyrządów pomiarowych wykorzystanych w ćwiczeniu (nazwa, typ, numer, itp.) 5. Uwagi i wnioski zamieszczone w sprawozdaniu powinny być opracowane indywidualnie przez każdego wykonującego ćwiczenie. 6

7 Symulacja w programie Pspice Układ 7490a 4. Wykonanie pomiarów (Rys.5) Schemat podłączeniowy układu 7490a symulacja w PSpice Na wejścia układu podłączono generatory fali prostokątnej DigStim o częstotliwościach: R91 1Hz R92 2Hz R01 4Hz R02 8Hz CKB 16Hz CKA 32Hz Po symulacji: X_U1.R92 X_U1.R91 X_U1.R02 X_U1.R01 X_U1.CKB X_U1.CKA U1:QD U1:QC U1:QB U1:QA 0s 0.2s 0.4s 0.6s 0.8s 1.0s 1.2s 1.4s 1.6s 1.8s 2.0s (Rys.6) Przebieg stanów logicznych z programu PSpice Należy poprawnie zinterpretować działanie tego układu, dlatego konieczne jest zapoznanie się z jego specyfikacją dostępną w katalogach TTL firmy Texas Instruments lub pochodnych producentów. Time 7

8 Układ 7493a (Rys.7) Schemat podłączeniowy układu 7493a symulacja w PSpice Do wejść układu podłączono generatory fali prostokątnej DigStim o częstotliwościach: R01 8Hz R02 4Hz CKB 16Hz CKA 32Hz Symulacja komputerowa dała następujący wynik: X_U1.R02 X_U1.R01 X_U1.CKB X_U1.CKA X_U1.QD X_U1.QC X_U1.QB X_U1.QA 0s 0.2s 0.4s 0.6s 0.8s 1.0s 1.2s 1.4s 1.6s 1.8s 2.0s Time (Rys.8) Przebieg stanów logicznych z programu PSpice Aby zbadać pracę układu liczącego modulo 16 należy połączyć układ wg Rys.9 (Rys.9) Schemat podłączeniowy układu 7493a liczący modulo 16 8

9 Oraz przeprowadzić symulację i otrzymane wyniki zapisać w celu porównania z wynikami uzyskanymi na platformie laboratoryjnej. Układ (Rys.9) Schemat podłączeniowy układu Do wejść układu podłączono generatory fali prostokątnej DigStim o częstotliwościach: CLR 1Hz LOAD 2Hz A 32Hz B 16Hz C 8Hz D 4Hz CLK 64Hz Symulacja komputerowa dała następujący wynik: 1:CLRbar :LOADbar U1:D U1:C U1:B U1:A U1:CLK U1:RCO U1:QD U1:QC U1:QB U1:QA 0s 0.2s 0.4s 0.6s 0.8s 1.0s 1.2s 1.4s 1.6s 1.8s 2.0s Time Uwaga: Dla poprawienia czytelności uzyskanych wyników można jako generator sterujacy CLR użyć generatora DigClock. 9

10 Układ Przykładowe częstotliwości: CLR 1Hz LOAD 2Hz A 32Hz B 16Hz C 8Hz D 4Hz CLK1 64Hz CLK2 128Hz Symulacja komputerowa dała następujący wynik: 1:CLRbar :LOADbar U1:D U1:C U1:B U1:A U1:CLK2 U1:CLK1 U1:QD U1:QC U1:QB U1:QA 0s 0.2s 0.4s 0.6s 0.8s 1.0s 1.2s 1.4s 1.6s 1.8s 2.0s Time Uwaga: Analizując otrzymane przebiegi widać, że układ pracuje gdy CLR ma stan 1. Poprawienie czytelności wyników można uzyskać gdy jako generatora sterującego CLR użyjemy generatora typu - DigClock. 10

11 5. Badanie układu na platformie laboratoryjnej. W katalogu układu 7493 można przeczytać, że jest to licznik modulo16. Na platformie laboratoryjnej zbadamy układ montując zgodnie z poleceniem prowadzącego zajęcia i porównamy wyniki doświadczalne z wynikami symulacji komputerowej. 6. Zadanie dodatkowe 1. Jak połączyć ten układ by pracował w różnych trybach, np. zliczanie co dwa albo tryb modulo Rozbuduj układ obrazowania wykorzystując wyświetlacz 7 - segmentowy. 7. Literatura: [1] Instrukcje do ćwiczeń z PTC M. Siłuszyk, A. Wysokiński UP-H Siedlce 2010 [2]Wstęp do Laboratorium Podstaw Techniki Cyfrowej [3] Sprawozdania z wykonania ćwiczeń z LPTC Piotr Pietruczynik Siedlce 2015 [4] Katalogi: CEMI Texas Instruments 11

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony

Bardziej szczegółowo

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego

Bardziej szczegółowo

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2 tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz

Bardziej szczegółowo

Sprawdzenie poprawności podstawowych bramek logicznych: NOT, NAND, NOR

Sprawdzenie poprawności podstawowych bramek logicznych: NOT, NAND, NOR Laboratorium Podstaw Techniki Cyfrowej dr Marek Siłuszyk mgr Arkadiusz Wysokiński Ćwiczenie 01 PTC Sprawdzenie poprawności podstawowych bramek logicznych: NOT, NAND, NOR opr. tech. Mirosław Maś Uniwersytet

Bardziej szczegółowo

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania. Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

LICZNIKI Liczniki scalone serii 749x

LICZNIKI Liczniki scalone serii 749x LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

U 2 B 1 C 1 =10nF. C 2 =10nF

U 2 B 1 C 1 =10nF. C 2 =10nF Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika

Bardziej szczegółowo

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie

Bardziej szczegółowo

Ćw. 7: Układy sekwencyjne

Ćw. 7: Układy sekwencyjne Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy

Bardziej szczegółowo

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy sekwencyjne 5 grudnia 2013 Wojciech Kucewicz 2 Układy sekwencyjne Układy sekwencyjne to takie układy logiczne, których stan wyjść zależy nie tylko od aktualnego stanu wejść, lecz również

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 6 BADANIE UKŁADÓW SEKWENCYJNYCH A. Cel ćwiczenia. - Poznanie przeznaczenia i zasady działania przerzutnika

Bardziej szczegółowo

Ćwiczenie 27C. Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych

Ćwiczenie 27C. Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych Ćwiczenie 27C Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych Cel ćwiczenia Poznanie budowy i zasad działania oraz właściwości układów synchronicznych, aby zapewnić podstawy

Bardziej szczegółowo

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach

Bardziej szczegółowo

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych .Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić

Bardziej szczegółowo

Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne

Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Ćwiczenie nr 4: Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek Architektura systemów komputerowych Poziom układów logicznych. Układy sekwencyjne Cezary Bolek Katedra Informatyki Plan wykładu Układy sekwencyjne Synchroniczność, asynchroniczność Zatrzaski Przerzutniki

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby

Bardziej szczegółowo

Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i Rys. 9.1.

Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i Rys. 9.1. Ćwiczenie 8 Liczniki zliczające, kody BCD, 8421, 2421 Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i 2421. Wstęp teoretyczny. Przerzutniki

Bardziej szczegółowo

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1 Część 3 Układy sekwencyjne Układy sekwencyjne i układy iteracyjne - grafy stanów 18.11.2017 TCiM Wydział EAIiIB Katedra EiASPE 1 Układ cyfrowy - przypomnienie Podstawowe informacje x 1 x 2 Układ cyfrowy

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych

Bardziej szczegółowo

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania). Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki Politechnika Wrocławska, Wydział PP 1. Cel ćwiczenia Zapoznanie z wybranymi cyfrowymi układami sekwencyjnymi. Poznanie właściwości, zasad działania i sposobów realizacji przerzutników oraz liczników. 2.

Bardziej szczegółowo

Proste układy sekwencyjne

Proste układy sekwencyjne Proste układy sekwencyjne Układy sekwencyjne to takie w których niektóre wejścia są sterowany przez wyjściaukładu( zawierają sprzężenie zwrotne ). Układy sekwencyjne muszą zawierać elementy pamiętające

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Liczniki scalone

Podstawy Techniki Cyfrowej Liczniki scalone Podstawy Techniki Cyfrowej Liczniki scalone Liczniki scalone są budowane zarówno jako asynchroniczne (szeregowe) lub jako synchroniczne (równoległe). W liczniku równoległym sygnał zegarowy jest doprowadzony

Bardziej szczegółowo

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne. Rafał Walkowiak

Podstawowe elementy układów cyfrowych układy sekwencyjne. Rafał Walkowiak Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak 3.12.2015 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące funkcje

Bardziej szczegółowo

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia. Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych

Bardziej szczegółowo

Ćwiczenie D2 Przerzutniki. Wydział Fizyki UW

Ćwiczenie D2 Przerzutniki. Wydział Fizyki UW Wydział Fizyki UW Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (1100-1INZ27) oraz Energetyki i Chemii Jądrowej (1100-1ENFIZELEK2) Ćwiczenie 2 Przerzutniki Streszczenie

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja 0.1 29.10.2013 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące

Bardziej szczegółowo

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów

Bardziej szczegółowo

Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita

Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Układy cyfrowe - bramki logiczne i przerzutniki

Podstawy Elektroniki dla Elektrotechniki. Układy cyfrowe - bramki logiczne i przerzutniki AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Układy cyfrowe - bramki logiczne i przerzutniki Ćwiczenie 6a, 6b Instrukcja do ćwiczeń symulacyjnych (6a) Instrukcja do ćwiczeń sprzętowych

Bardziej szczegółowo

Układy kombinacyjne - przypomnienie

Układy kombinacyjne - przypomnienie SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy kombinacyjne - przypomnienie W układzie kombinacyjnym wyjście zależy tylko od wejść, SWB - Układy sekwencyjne - wiadomości podstawowe

Bardziej szczegółowo

W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres

W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres PROJEKTOWANIE LICZNIKÓW (skrót wiadomości) Autor: Rafał Walkowiak W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres rafal.walkowiak@cs.put.poznan.pl 1. Synchroniczne łączenie liczników

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające

LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające 2 Cyfrowe układy sekwencyjne Cel ćwiczenia LABORATORIUM ELEKTRONIKI Celem ćwiczenia jest zapoznanie się z cyfrowymi elementami pamiętającymi, budową i zasada działania podstawowych przerzutników oraz liczników

Bardziej szczegółowo

LICZNIKI LABORATORIUM. Elektronika AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji

LICZNIKI LABORATORIUM. Elektronika AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI Rev.1.0 1. Wprowadzenie Celem ćwiczenia

Bardziej szczegółowo

Układy sekwencyjne - wiadomości podstawowe - wykład 4

Układy sekwencyjne - wiadomości podstawowe - wykład 4 SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy sekwencyjne - wiadomości podstawowe - wykład 4 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Układy sekwencyjne

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Sekwencyjne bloki funkcjonalne

Sekwencyjne bloki funkcjonalne ekwencyjne bloki funkcjonalne Układy sekwencyjne bloki funkcjonalne 2/28 ejestry - układy do przechowywania informacji, charakteryzujące się róŝnymi metodami jej zapisu lub odczytu a) b) we wy we... we

Bardziej szczegółowo

TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Badanie rejestrów

TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Badanie rejestrów LABORATORIUM TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA Badanie rejestrów Opracował: Tomasz Miłosławski Wymagania, znajomość zagadnień: 1. Typy, parametry, zasada działania i tablice stanów przerzutników

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI PRZERZUTNIKI

LABORATORIUM PODSTAWY ELEKTRONIKI PRZERZUTNIKI LABORATORIUM PODSTAWY ELETRONII PRZERZUTNII el ćwiczenia Zapoznanie się z budową i zasada działania przerzutników synchronicznych jak i asynchronicznych. Poznanie przerzutników asynchronicznych odniesione

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY Cel ćwiczenia Zapoznanie się z budową i zasadą działania rejestrów cyfrowych wykonanych w ramach TTL. Zestawienie przyrządów i połączenie rejestru by otrzymać

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe

Elektronika i techniki mikroprocesorowe Elektronika i techniki mikroprocesorowe Technika cyfrowa ZłoŜone one układy cyfrowe Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 PLAN WYKŁADU idea

Bardziej szczegółowo

Układy czasowo-licznikowe w systemach mikroprocesorowych

Układy czasowo-licznikowe w systemach mikroprocesorowych Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość

Bardziej szczegółowo

2. PRZERZUTNIKI I REJESTRY

2. PRZERZUTNIKI I REJESTRY Technika cyfrowa i mikroprocesorowa w ćwiczeniach laboratoryjnych : praca zbiorowa / pod redakcją Jerzego Jakubca ; autorzy Ryszard Bogacz, Jerzy Roj, Janusz Tokarski. Wyd. 3. Gliwice, 2016 Spis treści

Bardziej szczegółowo

Przerzutniki. Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem

Przerzutniki. Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem 2-3-29 Przerzutniki Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem (dotychczas mówiliśmy o układach logicznych kombinatorycznych - stan wyjść określony jednoznacznie przez

Bardziej szczegółowo

Programowalne układy logiczne

Programowalne układy logiczne Programowalne układy logiczne Układy synchroniczne Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 26 października 2015 Co to jest układ sekwencyjny? W układzie sekwencyjnym,

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Podstawy elektroniki cz. 2 Wykład 2

Podstawy elektroniki cz. 2 Wykład 2 Podstawy elektroniki cz. 2 Wykład 2 Elementarne prawa Trzy elementarne prawa 2 Prawo Ohma Stosunek natężenia prądu płynącego przez przewodnik do napięcia pomiędzy jego końcami jest stały R U I 3 Prawo

Bardziej szczegółowo

Krótkie przypomnienie

Krótkie przypomnienie Krótkie przypomnienie Prawa de Morgana: Kod Gray'a A+ B= Ā B AB= Ā + B Układ kombinacyjne: Tablicy prawdy Symbolu graficznego Równania Boole a NOR Negative-AND w.11, p.1 XOR Układy arytmetyczne Cyfrowe

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje

Bardziej szczegółowo

6. SYNTEZA UKŁADÓW SEKWENCYJNYCH

6. SYNTEZA UKŁADÓW SEKWENCYJNYCH 6. SYNTEZA UKŁADÓW SEKWENCYJNYCH 6.1. CEL ĆWICZENIA Układy sekwencyjne są to układy cyfrowe, których stan jest funkcją nie tylko sygnałów wejściowych, ale również historii układu. Wynika z tego, że struktura

Bardziej szczegółowo

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi.

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi. 72 WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. ą najprostszymi układami pamięciowymi. PZEZUTNIK WY zapamietanie skasowanie Przerzutmik zapamiętuje zmianę

Bardziej szczegółowo

PODSTAWY TEORII UKŁADÓW CYFROWYCH

PODSTAWY TEORII UKŁADÓW CYFROWYCH PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY KODUJĄCE Kodery Kodery Kodery służą do przedstawienia informacji z tylko jednego aktywnego wejścia na postać binarną. Ponieważ istnieje fizyczna możliwość jednoczesnej

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TZ1A

Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TZ1A Politechnika iałostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: EHNIK YFOW 2 Z1400 028 Ćwiczenie Nr 5 LIZNIKI WÓKOWE I ZIESIĘNE Opracował:

Bardziej szczegółowo

Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel

Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel Ćwiczenie 6 Przerzutniki bistabilne (Flip-Flop) Cel Poznanie zasady działania i charakterystycznych właściwości różnych typów przerzutników bistabilnych. Wstęp teoretyczny. Przerzutniki Flip-flop (FF),

Bardziej szczegółowo

LABORATORIUM TECHNIKA CYFROWA BRAMKI. Rev.1.0

LABORATORIUM TECHNIKA CYFROWA BRAMKI. Rev.1.0 LABORATORIUM TECHNIKA CYFROWA BRAMKI Rev..0 LABORATORIUM TECHNIKI CYFROWEJ: Bramki. CEL ĆWICZENIA - praktyczna weryfikacja wiedzy teoretycznej z zakresu działania bramek, - pomiary parametrów bramek..

Bardziej szczegółowo

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01 ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW e-version: dr inż. Tomasz apłon INTYTUT YBENETYI TEHNIZNE PLITEHNII WŁAWIE ZAŁA ZTUZNE INTELIGENI I AUTMATÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 23 temat: UŁAY EWENYNE. EL ĆWIZENIA

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 18 BADANIE UKŁADÓW CZASOWYCH A. Cel ćwiczenia. - Zapoznanie z działaniem i przeznaczeniem przerzutników

Bardziej szczegółowo

Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2

Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2 Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2 TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL

Bardziej szczegółowo

Bramki TTL i CMOS 7400, 74S00, 74HC00, 74HCT00, 7403, 74132

Bramki TTL i CMOS 7400, 74S00, 74HC00, 74HCT00, 7403, 74132 Skład zespołu: 1. 2. 3. 4. KTEDR ELEKTRONIKI G Wydział EIiE LBORTORIUM TECNIKI CYFROWEJ Data wykonania: Suma punktów: Grupa Ocena 1 Bramki TTL i CMOS 7400, 74S00, 74C00, 74CT00, 7403, 74132 I. Konspekt

Bardziej szczegółowo

Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1

Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1 Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI CYFROWEJ I MIKROPROCESOROWEJ EIP KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA

Bardziej szczegółowo

Instrukcja nr 9. Zegarek cyfrowy. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 9.1

Instrukcja nr 9. Zegarek cyfrowy. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 9.1 Instrukcja nr 9 Zegarek cyfrowy Lab 9. Przed laboratorium Cel ćwiczenia Celem ćwiczenia jest zbudowanie i uruchomienie zegarka z dekoderem 7- segmentowym na platformie ElVIS. Zegar składa się z trzech

Bardziej szczegółowo

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia Opracował: mgr inż. Antoni terna ATEDA INFOMATYI TEHNIZNE Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 203 Temat: Układy sekwencyjne 1. el ćwiczenia elem ćwiczenia jest zapoznanie się z

Bardziej szczegółowo

LABORATORIUM TECHNIKA CYFROWA LICZNIKI I REJESTRY. Rev.1.1

LABORATORIUM TECHNIKA CYFROWA LICZNIKI I REJESTRY. Rev.1.1 LABORATORIUM TECHNIKA CYFROWA LICZNIKI I REJESTRY Rev.1.1 1. Cel ćwiczenia Praktyczna weryfikacja wiedzy teoretycznej z zakresu projektowania układów kombinacyjnych oraz arytmetycznych 2. Projekty Przy

Bardziej szczegółowo

Badanie właściwości multipleksera analogowego

Badanie właściwości multipleksera analogowego Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Cyfrowe układy scalone c.d. funkcje

Cyfrowe układy scalone c.d. funkcje Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe

Bardziej szczegółowo

5/11/2011. Układy CMOS. Bramki logiczne o specjalnych cechach. τ ~ R*C

5/11/2011. Układy CMOS. Bramki logiczne o specjalnych cechach. τ ~ R*C 5//2 yfrowe układy scalone 2 PA 2 Bramki logiczne o specjalnych cechach U WY Bramka chmitta (7432): niestandardowa bramka cyfrowa charakterystyka zawiera pętlę histerezy H Zastosowania: L.9 V.7 V U wprowadzanie

Bardziej szczegółowo

ćw. Symulacja układów cyfrowych Data wykonania: Data oddania: Program SPICE - Symulacja działania układów liczników 7490 i 7493

ćw. Symulacja układów cyfrowych Data wykonania: Data oddania: Program SPICE - Symulacja działania układów liczników 7490 i 7493 Laboratorium Komputerowe Wspomaganie Projektowania Układów Elektronicznych Jarosław Gliwiński, Paweł Urbanek 1. Cel ćwiczenia ćw. Symulacja układów cyfrowych Data wykonania: 16.05.08 Data oddania: 30.05.08

Bardziej szczegółowo

Parametryzacja przetworników analogowocyfrowych

Parametryzacja przetworników analogowocyfrowych Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),

Bardziej szczegółowo

Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015

Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów. Rafał Walkowiak Wersja /2015 Podstawowe moduły układów cyfrowych układy sekwencyjne cz.2 Projektowanie automatów synchronicznych Rafał Walkowiak Wersja.2 24/25 UK Funkcje wzbudzeń UK Funkcje wzbudzeń Pamieć Pamieć UK Funkcje wyjściowe

Bardziej szczegółowo

Przetworniki AC i CA

Przetworniki AC i CA KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników

Bardziej szczegółowo

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Magistrale W układzie bank rejestrów do przechowywania danych. Wybór źródła danych

Bardziej szczegółowo

Odbiór i dekodowanie znaków ASCII za pomocą makiety cyfrowej. Znaki wysyłane przez komputer za pośrednictwem łącza RS-232.

Odbiór i dekodowanie znaków ASCII za pomocą makiety cyfrowej. Znaki wysyłane przez komputer za pośrednictwem łącza RS-232. Odbiór i dekodowanie znaków ASCII za pomocą makiety cyfrowej. Znaki wysyłane przez komputer za pośrednictwem łącza RS-232. Opracowanie: Andrzej Grodzki Do wysyłania znaków ASCII zastosujemy dostępny w

Bardziej szczegółowo

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium.

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Zagadnienia do samodzielnego opracowania: rola sygnału taktującego (zegara) w układach synchronicznych; co robi sygnał CLEAR (w

Bardziej szczegółowo

C-2. Przerzutniki JK-MS w technologii TTL i ich zastosowania

C-2. Przerzutniki JK-MS w technologii TTL i ich zastosowania C-2. Przerzutniki -MS w technologii TTL i ich zastosowania Przedmiotem ćwiczenia są moduły scalone SN7472 oraz SN7473, należące do układów cyfrowych o małym stopniu scalenia (SSI - Small Scale Integration),

Bardziej szczegółowo

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. PTC 2015/2016 Magistrale W układzie cyfrowym występuje bank rejestrów do przechowywania

Bardziej szczegółowo

Technika Cyfrowa. Badanie pamięci

Technika Cyfrowa. Badanie pamięci LABORATORIUM Technika Cyfrowa Badanie pamięci Opracował: mgr inż. Andrzej Biedka CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się studentów z budową i zasadą działania scalonych liczników asynchronicznych

Bardziej szczegółowo

LICZNIKI. Liczniki asynchroniczne.

LICZNIKI. Liczniki asynchroniczne. LICZNIKI Liczniki asynchroniczne. Liczniki buduje się z przerzutników. Najprostszym licznikiem jest tzw. dwójka licząca. Łatwo ją otrzymać z przerzutnika D albo z przerzutnika JK. Na rys.1a został pokazany

Bardziej szczegółowo

Podział układów cyfrowych. rkijanka

Podział układów cyfrowych. rkijanka Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych

Bardziej szczegółowo

P.Rz. K.P.E. Laboratorium Elektroniki 2FD 2003/11/06 LICZNIKI CYFROWE

P.Rz. K.P.E. Laboratorium Elektroniki 2FD 2003/11/06 LICZNIKI CYFROWE P.Rz. K.P.E. Laboratorium Elektroniki 2F 2003/11/06 LIZNIKI YFROWE 1. WSTĘP elem ćwiczenia zilustrowanie zasad pracy wybranych realizacji układowych liczników oraz scalonych programowanych układów liczników.

Bardziej szczegółowo

Ćwiczenie Technika Mikroprocesorowa komputery 001 Układy sekwencyjne cz. 1

Ćwiczenie Technika Mikroprocesorowa komputery 001 Układy sekwencyjne cz. 1 Ćwiczenie Technika Mikroprocesorowa komputery 001 Układy sekwencyjne cz. 1 TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA

Bardziej szczegółowo

Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.

Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Program ćwiczenia: 1. Pomiar częstotliwości z wykorzystaniem licznika 2. Pomiar okresu z wykorzystaniem licznika 3. Obserwacja działania pętli synchronizacji

Bardziej szczegółowo