WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)
|
|
- Lech Łuczak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Rok szkolny 2019/20 klasa 4bB Joanna Mikułka YMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania dopełniające (bardzo dobry); wymagania wykraczające (celujący) Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNE PRADOPODOBIEŃSTA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa 2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego 3. ariacje bez powtórzeń definicja wariacji bez powtórzeń liczba k-elementowych wariacji bez powtórzeń zbioru n-elementowego n! wypisuje wyniki danego doświadczenia stosuje regułę mnożenia do wyznaczenia liczby wyników doświadczenia spełniających dany warunek przedstawia drzewo ilustrujące zbiór wyników danego doświadczenia wypisuje permutacje danego zbioru oblicza liczbę permutacji danego zbioru przeprowadza obliczenia, stosując definicję silni wykorzystuje permutacje do rozwiązywania zadań oblicza liczbę wariacji bez powtórzeń wykorzystuje wariacje bez powtórzeń do rozwiązywania zadań Poziom wymagań R R P
2 4. ariacje z powtórzeniami definicja wariacji z powtórzeniami liczba k-elementowych wariacji z powtórzeniami zbioru n-elementowego 5. ombinacje definicja kombinacji liczba k-elementowych kombinacji zbioru n-elementowego symbol Newtona wzór dwumianowy Newtona 6. ombinatoryka zadania reguła dodawania zestawienie podstawowych pojęć kombinatoryki: permutacje, wariacje i kombinacje określenie permutacji z powtórzeniami liczba n-elementowych permutacji z powtórzeniami 7. Zdarzenia losowe pojęcie zdarzenia elementarnego pojęcie przestrzeni zdarzeń elementarnych pojęcie zdarzenia losowego wyniki sprzyjające zdarzeniu losowemu zdarzenie pewne, zdarzenie niemożliwe suma, iloczyn i różnica zdarzeń losowych zdarzenia wykluczające się zdarzenie przeciwne oblicza liczbę wariacji z powtórzeniami wykorzystuje wariacje z powtórzeniami do rozwiązywania zadań oblicza wartość symbolu Newtona n k, gdzie n k oblicza liczbę kombinacji wypisuje k-elementowe kombinacje danego zbioru wykorzystuje kombinacje do rozwiązywania zadań wykorzystuje wzór dwumianowy Newtona do rozwinięcia wyrażeń postaci ( a + b) n i wyznaczania współczynników wielomianów uzasadnia zależności, w których występuje symbol Newtona stosuje regułę dodawania do wyznaczenia liczby wyników doświadczenia spełniających dany warunek wykorzystuje podstawowe pojęcia kombinatoryki do rozwiązywania zadań określa przestrzeń zdarzeń elementarnych podaje wyniki sprzyjające danemu zdarzeniu losowemu określa zdarzenie niemożliwe i zdarzenie pewne wyznacza sumę, iloczyn i różnicę zdarzeń losowych wypisuje pary zdarzeń przeciwnych i pary zdarzeń wykluczających się P R P D R D P P P P
3 8. Prawdopodobieństwo klasyczne 9. łasności prawdopodobieństwa 10. Prawdopodobieństwo warunkowe 11. Prawdopodobieństwo całkowite pojęcie prawdopodobieństwa klasyczna definicja prawdopodobieństwa określenie prawdopodobieństwa: 1. 0 P ( A) 1 dla A 2. P( ) = 0, P ( ) = 1 3. P ( A B) = P( A) + P( B) dla dowolnyc h zdarzeń rozłącznych A, B własności prawdopodobieństwa: 1. Jeżeli A, B oraz A P( A) P( B). 2. Jeżeli A, to P( A' ) = 1 P( A). 3. Jeżeli A, B, to P( A \ B) = P( A) P( A B). 4. Jeżeli A, B, to P A B = P A + P B P A B rozkład prawdopodobieństwa definicja prawdopodobieństwa warunkowego drzewo probabilistyczne B, to ( ) ( ) ( ) ( ). wzór na prawdopodobieństwo całkowite niezależność zdarzeń oblicza prawdopodobieństwa zdarzeń losowych, stosując klasyczną definicję prawdopodobieństwa stosuje regułę mnożenia, regułę dodawania, permutacje, wariacje i kombinacje do obliczania prawdopodobieństw zdarzeń podaje rozkład prawdopodobieństwa dla rzutu kostką oblicza prawdopodobieństwo zdarzenia przeciwnego stosuje twierdzenie o prawdopodobieństwie sumy zdarzeń stosuje własności prawdopodobieństwa w dowodach twierdzeń oblicza prawdopodobieństwo warunkowe stosuje wzór na prawdopodobieństwo warunkowe do wyznaczania potrzebnych wielkości oblicza prawdopodobieństwo całkowite sprawdza niezależność zdarzeń D D P P R D D R D D
4 12. Doświadczenia wieloetapowe 2. STEREOMETRIA 1. Proste i płaszczyzny w przestrzeni ilustracja doświadczenia za pomocą drzewa wzór Bayesa wzajemne położenie dwóch płaszczyzn wzajemne położenie dwóch prostych prostopadłość prostych w przestrzeni wzajemne położenie prostej i płaszczyzny rzut prostokątny 2. Graniastosłupy pojęcia graniastosłupa prostego i graniastosłupa pochyłego powierzchnia boczna, wysokość graniastosłupa pojęcie prostopadłościanu pojęcie graniastosłupa prawidłowego pole powierzchni całkowitej graniastosłupa siatki sześcianu ilustruje doświadczenie wieloetapowe za pomocą drzewa oblicza prawdopodobieństwa zdarzeń w doświadczeniu wieloetapowym stosuje wzór Bayesa do obliczania prawdopodobieństw zdarzeń wskazuje w wielościanie proste prostopadłe, równoległe i skośne wskazuje w wielościanie rzut prostokątny danego odcinka na daną płaszczyznę przeprowadza wnioskowania dotyczące położenia prostych w przestrzeni określa liczby ścian, wierzchołków i krawędzi graniastosłupa sprawdza, czy istnieje graniastosłup o danej liczbie ścian, krawędzi, wierzchołków wskazuje elementy charakterystyczne graniastosłupa oblicza pole powierzchni bocznej i całkowitej graniastosłupa prostego rysuje siatkę graniastosłupa prostego, mając dany jej fragment 3. Odcinki w graniastosłupach pojęcie przekątnej graniastosłupa oblicza długości przekątnych graniastosłupa prostego stosuje funkcje trygonometryczne do obliczania pola powierzchni graniastosłupa uzasadnia prawdziwość wzorów dotyczących przekątnych i pól powierzchni graniastosłupa R P R D P P R P D
5 4. Objętość graniastosłupa wzór na objętość graniastosłupa oblicza objętość graniastosłupa prostego oblicza objętość graniastosłupa pochyłego stosuje funkcje trygonometryczne do obliczania objętości graniastosłupa rozwiązuje zadania o podwyższonym stopniu trudności dotyczące graniastosłupów 5. Ostrosłupy pojęcie ostrosłupa prostego pojęcie ostrosłupa prawidłowego pojęcia wysokości ostrosłupa i kąta płaskiego przy wierzchołku pojęcie czworościanu foremnego pole powierzchni ostrosłupa wzór Eulera określa liczby ścian, wierzchołków i krawędzi ostrosłupa wskazuje elementy charakterystyczne ostrosłupa oblicza pole powierzchni ostrosłupa, mając daną jego siatkę rysuje siatkę ostrosłupa prostego, mając dany jej fragment oblicza pole powierzchni bocznej i całkowitej ostrosłupa stosuje funkcje trygonometryczne do obliczania pola powierzchni ostrosłupa sprawdza wzór Eulera dla wybranych graniastosłupów i ostrosłupów 6. Objętość ostrosłupa wzór na objętość ostrosłupa oblicza objętość ostrosłupa prawidłowego stosuje funkcje trygonometryczne do obliczania objętości ostrosłupa rozwiązuje zadania o podwyższonym stopniu trudności dotyczące ostrosłupów 7. ąt między prostą a płaszczyzną pojęcie kąta między prostą a płaszczyzną wskazuje i wyznacza kąty między odcinkami graniastosłupa a płaszczyzną jego podstawy lub ścianą boczną wskazuje i wyznacza kąty między odcinkami ostrosłupa a płaszczyzną jego podstawy rozwiązuje zadania dotyczące miary kąta między prostą a płaszczyzną P D D P P P R R P D R R
6 8. ąt dwuścienny pojęcie kąta dwuściennego miara kąta dwuściennego wskazuje kąt między sąsiednimi ścianami wielościanów wyznacza kąt między sąsiednimi ścianami wielościanów rozwiązuje zadania dotyczące miary kąta dwuściennego 9. Przekroje graniastosłupów pojęcie przekroju graniastosłupa wskazuje przekroje graniastosłupa oblicza pole danego przekroju rozwiązuje zadania dotyczące przekrojów graniastosłupa 10. Przekroje ostrosłupów pojęcie przekroju ostrosłupa wskazuje przekroje ostrosłupa oblicza pole danego przekroju 11. alec pojęcie walca pojęcia podstawy walca, wysokości oraz tworzącej wzór na pole powierzchni całkowitej walca pojęcie przekroju osiowego walca wzór na objętość walca 12. Stożek pojęcie stożka pojęcia podstawy stożka, wierzchołka, wysokości oraz tworzącej wzór na pole powierzchni całkowitej stożka pojęcia przekroju osiowego stożka oraz kąta rozwarcia wzór na objętość stożka rozwiązuje zadania dotyczące przekrojów ostrosłupa wskazuje elementy charakterystyczne walca zaznacza przekrój osiowy walca oblicza pole powierzchni całkowitej walca oblicza objętość walca stosuje funkcje trygonometryczne do obliczania pola powierzchni i objętości walca rozwiązuje zadania o podwyższonym stopniu trudności dotyczące walca wskazuje elementy charakterystyczne stożka zaznacza przekrój osiowy i kąt rozwarcia stożka oblicza pole powierzchni całkowitej stożka oblicza objętość stożka rozwiązuje zadania dotyczące rozwinięcia powierzchni bocznej stożka stosuje funkcje trygonometryczne do obliczania pola powierzchni i objętości stożka rozwiązuje zadania o podwyższonym stopniu trudności dotyczące stożka P R P R R R D R R D
7 13. ula pojęcia kuli i sfery przekroje kuli, koło wielkie pojęcie stycznej do kuli wzór na pole powierzchni kuli wzór na objętość kuli 14. Bryły podobne pojęcie brył podobnych pojęcie skali podobieństwa brył podobnych wskazuje elementy charakterystyczne kuli oblicza pole powierzchni kuli i jej objętość stosuje funkcje trygonometryczne do obliczania pola powierzchni i objętości rozwiązuje zadania o podwyższonym stopniu trudności dotyczące kuli wyznacza skalę podobieństwa brył podobnych wykorzystuje podobieństwo brył do rozwiązywania zadań 15. Bryły opisane na kuli bryły opisane na kuli rysuje przekroje brył opisanych na kuli rozwiązuje zadania dotyczące brył opisanych na kuli 16. Bryły wpisane w kulę bryły wpisane w kulę rysuje przekroje brył wpisanych w kulę 17. Inne bryły wpisane i opisane walec opisany na graniastosłupie walec wpisany w graniastosłup walec opisany na stożku walec wpisany w stożek inne bryły wpisane i opisane 3. PRZYŁADY DOODÓ MATEMATYCE 1. Dowody w algebrze pojęcie implikacji twierdzenia dotyczące własności liczb twierdzenia dotyczące wyrażeń algebraicznych dowód nie wprost 2. Dowody w geometrii twierdzenia dotyczące własności figur płaskich twierdzenie o dwusiecznej kąta w trójkącie 4.POTÓRZENIE PRZED MATURĄ szystkie zrealizowane treści w klasach niższych rozwiązuje zadania dotyczące brył wpisanych w kulę rysuje przekroje brył wpisanych i opisanych rozwiązuje zadania dotyczące brył wpisanych i opisanych dowodzi własności liczb dowodzi prawdziwości nierówności przeprowadza dowód nie wprost dowodzi własności figur płaskich wykorzystuje własności figur płaskich do dowodzenia twierdzeń ymagania jak w trakcie realizacji działu w klasach niższych P R D P R R D R R D R R D D D D
8 Ogólne kryteria ocen z matematyki Ocena celujący Ocenę tę otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program nauczania, a ponadto spełniający jeden z podpunktów: twórczo rozwija własne uzdolnienia i zainteresowania; uczestniczy w zajęciach pozalekcyjnych; pomysłowo i oryginalnie rozwiązuje nietypowe zadania; bierze udział i osiąga sukcesy w konkursach i olimpiadach matematycznych. Ocena bardzo dobry Ocenę tę otrzymuje uczeń, który opanował pełen zakres wiadomości przewidziany programem nauczania oraz potrafi: sprawnie rachować; samodzielnie rozwiązywać zadania; wykazać się znajomością definicji i twierdzeń oraz umiejętnością ich zastosowania w zadaniach; posługiwać się poprawnym językiem matematycznym; samodzielnie zdobywać wiedzę; przeprowadzać rozmaite rozumowania dedukcyjne. Ocena dobry Ocenę tę otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową oraz wybrane elementy programu nauczania, a także potrafi: samodzielnie rozwiązać typowe zadania; wykazać się znajomością i rozumieniem poznanych pojęć i twierdzeń oraz algorytmów; posługiwać się językiem matematycznym, który może zawierać jedynie nieliczne błędy i potknięcia; sprawnie rachować; przeprowadzić proste rozumowania dedukcyjne. Ocena dostateczny Ocenę tę otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową, co pozwala mu na: wykazanie się znajomością i rozumieniem podstawowych pojęć i algorytmów stosowanie poznanych wzorów i twierdzeń w rozwiązywaniu typowych ćwiczeń i zadań; wykonywanie prostych obliczeń i przekształceń matematycznych.
9 Ocena dopuszczający Uczeń opanował wiadomości i umiejętności przewidziane podstawą programową w takim zakresie, że potrafi: samodzielnie lub z niewielką pomocą nauczyciela wykonywać ćwiczenia i zadania o niewielkim stopniu trudności; wykazać się znajomością i rozumieniem najprostszych pojęć oraz algorytmów; operować najprostszymi obiektami abstrakcyjnymi (liczbami, zbiorami, zmiennymi i zbudowanymi z nich wyrażeniami). Ocena niedostateczny Ocenę tę otrzymuje uczeń, który nie opanował podstawowych wiadomości i umiejętności wynikających z programu nauczania oraz: nie radzi sobie ze zrozumieniem najprostszych pojęć, algorytmów i twierdzeń; popełnia rażące błędy w rachunkach; nie potrafi (nawet przy pomocy nauczyciela, który między innymi zadaje pytania pomocnicze) wykonać najprostszych ćwiczeń i zadań; nie wykazuje najmniejszych chęci współpracy w celu uzupełnienia braków i nabycia podstawowej wiedzy i umiejętności. ryteria ocen wypowiedzi ustnych: Ocena celujący - odpowiedź wskazuje na szczególne zainteresowanie przedmiotem, spełniając kryteria oceny bardzo dobrej, wykracza poza obowiązujący program nauczania, zawiera treści poza programowe, własne przemyślenia i oceny. Ocena bardzo dobry - odpowiedź wyczerpująca, zgodna z programem, swobodne operowanie faktami i dostrzeganie związków między nimi. Ocena dobry - odpowiedź zasadniczo samodzielna, zawiera większość wymaganych treści, poprawna pod względem języka, nieliczne błędy, nie wyczerpuje zagadnienia. Ocena dostateczny - uczeń zna najważniejsze fakty, umie je zinterpretować, odpowiedź odbywa się przy niewielkiej pomocy nauczyciela, występują nieliczne błędy rzeczowe. Ocena dopuszczający - podczas odpowiedzi możliwe są liczne błędy, zarówno w zakresie wiedzy merytorycznej jak i w sposobie jej prezentowania, uczeń zna podstawowe fakty i przy pomocy nauczyciela udziela odpowiedzi. Ocena niedostateczny - odpowiedź nie spełnia wymagań podanych powyżej kryteriów ocen pozytywnych (brak elementarnych wiadomości, rezygnacja z odpowiedzi). ryteria oceny wypowiedzi pisemnych (zadania domowe, kartkówki, prace klasowe): Ocena celujący Uzyskanie co najmniej 98% możliwych do uzyskania punktów.
10 Ocena bardzo dobry Uzyskanie co najmniej 90-97,9% możliwych do uzyskania punktów. Ocena dobry Uzyskanie 75-89,9% możliwych do uzyskania punktów. Ocena dostateczny Uzyskanie 50-74,9% możliwych do uzyskania punktów. Ocena dopuszczający Uzyskanie 30-49,9% możliwych do uzyskania punktów. Ocena niedostateczny Uzyskanie 0-29,9% możliwych do uzyskania punktów. Zasady przeprowadzania prac pisemnych: kartkówka obejmująca materiał ostatniej lekcji lub zadanie domowe nie musi być zapowiedziana, kartkówka trwa około 10 minut, praca klasowa obejmująca materiał całego działu musi być zapowiedziana z przynajmniej tygodniowym wyprzedzeniem, poprzedzona powtórzeniem wiadomości i jej termin uzgodniony z klasą, aby nie pokrywał się z terminem już zapowiedzianej pracy pisemnej, pracę klasową uczniowie piszą przez całą lekcję. Zasady poprawiania prac pisemnych: na lekcji powtórzeniowej uczeń może poprawić kartkówki dotyczące aktualnie powtarzanego materiału jeśli uczeń nie pisał kartkówki ma obowiązek zaliczyć ją w terminie uzgodnionym z nauczycielem, na poprawę pracy klasowej przeznaczona jest osobna lekcja i każdy uczeń ma prawo przystąpić do poprawy swojej oceny, przy czym każda ocena jest wpisywana do dziennika z wagą 0 każdy uczeń, który nie pisał pracy klasowej ma obowiązek napisania jej w terminie poprawy (wyjątek stanowią dłuższe nieobecności spowodowane chorobą, które traktowane są indywidualnie). Oprócz ocen za odpowiedzi ustne, prace pisemne i zadania domowe uczeń może otrzymać dodatkowe oceny: za aktywność na lekcji, za udział w konkursach przedmiotowych, nawet na etapie szkolnym. Ocena semestralna i końcowo roczna w klasie 4bB ustalana jest w oparciu o wszystkie oceny cząstkowe. arunkiem koniecznym uzyskania oceny pozytywnej jest zaliczenie wszystkich kartkówek.
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry);
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)
Rok szkolny 2018/19 klasa 4bB oraz 4iA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 4bA ZAKRES ROZSZERZONY (135 godz.)
YMAGANIA EDUACYJNE Z MATEMATYI LASA 4bA ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;
Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D
Plan wynikowy klasa 3g - Jolanta Pająk Matematyka 3. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
l. 4bB YMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające
Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
l. 4bA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZAES OZSZEZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); wymagania rozszerzające (dobry);
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
POZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6)
YMAGANIA EDUACYJNE MATEMATYA LASA 3LO ZARES ROZSZERZONY OZIOMY YMAGAŃ EDUACYJNYCH: ocena dopuszczająca (2) ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) ocena celująca (6) Temat lekcji
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego
FUNKCJE LOGARYTMICZNE powtórzenie 4 godziny RACHUNEK PRAWDOPODOBIEŃSTWA 28 godz. Moduł - dział -temat Reguła mnożenia. Reguła dodawania Lp 1 2 reguła mnożenia ilustracja zbioru wyników doświadczenia za
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Przedmiot Klasa Poziom Imię i Nazwisko nauczyciela Matematyka kl. 4 ga ZAKRES PODSTAWOWY I ROZSZERZONY Mirosława Jursza
Przedmiot lasa Imię i Nazwisko nauczyciela Matematyka kl. 4 ga ZARES PODSTAOY I ROZSZERZONY Mirosława Jursza Rok szkolny 2018/2019 Autorzy: Dorota Ponczek, arolina ej -ocena dopuszczająca- wymagania na
Założenia ogólne przedmiotowego systemu oceniania z matematyki:
Założenia ogólne przedmiotowego systemu oceniania z matematyki: 1. Zgodnie z założeniami wewnątrzszkolnego regulaminu oceniania, klasyfikowania i promowania uczniów, ocena powinna być jawna. 2. Ocenianiu
Wymagania edukacyjne z matematyki i zasady oceniania
Przedmiot lasa Imię i Nazwisko nauczyciela Matematyka kl. 4 GI ZARES PODSTAOY I ROZSZERZONY Mirosława Jursza ymagania edukacyjne z matematyki i zasady oceniania 1. roku szkolnym 2019/2020 w klasie 4 GI
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Plan wynikowy klasa 3
Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji
Stopień celujący otrzymuje uczeń, który otrzymał stopień bardzo dobry i rozwiązał zadanie wskazane jako dodatkowe.
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI 50 1. Oceny bieżące, oceny klasyfikacyjne, śródroczne i oceny klasyfikacyjne roczne ustala się w stopniach według następującej skali: 1) stopień celujący 6 2)
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 4iB ZAKRES ROZSZERZONY (160 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA 4iB ZARES ROZSZERZONY (160 godz.) Oznaczenia: wymagania konieczne (dopuszczający); wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Wymagania edukacyjne z matematyki i zasady oceniania
Przedmiot lasa Poziom Imię i Nazwisko nauczyciela Matematyka kl. 4 ia ZARES PODSTAOY I ROZSZERZONY Mirosława Jursza ymagania edukacyjne z matematyki i zasady oceniania 1. roku szkolnym 2019/2020 w klasie
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA
Rok szkolny 2018/19 klasa 3w WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA opisać za pomocą wyrażeń algebraicznych związki między
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV geodezja ZAKRES ROZSZERZONY (224 godz.)
YMAGANIA EDUACYJNE Z MATEMATYI LASA IV geodezja ZARES ROZSZERZONY (224 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV geodezja ZAKRES ROZSZERZONY (224 godz.)
YMAGANIA EDUACYJNE Z MATEMATYI LASA IV geodezja ZARES ROZSZERZONY (224 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Matematyka CIĄGI. Zakres materiału i wymagania edukacyjne, KLASA TRZECIA poziom podstawowy. Temat lekcji Zakres treści Osiągnięcia ucznia.
Matematyka Zakres materiału i wymagania edukacyjne, KLASA TRZECIA poziom podstawowy CIĄGI 1. Pojęcie ciągu definicja ciągu wykres ciągu wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego początkowych
Przedmiotowy system oceniania z matematyki.
Zespół Szkół Ponadgimnazjalnych Im. Jarosława Iwaszkiewicza W Twardogórze Przedmiotowy system oceniania z matematyki. I OGÓLNE KRYTERIA OCEN Z MATEMATYKI OCENA CELUJĄCA Ocenę tę otrzymuje uczeń, którego
MATEMATYKA. Zakres materiału i wymagania edukacyjne KLASA TRZECIA, poziom rozszerzony
MATEMATYKA Zakres materiału i wymagania edukacyjne KLASA TRZECIA, poziom rozszerzony 1. RACHUNEK RÓŻNICZKOWY 1. Granica funkcji w punkcie intuicyjne pojęcie granicy określenie granicy funkcji w punkcie
PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka
PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. Ocena celująca Ocenę tę otrzymuje uczeń, którego wiedza wykracza poza obowiązujący
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO 1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza
Wymagania edukacyjne
ymagania edukacyjne RZEDMIOT: Matematyka-zakres rozszerzony LASA: III technikum Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; wymagania wykraczające
1.Funkcja logarytmiczna
Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować
1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół nr 119.
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W GIMNAZJUM nr 71 im. Krzysztofa Kamila Baczyńskiego oraz W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO 1. Przedmiotowe Zasady Oceniania z matematyki
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
PRZEDMIOTOWY SYSTEM OCENIANIA
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 Kamienna Góra tel.:(+48) 75-645-0-8 fax: (+48) 75-645-0-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY
Wymagania edukacyjne zakres podstawowy klasa 3A
Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I ZASTOSOWAŃ MATEMATYKI OBOWIĄZUJĄCE W ZSPS I VIII LO W TORUNIU zewaluowane 1 września 2017
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I ZASTOSOWAŃ MATEMATYKI OBOWIĄZUJĄCE W ZSPS I VIII LO W TORUNIU zewaluowane 1 września 2017 1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi
Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3
Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił
Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki.
Propozycja szczegółowego rozkładu materiału Program zakłada powtórzenie i utrwalenie wiadomości i umiejętności z wcześniejszych etapów edukacyjnych, niezbędnych w dalszym toku kształcenia (np. działania
PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:
PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony
Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony I. Procedury oceniania osiągnięć uczniów Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (210 godz.)
l. 4iA YMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (210 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII
Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII I. Uwagi ogólne: Opracowała Dorota Kiersk-Królikowska 1. Ocenianiu podlegają osiągnięcia edukacyjne uczniów poprzez rozpoznawanie przez nauczyciela
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony Program nauczania zgodnie z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI w XLV Liceum Ogólnokształcącym im. Romualda Traugutta w Warszawie I. Przedmiotowe Ocenianie (PO) opiera się na Wewnątrzszkolnym Ocenianiu, które z kolei reguluje: 1.
Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury
STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE
Rok szkolny 2018/19 klasa 1w WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE /ocena rozpoznać liczby naturalne w tym pierwsze i złożone, całkowite, wymierne, niewymierne,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III budownictwo ZAKRES ROZSZERZONY (105 godz.)
Rok szkolny 2018/19 klasa 3bB YMAGANIA EDUACYJNE Z MATEMATYI LASA III budownictwo ZARES ROZSZERZONY (105 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU Każdy uczeń ma prawo zdobywać wiedzę na lekcjach matematyki, rozwijać ją i utrwalać samodzielną
PDM 3 zakres podstawowy i rozszerzony PSO
PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe
Matematyka 3 wymagania edukacyjne
Matematyka 3 wymagania edukacyjne Zakres podstawowy 1 POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności
POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN. Z MATEMATYKI. kl. I
POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN Ocenę niedostateczna Z MATEMATYKI. kl. I Ocenę tę otrzymuje uczeń, który nie opanował podstawowych wiadomości i umiejętności wynikających z programu nauczania oraz:
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA I. FORMY SPRAWDZANIA WIADOMOŚCI Na początku roku szkolnego nauczyciel informuje o przewidywanych sprawdzianach a także o innych formach sprawdzania wiadomości Różne
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w ZSEiL W WARSZAWIE
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w ZSEiL W WARSZAWIE ROZDZIAŁ I: Przepisy ogólne 1. Ocenianiu podlegają osiągnięcia edukacyjne uczniów poprzez rozpoznawanie przez nauczycieli poziomu i postępów
Przedmiotowy System Oceniania z Matematyki
Przedmiotowy System Oceniania z Matematyki Opracowany na podstawie: 1. Podstawy programowej dla szkoły podstawowej z matematyki. 2. Programu nauczania Matematyka z kluczem klasa 4, 5, 6 i 7 3. Podręcznika
Matematyka. Wymagania edukacyjne na poszczególne oceny
Matematyka Wymagania edukacyjne na poszczególne oceny Klasa III - zakres rozszerzony Rachunek różniczkowy uzasadnia w prostych przypadkach, że funkcja nie ma granicy w punkcie, oblicza granice funkcji
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM im. Gen. Władysława Andersa w Lesku
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM im. Gen. Władysława Andersa w Lesku Przedmiotowy system oceniania z matematyki jest zgodny z Ustawą o Systemie Oświaty, Rozporządzeniem
I Liceum Ogólnokształcące im. Tadeusza Kościuszki w Busku Zdroju
I Liceum Ogólnokształcące im. Tadeusza Kościuszki w Busku Zdroju PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI obowiązuje od 1 września 2017 roku 1 I. Cele kształcenia i wychowania Cele związane z kształceniem
Przedmiotowe Zasady Oceniania
Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka III 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnym Ocenianiem GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH 1/8 ZASADY OCENIANIA:
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim.
2015/2016 Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim. Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:
Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym
Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania
Planimetria 1 12 godz.
Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie