ISTOTA ABLACYJNEGO CZYSZCZENIA LASEROWEGO MATERIAŁÓW
|
|
- Antonina Szczepaniak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Tadeusz BURAKOWSKI Jan MARCZAK Wojciech NAPADŁEK ISTOTA ABLACYJNEGO CZYSZCZENIA LASEROWEGO MATERIAŁÓW STRESZCZENIE Na podstawie literatury i prac własnych przedstawiono przegląd stanu wiedzy dotyczący istoty ablacyjnego czyszczenia laserowego warstw powierzchniowych różnych materiałów konstrukcyjnych posiadających nawarstwienia powstałe w procesach fizycznych oraz technologicznych. Opisano zjawisko oraz mechanizmy występujące w procesie ablacyjnego oczyszczania laserowego. Przedstawiono stosowane technologie oraz oprzyrządowanie niezbędne do realizacji ww. technologii, mającej bardzo szerokie zastosowanie w Inżynierii Powierzchni (m.in. dla materiałów konstrukcyjnych, kompozytów, powłok, nawarstwień itp.). Słowa kluczowe: Laser impulsowy Nd: YAG z Q modulacją, warstwa powierzchniowa, czyszczenie laserowe, topografia powierzchni Prof. dr hab. inż. Tadeusz BURAKOWSKI wach@imp.edu.pl Instytut Mechaniki Precyzyjnej ul. Duchnicka 3, Warszawa, dr hab. inż. Jan MARCZAK prof. WAT jmarczak@wat.edu.pl WAT - Instytut Optoelektroniki dr inż. Wojciech NAPADŁEK wnapadlek@wat.edu.pl WAT - Wydział Mechaniczny Wojskowa Akademia Techniczna ul. Kaliskiego 2, Warszawa PRACE INSTYTUTU ELEKTROTECHNIKI, zeszyt 228, 2006
2 126 T. Burakowski, J. Marczak, W. Napadłek 1. WSTĘP Problem czystości powierzchni jest bardzo istotny, zwłaszcza we współczesnym przemyśle półprzewodników i obwodów o najwyższym stopniu integracji, w przemyśle optycznym, a także w przemysłowych procesach technologicznych kształtujących technologiczną warstwę wierzchnią w różnych elementach (np. elektroniki, telekomunikacji, medycyny, galwanotechniki, techniki motoryzacyjnej, lotnictwie i innych). Właściwe przygotowanie technologiczne powierzchni różnych materiałów (metalowych, kompozytowych, ceramicznych itp.), a szczególnie w zakresie ich czystości, ma decydujący wpływ na uzyskanie wymaganej przyczepności wytwarzanych powłok (np. galwanicznych, metalizowanych, napylanych, wytwarzanych technikami PVD itp.). Wśród stosowanych metod wiele z nich powoduje uboczne skutki ekologiczne (metody chemiczne, piaskowanie itp.) powodując zanieczyszczenie i skażenie środowiska. Na szczęście opracowano szereg nowoczesnych metod i technologii, wykorzystujących w procesie czyszczenia np. wiązkę elektronów czy promieniowanie laserowe (ultrafioletowe, widzialne i podczerwone), które umożliwiają czyszczenie nawet najdelikatniejszych powierzchni różnego rodzaju z ogromną precyzją i przywracają je do stanu pierwotnego, a nawet idealnego, bez uszkodzeń. Idea selektywnego usuwania z powierzchni optycznie absorbującej substancji np. wtórnego nawarstwienia, za pomocą promieniowania laserowego jest znana od wielu lat. Zademonstrował ją w 1965r. Arthur Schawlow, jeden z twórców lasera, odparowując selektywnie absorbujące czarne pigmenty tuszu drukarskiego z silnie odbijającej białej kartki papieru [14]. W trakcie prowadzonych od lat siedemdziesiątych badań oddziaływania promieniowania laserowego z materią zaobserwowano zjawisko zwane dzisiaj ablacją laserową [1-7,13,14]. Tradycyjne metody czyszczenia wykorzystujące np. wodę pod wysokim ciśnieniem z dodatkiem różnego rodzaju ścierniw czy kompresy chemiczne ze szczotkowaniem, usuwają nawarstwienia w sposób mechaniczny. Konkurencyjnymi metodami stosowanymi często w procesach produkcyjnych jest usuwanie zanieczyszczeń metodami chemicznymi (np. wytrawianie) oraz za pomocą ultradźwięków. W celu oczyszczenia z dużą precyzją niewielkich powierzchni zabytkowych przedmiotów, elementów elektroniki, elementów maszyn wykonanych z różnych materiałów konstrukcyjnych, wykorzystanie promieniowania laserowego staje się niezastąpione, a w niektórych przypadkach jedynie skuteczne.
3 Istota ablacyjnego czyszczenia laserowego materiałów ABLACJA LASEROWA Pod tym pojęciem rozumie się odparowanie warstwy wierzchniej różnego rodzaju materiałów: metali, ceramik, tworzyw sztucznych i innych. Proces ablacji występuje w trakcie trwania impulsu laserowego, występuje oddziaływanie promieniowania laserowego (pochłanianie i rozpraszanie) z wyrzucaniem materiału (w postaci pary i cieczy). W wyniku napromienienia powierzchni materiałów za pomocą impulsu promieniowania laserowego o odpowiedniej gęstości energii w czasie (gęstości mocy), zachodzą takie zjawiska jak: absorpcja promieniowania, zjawiska cieplne lub fotochemiczne. Pożądany jest mały współczynnik odbicia promieniowania, a odpowiednio duże wzbudzenie powierzchni wymaga wiązek laserowych o dużych natężeniach i małej głębokości absorpcji promieniowania laserowego (rys. 1). Proces ablacji materiału podzielić można na kilka etapów: zdeponowana energia (w objętości) osiąga wartość progową procesu ablacji; odparowanie warstwy wierzchniej materiału może zachodzić na drodze termicznej (pirolitycznej) lub fotolitycznej (dla promieniowania z obszaru nadfioletu); powstały obłok plazmy składa się z: fragmentów cząsteczek materiału elektronów/jonów oraz produktów reakcji; obłok plazmy powoduje pochłanianie i rozproszenie padającego impulsu promieniowania laserowego; wygenerowana fala dźwiękowa (w głąb materiału) po odbiciu od granicy faz może powodować zwiększenie produktów reakcji. Grubość odparowanej warstwy wierzchniej (głębokość ablacji) zależy od: parametrów materiału: optycznych głębokości absorpcji promieniowania lasera; termicznych współczynnika przewodzenia ciepła, współczynnika dyfuzji temperatury i ciepła parowania; parametrów wiązki laserowej: długości fali promieniowania lasera (występuje silna zależność współczynnika absorpcji materiału od długości fali), gęstości energii i czasu trwania impulsu laserowego. Dla odpowiednich zastosowań warstwy wierzchniej materiału powinny być znane parametry: materiału: współczynnik przewodzenia ciepła, ciepło właściwe, moduł sprężystości, granica plastyczności, współczynnik rozszerzalności cieplnej, zależność temperatury topnienia od ciśnienia, współczynnik absorpcji (odbicia) promieniowania lasera i wiele innych;
4 128 T. Burakowski, J. Marczak, W. Napadłek lasera: długość fali promieniowania laserowego, moc (w impulsie lub średnia związana z częstotliwością repetycji impulsów), kąt rozbieżności wiązki laserowej oraz czas trwania impulsu, rozkład gęstości energii w przekroju poprzecznym wiązki laserowej; geometrii oświetlenia obrabianego materiału (wymiary plamki laserowej); metody obróbki, otaczającego ośrodka: atmosfera gazu obojętnego (np. hel), reaktywnego (np. azot pod zadanym ciśnieniem) lub w próżni. a) b) WIĄZKA LASEROWA WIĄZKA LASEROWA UKŁAD OPTYCZNY OGNISKUJĄCY GŁĘBOKOŚĆ ABSORPCJI IMPULS AKUSTYCZNY W POWIETRZU ABLACJA POWIERZCHNI MATERIAŁU PRZEZIERNY OBŁOK GAZU PROMIENIOWANIE ODBITE NIEPRZEZIERNY OBŁOK GAZU STREFA WPŁYWU CIEPŁA δ CIAŁO STAŁE GENERACJA FALI UDERZENIOWEJ I DŹWIĘKOWEJ c) d) Rys. 1. Oddziaływanie impulsowego promieniowania laserowego z materią w pewnym momencie czasu t oraz po zakończeniu impulsu: a) dla gęstości mocy q W/cm 2 ; b) dla gęstości mocy q W/cm 2, c, d) efekty końcowe umocnienia udarowego (LSP) wariant ze schematu przedstawionego na rys. b dla stopu aluminium PA31 obciążonego jednym impulsem (c) oraz dwoma impulsami laserowymi (d)
5 Istota ablacyjnego czyszczenia laserowego materiałów ISTOTA LASEROWEGO OCZYSZCZANIA POWIERZCHNI W procesie odrywania cząstek za pomocą strumienia fotonów, tzw. fotoodrywania, brane są pod uwagę trzy zasadnicze siły, które powodują przyczepianie cząsteczki do powierzchni; siła van der Waalsa, siła kapilarna (wywołana siłami cząsteczek) oraz siła elektrostatyczna. Siła van der Waalsa jest siłą oddziaływań międzycząsteczkowych. Przy zmniejszaniu odległości pojawiają się gwałtownie rosnące siły odpychania, jeśli natomiast odległość ta nieco wzrośnie pojawiają się z kolei siły przyciągania cząsteczki do podłoża. Do pokonania stosunkowo dużych sił przylegania cząsteczek do podłoża bez uszkodzenia powierzchni można zastosować czyszczenie wiązką laserową z wykorzystaniem reakcji fotomechanicznej [1-11]. W wyniku intensywnej absorpcji promieniowania laserowego w warstwie przypowierzchniowej (tlenki, korozja, patyna, tłuszcze, oleje, farby lakiery i inne organiczne i nieorganiczne składniki) pojawia się jako jej skutek silny i gwałtowny wzrost temperatury. Powstaje plazma, od której w wyniku konwekcji i elektronowego przewodnictwa cieplnego następuje transport energii do wnętrza materiału, gdzie promieniowanie laserowe już nie dociera. Powstaje granica zwana frontem ablacji, na której występują silne gradienty gęstości i temperatury plazmy. Front ablacji oddziela więc dwa obszary, w których kierunki ruchu materii są przeciwne. Z obszaru bliższego zewnętrznej powierzchni następuje ucieczka nagrzanego materiału w kierunku prostopadłym do oświetlanej powierzchni. W obszarze drugim ruch materii jest skierowany w głąb podłoża. Występuje tu wąski obszar słabo tylko podgrzanej materii, zagęszczonej przez falę uderzeniową, propagującą się w wyniku prawa zachowania pędu jako reakcja układu na bardzo szybkie odparowanie materii z powierzchni. Jeśli zanieczyszczająca warstwa jest bardzo cienka, fala uderzeniowa po odbiciu się od powierzchni podłoża warstwy granicznej (międzyfazowej) zmienia kierunek propagacji, zwielokrotniając efekt wyrzucania zanieczyszczających cząsteczek. W przypadku gdy usuwana warstwa jest gruba, wystąpi przejście fali uderzeniowej w falę dźwiękową powodującą drgania litego podłoża w miejscu oświetlanym i zwielokrotnienie efektu czyszczenia. Po usunięciu narosłej warstwy, oryginalna powierzchnia jest chroniona automatycznie przed wszelkimi dalszymi uszkodzeniami, ponieważ nie istnieje już granica ośrodków faz: fala uderzeniowa już się nie odbija, lecz jest pochłaniana przez podłoże. Głębokość frontu ablacji zależy przede wszystkim od długości fali promieniowania laserowego i waha się od 0,3 do 1 mikrometra. Oznacza to, że jesteśmy w stanie w sposób kontrolowany zdejmować jedną warstwę po drugiej. Oczywiście,
6 130 T. Burakowski, J. Marczak, W. Napadłek proces ten zachodzi pod warunkiem odpowiedniego doboru parametrów promieniowania laserowego. Interesujące jest to, że jesteśmy w stanie w sposób płynny regulować parametrami wiązki laserowej, tzn. czasem trwania impulsu, szczytową gęstością mocy i częstotliwością repetycji impulsów. Dostarczona moc powinna być na tyle duża, aby w sposób natychmiastowy gwałtowny wytworzyć szybki przepływ ciepła do cząstki lub materiału podłoża, który jest wymagany do eksplozyjnego odparowania cząstek lub cienkich warstw, i na tyle niska, aby nie przekroczyć progu uszkodzenia powierzchni samego podłoża. Oczyszczanie powierzchni z zalegających na niej cząsteczek, nawarstwień obcych może zachodzić w środowisku mokrym lub suchym Czyszczenie suche Przy czyszczeniu suchym można wyróżnić dwa skrajne przypadki. W pierwszym dobiera się długość fali silnie absorbowaną tylko przez podłoże (rys. 2a). W drugim, promieniowanie laserowe jest silnie absorbowane jedynie przez cząsteczkę. Oba przypadki zilustrowano na rys. 2. W pierwszym przypadku zjawisko odrywania cząsteczki wyjaśnia się gwałtownym wzrostem grubości podłoża spowodowanym jego termicznym rozszerzeniem w wyniku absorpcji padającego promieniowania (zmiana środka masy). Pomimo iż przyrost grubości podłoża może być bardzo mały, poniżej mikrometra, to zachodzi on tak szybko, że odpowiadające mu przyśpieszenie może osiągnąć wartość nawet rzędu 10 7 g. Ogromne przyspieszenie prowadzące do usuwania cząsteczek z powierzchni można również uzyskać w przypadku silnej absorpcji promieniowania przez samą cząsteczkę (rys. 2b). a) SILNA ABSORPCJA PODŁOŻA IMPULS PROMIENIOWANIA LASEROWEGO b) SILNA ABSORPCJA CZĄSTECZKI IMPULS PROMIENIOWANIA LASEROWEGO a CZĄSTECZKA DRGANIA PODŁOŻA a CZĄSTECZKA DRGANIA CZĄSTECZKI PODŁOŻE PODŁOŻE Rys.2. Ilustracja ekstremalnych przypadków usuwania na sucho mikrocząsteczek z podłoży.
7 Istota ablacyjnego czyszczenia laserowego materiałów Czyszczenie mokre Czyszczenie laserem może być również wydajne w wyniku wprowadzenia cieniutkiej warstewki cieczy, którą rozprowadza się na zabrudzonej powierzchni tuż przed przybyciem impulsu promieniowania laserowego. W szczególności tą cienką warstewką może być warstewka wody lub roztworu wodnego z innymi cieczami organicznymi lub nieorganicznymi. Szybka ablacja warstewki cieczy powoduje wytworzenie ogromnych krótkotrwałych sił, które pokonują siły adhezji na granicy cząsteczka-podłoże, powodując odrywanie cząsteczki. Ablacja cienkiej warstewki cieczy może być spowodowana selektywnym grzaniem przez promieniowanie laserowe, np. grzanie tylko podłoża, grzanie tylko cienkiej warstewki cieczy, oraz grzanie mieszane zarówno cząsteczki jak i warstewki cieczy. Jedną z tych metod zilustrowano na rys. 3. Metodę tę opracowano i rozwinięto ze względu na najwyższą sprawność czyszczenia laserem różnych zanieczyszczeń i podłoży. WARSTEWKA CIECZY IMPULS PROMIENIOWANIA LASEROWEGO λ = 0,248 μm WRZENIE NA GRANICY ROZDZIAŁU FAZ PODŁOŻE Rys.3. Ilustracja ekstremalnych przypadków laserowego czyszczenia powierzchni na mokro - silna absorpcja podłoża Usuwanie cząsteczek falą uderzeniową W nanotechnologii i przemyśle elektronicznym o wysokim stopniu integracji wykorzystuje się również fale uderzeniowe wytwarzane w otaczającym gazie (np. argon, azot) tuż nad oczyszczaną powierzchnią. W bliskiej odległości od powierzchni podłoża ogniskuje się promieniowanie laserowe w taki sposób, by nie przekroczyć gęstości mocy W/cm 2. W ognisku soczewki skupiającej
8 132 T. Burakowski, J. Marczak, W. Napadłek następuje nagrzewanie i jonizacja gazu, powstaje plazma o wysokiej temperaturze i ciśnieniu. W skrócie nazywa się to zjawisko iskrą laserową. Ekspandująca plazma wytwarza falę uderzeniową, na froncie której występuje silny skok ciśnienia zdmuchujący mikrocząsteczki z podłoża [1,10-12]. Pomiary własne wizualizacji i detekcji ruchu fali uderzeniowej w powietrzu (rozlotu iskry laserowej) za pomocą kamery stroboskopowo-różniczkowej rejestrującej wykazały ponad 10 8 położeń frontu fali uderzeniowej na sekundę [5]. Do pomiaru prędkości rozlotu plazmy za pomocą optycznej kamery stroboskopowo-różniczkowej wykorzystano diagnostyczne impulsy laserowe o czasach trwania około ps, w odstępach czasu, co ΔT ~ 8 ns. Na podstawie pomiarów oszacowana prędkość fali uderzeniowej w powietrzu wyniosła powyżej 10 7 cm/s [7]. 4. PODSUMOWANIE Istnieje wiele technologii usuwania i czyszczenia powierzchni, ale niewiele z nich spełnia wymogi ekonomiczne i ochrony środowiska. Laserowa obróbka powierzchni spełnia lub przewyższa wymagania stawiane przez elektronikę, przemysł nuklearny, kosmiczny i inżynierię lądową. Trzy typy najczęściej używanych laserów oferują charakterystyczne dla siebie zalety w postaci średnich mocy, pracy impulsowej, długości fali, zdolności do sprzężenia z materiałem obiektu i dostarczania światłowodem. Elementy elektroniczne mogą być bardzo skutecznie oczyszczane przy wykorzystaniu systemów usuwania cząstek za pomocą laserów. Systemy takie mogą pracować w otoczeniu mokrym i suchym i pracują optymalnie gdy na powierzchni przepływa ciecz usuwająca zanieczyszczenia. Cząstki zanieczyszczeń są najczęściej związane z powierzchnią siłami kowalencyjnymi, elektrostatycznymi, jonowymi lub Van der Waalsa. Do usunięcia ściśle przylegających warstw wymagana jest ablacja laserowa. Ablację osiąga się poprzez szok termiczny, topnienie i odparowanie. Usunąć można warstwy farby, tlenków, cienkie warstwy podkładu i inne warstwy organiczne/nieorganiczne. Najważniejsze jest pełne rozpoznanie oddziaływań lasera z materiałem w opracowaniu prawidłowych parametrów procesu. Pomocą w określeniu jakie zjawisko przeważa (obróbka cieplna, topienie, odparowanie) jest znajomość absorpcji energii, transferu ciepła i współczynnika odbicia.
9 Istota ablacyjnego czyszczenia laserowego materiałów 133 LITERATURA 1. Anisimov S.I, Luk yanchuk B.S.: Selected problems of laser ablation theory, Uspekhi Fizičeskich Nauk, 172, No.3 (2002) Анисимов С.И, Имас Я.А. Романов Г.С, Хоъыко Ю.В.: Действие изучения ъолшой мощности на мееталлы, М Наука, Москва, J.F. Asmus, Interdisciplinary Science Review, Vol.12(No.2), 1987, pp Basov N.G., Krokhin O.N.: Zh. Eksp. and Teor. Fiz., Vol.46, p.171 (1964). 5. Chłodziński J., Dubik A., Kaliski S., Marczak J., Niedzielski W., Owsik J. (1977): Picosecond Diagnostics of Rapidly Changing Process, Bulletin De L Academie Polonaise Des Sciences - Seri des Sciences Techniques, Vol.XXV, No.8, p Marczak J.: Odnawianie dzieł sztuki za pomocą promieniowania laserowego, Przegląd Mechaniczny, z /97, str Marczak J.: Analiza i usuwanie nawarstwień obcych z różnych materiałów metodą ablacji laserowej, ISBN: (20040). 8. Marczak J., Wykorzystanie promieniowania laserowego w renowacji dzieł sztuki i obiektów zabytkowych w architekturze, Zeszyty Naukowe Instytutu Maszyn Przepływowych PAN w Gdańsku, Lasery i nowe techniki w konserwacji obiektów zabytkowych `2002, Vol. 524/1483/2002, str (2002). 9. Marczak J. (2001b), Surface Cleaning of Art Work by UV, VIS and IR Pulse Laser Radiation, Proceedings SPIE, Vol. 4402, Laser Techniques and Systems in Art Conservations, pp Marczak J., Jach K., Sarzyński A. (2003c), Numerical Modeling of Laser-Matter Interaction, SPIE Vol pp Marczak J., Napadłek W., Sarzyński A.: Modyfikacja właściwości warstwy wierzchniej aluminium za pomocą laserowej fali uderzeniowej. Inżynieria Materiałowa nr 5(147), str , Katowice Napadłek W., Marczak J., Sarzyński A., Burakowski T.: Teoretyczne i eksperymentalne badania umacnianaia stopu aluminium PA31 falą uderzeniową generowaną impulsem laserowym. Praca zbiorowa pod redakcją Włodzimierza Przybylskiego pt.: Współczesne problemy w technologii obróbki przez nagniatanie, s , Gdańsk Ready J.F.: Mechanism of. Electron Emussion Produced by a Giant Pulsa Laser. Phys. Rev 137, A620, Schawlow A.L. (1965), Lasers, Science, Vol. 149, pp Rękopis dostarczono, dnia r.
10 134 T. Burakowski, J. Marczak, W. Napadłek THE POINT FOR CLEANING OF MATERIALS USING LASER ABLATION T. BURAKOWSKI, J. MARCZAK W. NAPADŁEK ABSTRACT A review of material surface cleaning of various constructional materials using laser ablation method is presented. A review is based on literature data and authors works and deals with materials covered with layers produced both by physical and technological processes. Phenomena and mechanisms occuring in a process of laser ablation cleaning are described. Applied technologies and instrumentation used in surface engineering for structural materials, composites, and layers processing are described. Prof. dr hab. inż. Tadeusz Burakowski. Zainteresowania naukowe prof. T. Burakowskiego chronologicznie dotyczą: techniki rakietowej, podczerwieni, termometrii i termokinetyki, urządzeń grzejnych, energochłonności obróbki cieplnej, inżynierii materiałowej i inżynierii powierzchni. Ostatnie 20 lat poświęcił Profesor inżynierii powierzchni, w której to dziedzinie najpełniej uwidoczniły się jego przemyślenia, badania i możliwości. Jest uznawany za ojca polskiej inżynierii powierzchni. Założyciel (w 1991 r.) i przewodniczący (do dziś) Międzysekcyjnego Zespołu Inżynierii Powierzchni Komitetu Budowy Maszyn PAN. Łączny dorobek Profesora obejmuje ok. 600 pozycji (ok. 170 autorskich), w tym 6 monografii (w 6 językach, m.in. polskim, chińskim, rosyjskim, angielskim), 21 podręczników i książek, 148 artykułów naukowych (42 za granicą), ok. 200 artykułów technicznych, 180 wygłoszonych referatów (63 za granicą) i 31 patentów. W ostatnich latach wiele uwagi poświęca nowoczesnym technologiom laserowym mającym zastosowanie w inżynierii powierzchni (m.in. mikroobróbce laserowej w zakresie czyszczenia oraz umacniania warstwy wierzchniej materiałów z wykorzystaniem fal uderzeniowych generowanych impulsem laserowym). Kilkadziesiąt prac jego współautorstwa znalazło zastosowanie przemysłowe, w tym kilka konstrukcji urządzeń i aparatury pomiarowej. W 1985 r. Uzyskał zespołową nagrodę Mistrza Techniki NOT. Jest członkiem trzech Rad Programowych czasopism PAN. Jest redaktorem działowym w dwóch czasopismach naukowo technicznych. Członek wielu sekcji naukowych w kraju i za granicą.
11 Istota ablacyjnego czyszczenia laserowego materiałów 135 Dr hab. inż. Jan Marczak, prof. WAT otrzymał stopień naukowy mgr inż. w 1973 r. w dziedzinie fizyki i elektroniki półprzewodnikowej w Wojskowej Akademii Technicznej (WAT). W 1988 r. otrzymał w WAT stopień doktora nauk w dziedzinie elektroniki kwantowej. W 2005 r. habilitował się w WAT w dziedzinie materiałoznawstwa. Jest specjalistą w dziedzinie telemetrii laserowej oraz interakcji między promieniowaniem laserowym a materią. W Instytucie Optoelektroniki WAT jest on kierownikiem Laboratorium Zastosowań Laserowych na Wydziale Technologii Laserowych. Opracował następujące zaawansowane technologie: technologia laserowej ablacji do czyszczenia dzieł sztuki (różne podłoża), technologia powierzchniowego laserowego, udarowego utwardzania metali. Prof. Marczak koordynuje lub bierze udział w kilku międzynarodowych projektach w ramach inicjatywy EUREKA, programu COST i dwustronnych badawczo-rozwojowych projektach we współpracy z Hannover Laser Centre (Niemcy) oraz Pannon Laser Research Centre (Pecs, Węgry). Jest on mianowanym członkiem międzynarodowego zespołu ekspertów w dziedzinie laserów (European Network EULASNET) i członkiem zespołu Polish Laser Network POLLASNET, który odpowiada za technologię laserową i za zastosowanie laserów. Był on członkiem COST G7 Action (Zaawansowana Technologia Laserowa do Renowacji Dzieł Sztuki i Metody Konserwacji stosujące Technologie Laserowe). Jest również członkiem zespołów, które otrzymały nagrody Ministra Edukacji, Nauki i Technologii, Rektora WAT oraz Dyrektora Instytutu Laserowej Fizyki Plazmy i Mikrofuzjii. Dr inż. Wojciech Napadłek. Jest autorem lub współautorem kilkudziesięciu publikacji naukowych z dziedziny budowy maszyn, a w szczególności pojazdów mechanicznych. Specjalizuje się w inżynierii produkcji oraz technologii napraw pojazdów mechanicznych. Szczególne zainteresowania naukowe to inżynieria powierzchni wykorzystująca nowoczesne technologie wiązkowe (laserowe i plazmowe), zarówno w skali makro-, mikro oraz nanotechnologii. Jest współtwórcą kilku wdrożeń przemysłowych z tej dziedziny. Bierze udział w wielu projektach badawczych i celowych. Obecnie zajmuje się oddziaływaniem promieniowania laserowego z materią w zakresie spawania, napawania, czyszczenia laserowego oraz umacniania warstwy wierzchniej materiałów z wykorzystaniem fal uderzeniowych generowanych impulsem laserowym.
TECHNOLOGICZNE MOŻLIWOŚCI ZASTOSOWANIA ABLACYJNEGO OCZYSZCZANIA LASEROWEGO MATERIAŁÓW
Tadeusz URKOWSKI Jan KUICKI Jan MRCZK Wojciech NPDŁEK TECHNOLOGICZNE MOŻLIWOŚCI ZSTOSOWNI LCYJNEGO OCZYSZCZNI LSEROWEGO MTERIŁÓW STRESZCZENIE W pracy przedstawiono wybrane przykłady zastosowań technologicznych
PRÓBY ABLACYJNEGO OCZYSZCZANIA LASEROWEGO ELEMENTÓW SILNIKA TURBINOWEGO SAMOLOTU *)
Wojciech NPDŁEK PRÓY LCYJNEGO OCZYSZCZNI LSEROWEGO ELEMENTÓW SILNIK TURINOWEGO SMOLOTU *) STRESZCZENIE W artykule przedstawiono wybrane wyniki badań doboru parametrów technologicznych ablacyjnego oczyszczania
Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński
Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński Metoda PLD (Pulsed Laser Deposition) PLD jest nowoczesną metodą inżynierii powierzchni, umożliwiającą
LASEROWA OBRÓBKA MATERIAŁÓW
LASEROWA OBRÓBKA MATERIAŁÓW Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych na różnych materiałach: o trudno obrabialnych takich jak diamenty, metale twarde, o miękkie
LASEROWA OBRÓBKA MATERIAŁÓW
LASEROWA OBRÓBKA MATERIAŁÓW Cechy laserowych operacji technologicznych Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych Na różnych materiałach: o Trudno obrabialnych
Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska
BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,
WYBRANE APLIKACJE TECHNOLOGICZNE ABLACYJNEGO USUWANIA METALICZNEJ POWŁOKI LAKIEROWEJ TECHNIKĄ LASEROWĄ
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Wojciech NAPADŁEK 1 Izabela KALMAN 2 oczyszczanie laserowe, powłoki lakierowe, warstwa powierzchniowa
Podstawy fizyczne technologii laserowych i plazmowych Phisycal Fundamentals of laser and plasma technology
Załącznik nr 7 do Zarządzenia Rektora nr 10/1 z dnia 1 lutego 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 013/014 A. USYTUOANIE
Przemiany energii w zjawiskach cieplnych. 1/18
Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
UMACNIANIE WARSTWY WIERZCHNIEJ STOPU TYTANU WT3-1 FALĄ UDERZENIOWĄ GENEROWANĄ IMPULSEM LASEROWYM ZJAWISKA FIZYCZNE I WYBRANE WŁAŚCIWOŚCI
Wojciech NAPADŁEK Antoni SARZYŃSKI UMACNIANIE WARSTWY WIERZCHNIEJ STOPU TYTANU WT3-1 FALĄ UDERZENIOWĄ GENEROWANĄ IMPULSEM LASEROWYM ZJAWISKA FIZYCZNE I WYBRANE WŁAŚCIWOŚCI STRESZCZENIE W pracy opisano
TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT
TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT Wojciech NAPADŁEK 1 Leszek BĄKAŁA 2 warstwa powierzchniowa, oczyszczanie laserowe, lutowanie, klejenie, spawanie
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
DOŚWIADCZALNE OKREŚLENIE WPŁYWU GĘSTOŚCI MOCY PROMIENIOWANIA LASEROWEGO λ = 1064 nm NA EFEKTYWNOŚĆ JEDNOIMPULSOWEGO TEKSTUROWANIA STALI 41Cr4
Tadeusz BURAKOWSKI Wojciech NAPADŁEK Adam WOŹNIAK Izabela KALMAN DOŚWIADCZALNE OKREŚLENIE WPŁYWU GĘSTOŚCI MOCY PROMIENIOWANIA LASEROWEGO λ = 1064 nm NA EFEKTYWNOŚĆ JEDNOIMPULSOWEGO TEKSTUROWANIA STALI
BADANIA WŁAŚCIWOŚCI POWLOK CERAMICZNYCH NA BAZIE CYRKONU NA TRYSKANYCH NA STOP PA30
27/42 Solidification o f Metais and Alloys, Year 2000, Volume 2, Book No 42 Krzepnięcie Metali i Stopów, Rok 2000, Rocznik 2, Nr 42 PAN- Katowice, PL ISSN 0208-9386 BADANIA WŁAŚCIWOŚCI POWLOK CERAMICZNYCH
Techniki laserowe Laser Technology. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 03/04 Techniki laserowe Laser Technology A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
ZNACZENIE POWŁOKI W INŻYNIERII POWIERZCHNI
ZNACZENIE POWŁOKI W INŻYNIERII POWIERZCHNI PAWEŁ URBAŃCZYK Streszczenie: W artykule przedstawiono zalety stosowania powłok technicznych. Zdefiniowano pojęcie powłoki oraz przedstawiono jej budowę. Pokazano
Samopropagująca synteza spaleniowa
Samopropagująca synteza spaleniowa Inne zastosowania nauki o spalaniu Dyfuzja gazów w płomieniu Zachowanie płynnych paliw i aerozoli; Rozprzestrzenianie się płomieni wzdłuż powierzchni Synteza spaleniowa
Techniki laserowe Laser Technologies
Załącznik nr 7 do Zarządzenia Rektora nr 10/1 z dnia 1 lutego 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 016/017 Techniki
ANALIZA WPŁYWU ABLACYJNEJ MIKROOBRÓBKI LASEROWEJ NA EFEKTYWNOŚĆ USUWANIA LAKIEROWEGO SYSTEMU POWŁOKOWEGO
4-2011 PROBLEMY EKSPLOATACJI 35 Wojciech NAPADŁEK, Izabela KALMAN Instytut Pojazdów Mechanicznych i Transportu, Wydział Mechaniczny, Wojskowa Akademia Techniczna, Warszawa ANALIZA WPŁYWU ABLACYJNEJ MIKROOBRÓBKI
SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów Inżynieria materiałowa studia pierwszego studia stacjonarne
SYLABUS Nazwa Procesy specjalne Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod Studia Kierunek studiów Poziom kształcenia Forma studiów
Materiałoznawstwo optyczne CERAMIKA OPTYCZNA
Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby
Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?
Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje
LASEROWE UMACNIANIE UDAROWE MATERIAŁÓW KONSTRUKCYJNYCH STAN AKTUALNY ORAZ PERSPEKTYWY TECHNOLOGICZNE
Tadeusz BURAKOWSKI Wojciech NAPADŁEK LASEROWE UMACNIANIE UDAROWE MATERIAŁÓW KONSTRUKCYJNYCH STAN AKTUALNY ORAZ PERSPEKTYWY TECHNOLOGICZNE STRESZCZENIE Na podstawie literatury i badań własnych omówiono
Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 013/014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Bezpieczeństwo prac z urządzeniami
Zastosowanie metody różnic skończonych do modelowania fali ciśnienia generowanej nanosekundowym impulsem laserowym w stali i aluminium
BIULETYN WAT VOL. LV, NR 4, 2006 Zastosowanie metody różnic skończonych do modelowania fali ciśnienia generowanej nanosekundowym impulsem laserowym w stali i aluminium ANTONI SARZYŃSKI, WOJCIECH NAPADŁEK*,
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
Ogólne cechy ośrodków laserowych
Ogólne cechy ośrodków laserowych Gazowe Cieczowe Na ciele stałym Naturalna jednorodność Duże długości rezonatora Małe wzmocnienia na jednostkę długości ośrodka czynnego Pompowanie prądem (wzdłużne i poprzeczne)
Obróbka laserowa i plazmowa Laser and plasma processing
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Obróbka laserowa i plazmowa Laser and plasma processing A. USYTUOWANIE
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw
Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 013/014 A. USYTUOANIE MODUŁU SYSTEMIE STUDIÓ Technologia spawania laserowego i
Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)
Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA
Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: INŻYNIERIA WARSTWY WIERZCHNIEJ Temat ćwiczenia: Badanie prędkości zużycia materiałów
Zjawiska powierzchniowe
Zjawiska powierzchniowe Adsorpcja Model Langmuira Model BET 1 Zjawiska powierzchniowe Adsorpcja Proces gromadzenia się substancji z wnętrza fazy na granicy międzyfazowej; Wynika z tego, że w obszarze powierzchniowym
PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn
semestralny wymiar godzin PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn Semestr 1 /sem. 1 Algebra liniowa 12 12 24 4 egz. 2 Analiza matematyczna 24 24 48 8 egz. 3 Ergonomia
DEGRADACJA MATERIAŁÓW
DEGRADACJA MATERIAŁÓW Zmęczenie materiałów Proces polegający na wielokrotnym obciążaniu elementu wywołującym zmienny stan naprężeń Zmienność w czasie t wyraża się częstotliwością, wielkością i rodzajem
MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE
MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE PAWEŁ URBAŃCZYK Streszczenie: W artykule przedstawiono klasyfikację materiałów stosowanych na powłoki przeciwzużyciowe. Przeanalizowano właściwości fizyczne
- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca
Fizyka, klasa II Podręcznik: Świat fizyki, cz.2 pod red. Barbary Sagnowskiej 6. Praca. Moc. Energia. Lp. Temat lekcji Wymagania konieczne i podstawowe 1 Praca mechaniczna - podaje przykłady wykonania pracy
PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA)
ISO 9001:2008, ISO/TS 16949:2002 ISO 14001:2004, PN-N-18001:2004 PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) *) PVD - PHYSICAL VAPOUR DEPOSITION OSADZANIE
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak
Laserowe technologie wielowiązkowe oraz dynamiczne formowanie wiązki 25 październik 2017 Grzegorz Chrobak Nasdaq: IPG Photonics(IPGP) Zasada działania laserów włóknowych Modułowość laserów włóknowych IPG
Struktura materiałów. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD / dr inż. Maciej Motyka.
STRUKTURA, KLASYFIKACJA I OGÓLNA CHARAKTERYSTYKA MATERIAŁÓW INŻYNIERSKICH Zakres tematyczny y 1 Struktura materiałów MATERIAŁAMI (inżynierskimi) nazywa się skondensowane (stałe) substancje, których właściwości
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH
WIT GRZESIK PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH Wydanie 3, zmienione i uaktualnione Wydawnictwo Naukowe PWN SA Warszawa 2018 Od Autora Wykaz ważniejszych oznaczeń i skrótów SPIS TREŚCI 1. OGÓLNA
Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa
Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia zdefiniowanymi dla poszczególnych modułów
Technologie laserowe w przemyśle:
Technologie laserowe w przemyśle: od laserów rubinowych do laserów włóknowych Bernard Rzany 1 Treść wykładu Pierwsze lasery i ich zastosowania Podstawy fizyki laserowej Kamienie milowe w rozwoju technologii
ELEKTRYCZNE ŹRÓDŁA CIEPŁA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
ELEKTRYCZNE ŹRÓDŁA CIEPŁA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Elektryczne źródła ciepła Zachodzi w nich przemiana energii elektrycznej na
WYBRANE APLIKACJE OCZYSZCZANIA LASEROWEGO STALI STOPOWYCH CHROMOWO-NIKLOWYCH
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Wojciech NAPADŁEK 1 Leszek BĄKAŁA 2 warstwa powierzchniowa, oczyszczanie laserowe, lutowanie,
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Moduł 5: Efektywność energetyczna w urządzeniach elektrotermicznych
Studia odyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Efektywność energetyczna w urządzeniach elektrotermicznych dr hab.
Analiza działania kolektora typu B.G z bezpośrednim grzaniem. 30 marca 2011
Analiza działania kolektora typu B.G z bezpośrednim grzaniem. 30 marca 2011 Założenia konstrukcyjne kolektora. Obliczenia są prowadzone w kierunku określenia sprawności kolektora i wszelkie przepływy energetyczne
Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -
Czym jest dźwięk? wrażeniem słuchowym, spowodowanym falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne dla człowieka, zawarte są
Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.
Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w
POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH
LŁ ELEKTRONIKI WAT POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH dr inż. Leszek Nowosielski Wojskowa Akademia Techniczna Wydział Elektroniki Laboratorium Kompatybilności Elektromagnetycznej LŁ
PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn
semestralny wymiar godzin PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: mechanika i budowa maszyn Semestr 1 /sem. 1 Algebra liniowa 20 20 40 4 egz. 2 Analiza matematyczna 40 40 80 8 egz. 3 Ergonomia
Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza.
1 Część teoretyczna Powietrze wilgotne układ złożony z pary wodnej i powietrza suchego, czyli mieszaniny azotu, tlenu, wodoru i pozostałych gazów Z punktu widzenia różnego typu przemian skład powietrza
WYNIKI REALIZOWANYCH PROJEKTÓW BADAWCZYCH
PROPONOWANA TEMATYKA WSPÓŁPRACY prof. dr hab. inż. WOJCIECH KACALAK WYNIKI REALIZOWANYCH PROJEKTÓW BADAWCZYCH 00:00:00 --:-- --.--.---- 1 111 PROPOZYCJE PROPOZYCJE DO WSPÓŁPRACY Z PRZEMYSŁEM W ZAKRESIE
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
TECHNOLOGIE ZABEZPIECZANIA POWIERZCHNI Technologies for protecting the surface Kod przedmiotu: IM.D1F.45
Nazwa przedmiotu: Kierunek: Inżynieria Materiałowa Rodzaj przedmiotu: Kierunkowy do wyboru Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie
3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
Metody łączenia metali. rozłączne nierozłączne:
Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie
Badanie licznika Geigera- Mullera
Badanie licznika Geigera- Mullera Cel ćwiczenia Celem ćwiczenia jest zbadanie charakterystyki napięciowej licznika Geigera-Müllera oraz wyznaczenie szczególnych napięć detektora Wstęp Licznik G-M jest
Różne dziwne przewodniki
Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich
Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY
Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY Pojęcie temperatury jako miary stanu cieplnego kojarzy się z odczuciami fizjologicznymi Jeden ze parametrów stanu termodynamicznego układu charakteryzujący
I Pracownia Fizyczna Dr Urszula Majewska dla Biologii
Ćw. 6/7 Wyznaczanie gęstości cieczy za pomocą wagi Mohra. Wyznaczanie gęstości ciał stałych metodą hydrostatyczną. 1. Gęstość ciała. 2. Ciśnienie hydrostatyczne. Prawo Pascala. 3. Prawo Archimedesa. 4.
Dobór materiałów konstrukcyjnych cz. 12
Dobór materiałów konstrukcyjnych cz. 12 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Przewodność i dyfuzyjność cieplna
WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :
WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz
PLAN STUDIÓW NR II PROFIL OGÓLNOAKADEMICKI POZIOM STUDIÓW: STUDIA DRUGIEGO STOPNIA (1,5-roczne magisterskie) FORMA STUDIÓW:
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY 1.TECHNOLOGIA PROCESÓW CHEMICZNYCH 2. BIOTECHNOLOGIA PRZEMYSŁOWA 3. ANALITYKA CHEMICZNA I SPOŻYWCZA 4. NOWOCZESNE TECHNOLOGIE MATERIAŁOWE godzin tygodniowo (semestr
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
NAGRZEWANIE ELEKTRODOWE
INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 7 NAGRZEWANIE ELEKTRODOWE 1.WPROWADZENIE. Nagrzewanie elektrodowe jest to nagrzewanie elektryczne oparte na wydzielaniu, ciepła przy przepływie
Specyficzne własności helu w temperaturach kriogenicznych
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Specyficzne własności helu w temperaturach kriogenicznych Opracowała: Joanna Pałdyna W ramach przedmiotu: Techniki niskotemperaturowe w medycynie Kierunek studiów:
Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1)
Temat nr 22: Badanie kuchenki mikrofalowej 1.Wiadomości podstawowe Metoda elektrotermiczna mikrofalowa polega na wytworzeniu ciepła we wsadzie głównie na skutek przepływu prądu przesunięcia (polaryzacji)
CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg
WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m
WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU
WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU ZAKŁAD SILNIKÓW POJAZDÓW MECHANICZNYCH ĆWICZENIE LABORATORYJNE Z TERMODYNAMIKI TECHNICZNEJ Temat: Wymiana i
Naprężenia i odkształcenia spawalnicze
Naprężenia i odkształcenia spawalnicze Cieplno-mechaniczne właściwości metali i stopów Parametrami, które określają stan mechaniczny metalu w różnych temperaturach, są: - moduł sprężystości podłużnej E,
Nie tylko optyka; Prototypowanie urz dze«laboratoryjnych
Nie tylko optyka Prototypowanie urz dze«laboratoryjnych Piotr Skibi«ski Wydziaª Fizyki, Uniwersytet Warszawski Centrum Laserowe, Instytut Chemii Fizycznej PAN, Warszawa 3 lutego 2015 fot. Michaª Kierzkowski
PROTECT 360 Karta Techniczna LT-02-09 04.02.2016. Karta techniczna PROTECT 360 Podkład epoksydowy antykorozyjny WŁAŚCIWOŚCI
Karta techniczna Podkład epoksydowy antykorozyjny WŁAŚCIWOŚCI PODKŁAD EPOKSYDOWY podkład antykorozyjny, zapewniający znakomitą ochronę powierzchni stalowych dzięki wysokojakościowym żywicom i aktywnym
Temperatura i ciepło
Temperatura i ciepło Zerowa zasada termodynamiki Ciepło: Sposób przekazu energii wewnętrznej w skutek różnicy temperatur Ciała są w kontakcie termalnym jeżeli ciepło może być przekazywane między nimi Kiedy
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym
KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,
Rozdział X KONSERWACJA POWIERZCHNI ZABYTKÓW
97 Rozdział X KONSERWACJA POWIERZCHNI ZABYTKÓW Działanie wilgoci, a głównie rozpuszczonych w niej zanieczyszczeń stanowi główną przyczynę zniszczeń powierzchni. Unoszone w powietrzu sadze, pyły osadzają
Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel
Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel. 12 617 3572 www.kcimo.pl, bucko@agh.edu.pl Plan wykładów Monokryształy, Materiały amorficzne i szkła, Polikryształy budowa,
Źródła światła: Lampy (termiczne) na ogół wymagają filtrów. Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18
Źródła światła: Lampy (termiczne) na ogół wymagają filtrów Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Lampy: a) szerokopasmowe, rozkład Plancka 2hc I( λ) = 5 λ 2 e 1 hc λk T B
POMIAR NATĘŻENIA PRZEPŁYWU
POMIAR NATĘŻENIA PRZEPŁYWU Określenie ilości płynu (objętościowego lub masowego natężenia przepływu) jeden z najpowszechniejszych rodzajów pomiaru w gospodarce przemysłowej produkcja światowa w 1979 ropa
mgr Ewa Socha Gimnazjum Miejskie w Darłowie
mgr Ewa Socha Gimnazjum Miejskie w Darłowie LP. PLAN WYNIKOWY Z FIZYKI DLA II KL. GIMNAZJUM MA ROK SZKOLNY 2003/04 TEMATYKA LEKCJI LICZBA GODZIN 1. Lekcja organizacyjna. 1 2. Opis ruchów prostoliniowych.
Równanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu:
Załącznik do rozporządzenia Ministra Pracy i Polityki Społecznej z dnia 27 maja 2010 r. Wyznaczanie poziomu ekspozycji na promieniowanie optyczne 1. Promieniowanie nielaserowe 1.1. Skutki oddziaływania
NAGRZEWANIE PROMIENNIKOWE
INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr 8 NAGRZEWANIE PROMIENNIKOWE 1.WPROWADZENIE. Nagrzewanie promiennikowe oparte jest na zjawisku promieniowania temperaturowego emitowanego
7. Wyznaczanie poziomu ekspozycji
7. Wyznaczanie poziomu ekspozycji Wyznaczanie poziomu ekspozycji w przypadku promieniowania nielaserowego jest bardziej złożone niż w przypadku promieniowania laserowego. Wynika to z faktu, że pracownik
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 2. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące