Zestaw zadań 7: Wyznaczniki. 1., (c), (h) (d), (f) (g), (i)
|
|
- Dorota Owczarek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zstaw zaań 7: Wyznaznk 1 (1) Olzyć wyznaznk następująyh arzy: () () () (g) () a a a 1 ε ε2 ε 2 1 ε ε ε 2 1 () sn α os α 1 sn β os β 1 sn γ os γ 1 gz ε = (h) os α os β r sn α os β r os α sn β sn α os β r os α os β r sn α sn β sn β 0 r os β () gz α β γ są ara kątów trójkąta ε ε 2 1 ε 2 ε 3 gz ε = os 4π 3 + sn 4π 3 (2) Olzyć następuj wyznaznk (na R): () () () () () (g) (h) () (j) (k) Wyznaznk okrył po raz prwszy G W Lnz w 1693 r W 1750 okrył j powtórn Szwajar Garl Crar (n ylć z wspózsny atatyk szwzk Carl Haral Crar) Nazwę wyznaznk ( trnant ) wprowazł w 1815 r A Cauhy Dw ponow krsk jako syol wyznaznka wprowazł w 1841 r A Cayly 1
2 2 (3) Olzyć: na Z 7 () na Z 11 () (4) Olzyć wyznaznk następująyh arzy stopna n : () () a a a a a a a 1 () () a 1 n n n n n 2 n n n n n 3 n n a a a a a na Z () (g) n n n n 1 n a n n n n n a (5) Nh A = [a j ] a j Z ęz arzą kwaratową stopna n Pokazać ż t A jst lzą akowtą Załóży oatkowo ż a j = ±k gz k jst ustaloną lzą akowtą Pokazać ż 2 n 1 k n zl t A (6) Pokazać ż jśl A jst arzą antysytryzn (tzn A T = A) stopna nparzystgo na R to jst ona osolwa zyl t A = 0 (7) Lzy zlą sę przz 17 Pokazać (z olzana) ż wyznaznk równż zl sę przz 17 (8) Nh A = [a j ] ęz arzą kwaratową stopna n Jak zn sę wyznaznk arzy A jżl: każy lnt a j ponożyy przz j ( ustalon) () oróy arz A o 90 wokół jj śroka (zgon z ruh wskazówk zgara) () zapszy wrsz (koluny) arzy A w owrotnj koljnoś () o każj koluny (wrsza) pozynają o rugj (ruggo) oay poprzną kolunę (poprzn wrsz)
3 3 () o każj koluny (wrsza) pozynają o rugj (ruggo) oay poprzną kolunę (poprzn wrsz) a prwszj koluny (o prwszgo wrsza) oay starą ostatną kolunę (stary ostatn wrsz) () o każj koluny (wrsza) pozynają o rugj (ruggo) oay wszystk porzn koluny (poprzn wrsz) (9) Znalźć najwększą wartość wyznaznka arzy kwaratowj stopna 3 którj lnty są lza ałkowty równy 0 lu 1 () 1 lu 1 (10) Przanalzować Przykła 67 z stron z ksążk ABałynkgo-Brul (owó wzoru na wyznaznk arzy klatkowo-trójkątnj t [ A 0 D B ] = t A t B przz nukję wzglę stopna klatk B) (11) Sprawzć tożsaoś: a g j k = 1 a a a g a j a k () a g h j k l n o p = 1 a 2 a a g a h a j a k a l a n a o a p () Sorułować uowonć ogóln twrzn (12) Sprawzć ż nastpująa równość jst tożsaośą: a g h j k l n o p = 1 a 2 a a g a h a a k a l a n a o a p + ( j) a g h o p (13) Zaać rozwązalność ukłau równań x + y + z = 9 3x y + 2z = 10 2x + 7y 3z = 8 ax y + z = 20 ax + y + z = 44 10ax + 3y z = 26 w zalżnoś o paratrów a (14) Olzyć wyznaznk arzy A = [ ] T [ ]
4 4 () B = a a a a Wskazówka Olzyć wyznaznk arzy A 2 oraz BB T (15) Nh x 1 x 2 x n ęą wszystk prwastka wloanu (X) = a 0 X n + a 1 X n a n 1 X + a n Suy k-tyh potęg prwastków s k = x k 1 + x k x k n są unkja sytryzny wę wyrażają sę przz współzynnk wloanu (np s 0 = n; z wzorów Vèt 2 wynkają równoś s 1 = a 1 s 2 = s x x j = a2 1 2 a 2 t) a 0 a 2 <j 0 a 0 Olzyć wyznaznk D arzy s 0 s 1 s 2 s n 1 s 1 s 2 s 3 s n s 2 s 3 s 4 s n+1 s n 1 s n s n+1 s 2n 2 (Wskazówka: olzyć najprw V T V gz V = V (x 1 x 2 x n ) jst arzą Vanron a prwastków) Wyrazć wynk przz współzynnk wloanu (X) gy n = 2 (X) = ax 2 + X + gy n = 3 a (X) = X 3 + px + q Wartość = a 2n 2 0 D nazyway wyróżnk wloanu (X) 3 (16) Sprawzć zy następują arz są owraaln oraz w przypaku pozytywnj opowz olzyć arz owrotną: [ ] 1 2 () () () () (17) Jśl A Kn n B[ K C K] n [ D K n ] t A 0 to I olzyć n 0 A D CA 1 ; [ I ] C B A D () wykazać ż t = t A t(b CA C B 1 D); () pozlć na klatk 2 2 arz z przykłau () z poprzngo zaana; porównać jj wyznaznk z wartośą wyrażna t A t B t C t D 2 Franços Vèt ( ) - atatyk ranusk zwany oj algry Usystatyzował osągnęa algrazn Orozna Wprowazł oznazna ltrow n tylko la nwaoyh al la anyh np współzynnków równań zęk zu pojawły s wzory atatyzn 3 Nazwa wyróżnk ( srnant o łańskgo srnans o srnants - rozzlająy oróżnająy) pohoz o J Sylvstra
5 (18) Rozwązać [ następują ] [ równana ] arzow: X = [ ] [ ] () X = () X = [ ] [ ] [ ] () X = (19) Rozwązać ukłay [ równań ] arzowyh: [ ] [ ] X + Y = [ ] [ ] [ ] X + Y = [ ] [ ] [ ] X + Y = () [ ] [ ] [ ] X + Y = (20) Olzyć (I + ae r ) 1 r (21) Waoo ż arz owraalną ożna sprowazć o arzy jnostkowj za pooą przkształń lntarnyh na wrszah Pokazać ż wykonują t sa przkształna (w tj saj koljnoś!) na arzy jnostkowj otrzyay arz owrotn ą o wyjśowj arzy Stosują tę toę olzyć jszz raz arz owrotn o arzy z poprznh zaań oraz następująyh arzy: () () (22) Pokazać ż jżl A 2 = 0 to arz I n + A jst owraalna (I n + A) 1 = I n A () Pokazać ż jżl A = 0 to arz I n + A jst owraalna znalźć (I n + A) 1 5
6 (23) Znalźć koljn potęg arzy 0 wykorzystać j o olzna arzy owrotnj o arzy (24) Pokazać ż la A B Kn n jżl arz I n + AB jst owraalna to równż arz I n + BA jst owraalna (lat Vassrstna 4 ) Wskazówka: Olzyć [ (I n ] + [ BA)(I n ] B(I n + AB) 1 A) A D A 0 (25) Olzyć arz owrotn o arzy klatkowyh: Olzyć arz 0 B C B owrotn o następująyh arzy: (26) Koutator [A B] arzy nosolwyh A B GLn(K) nazyway arz [A B] = ABA 1 B 1 Wykazać ż I la j k l [I + ae j I + E kl ] = I + ae l la j = k l I ae kj la j k = l 4 L N Vassrstn współzsny atatyk razk (o lat szsątyh) arykańsk (o lat oszsątyh)
Zestaw zadań 6: Wyznaczniki. 1., (c), (h) (d), (f) (g), (i)
Zstaw zaań 6: Wyznaznk 1 (1) Olzyć wyznaznk następująyh arzy: 1 2 3 5 1 4 () 1 5 4 3 2 0 () 0 2 2 2 0 2 3 2 5 1 3 6 2 2 0 () (g) () a a a 1 ε ε2 ε 2 1 ε ε ε 2 1 (f) sn α os α 1 sn β os β 1 sn γ os γ 1
, (b) , (g) a 1 ma = 2 + D 1 C 2 A 1 D 2 + D 1 B 2 C 1 B 1 C 2 B 2 C 1 A 2 + B 1 C 2 C 1 D 2 + B 1 B 2
Zstaw zaań 3: Marz wyznaznk 1 (1) Olzyć lozyny arzy: 1 2 4 0 () 6 4 [ 2 1 0 1 2 2 3 1 5 3 4 5 7 9 [ ] 3 2 1 () () [ 1 2 3 4 5 ] T [ ] 1 2 3 4 5 1 3 (f) [ 1 2 3 4 5 ] [ 1 2 3 4 5 ] T (g) 2 0 T 3 1 3 2 ]
Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł
ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń Ó ć ę Ł ą ą ę ó ę ó ą ć Ę ą ę Ź ą ą ę ó ż ć Ę ę
ą Ś ą ą ą ż ź Ź ó ż ą ń Ś ź ć ą ą ć ź ć ó ó ą ó ż ą ń ą Ę ą ę ż ń ą ó ą ą ą ą ą ą ą ó ź ń ęż ć ą ę ą ą Ń ó ż Ęć ę ą ż ż ń ż Ó ą ż ń ń ą ą ó ą Ę ęż ęż ęź Ś ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń
ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę
ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą
MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI.
MAIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. k { 1,,..., k} Definicja 1. Macierzą nazyway każde odwzorowanie określone na iloczynie kartezjański.wartość tego odwzorowania na parze (i,j) k j oznaczay aij
I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E
Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony
Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż
ń ń ń
Ą ź ć ń ń Ą ń ń ń Ą Ó ń Ą ć Ą Ń Ą ć ć ć ń ń Ą ć Ą ć ć ń ń ń ń ź ć ź Ą ć ć ć Ę ń Ó ń ń Ę Ą ć ń ń Ń ń ń Ń ć ć ń ź Ę ń ź ń ź ć ć ź ć ń ń ć ć ć ń ć ć ć ć ć Ę ć ć ź ć ź ń ć ć ń Ą ń ć ź ć Ą ź ć ń ć ź Ó Ś ć ń
Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych
Seć kątowa etoda spostrzeżeń pośrednząyh Układ równań obserwayjnyh rzyrosty współrzędnyh X = X X X X = X X Y = Y Y X Y = Y Y Długość odnka X ' ' ' ' x y Współzynnk kerunkowe x y * B * x y x y gdze - odpowedn
Ą Ę Ą Ś Ń Ó Ę Ę Ę ź Ę Ę ź Ę Ń Ę Ę ź Ę Ę Ę ź Ę Ą Ę Ź Ą Ą Ę Ź Ź Ź Ń ź Ź Ń Ą Ę Ź Ą ź Ę Ź Ą Ę Ź Ą Ę Ą Ę Ę Ł Ń Ś Ę Ę Ń Ę ĘĄ Ę ĘĄ Ł Ę Ę Ę Ę Ź Ę Ę Ę Ę Ń ź Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę ź Ń Ę Ę Ń Ę Ę Ń Ą Ę Ę Ę Ą ź
ll I 1 &*l;,, Ą Ń Ś Ą ć Ę Ś Ł Ę Ą ć Ą ć ć ź ć Ęć Ń Ę ć ć Ę ć ć Ę ć Ę Ę ć ź Ę ź ć ź Ę ć ć ź ź Ę ź Ą ź ź ź ć ć ź Ę ź ć Ę ć Ę Ąć ć ć Ę ć ć Ę ć Ę ć ć Ę ź ć Ą ć ź Ś ć Ą ć Ą ć ź ź ź ź ć ź ź Ę Ę ć ź Ę ć ź ź
ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż
Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść
ź Ą Ę ź Ć
Ę Ą Ą ź ó ź Ą Ę ź Ć ź ź ĄĘ ź ź Ą ó Ę Ą ź ź ź Ą ź Ę ó Ł Ś ó ó Ą ź ź ź Ą ź Ę ź ź Ą ź ź ź Ą Ł ź Ę Ę Ę ź Ą Ę ź Ą Ę Ą Ę Ę Ą ź ź Ą ó ź ó ź ź ź ź ź ź Ś ź ź Ą ź ź ź Ą ź ź ź Ź ź ó ź Ę ź Ą ó ź Ą Ż ź ź Ę ź Ź ź ź
ż Ł Ęż Ą Ę Ę ż ż ż ż Ł ń ń Ę Ę ż ż ć ż Ś ń ż ć ń ń ć ż Ł ć Ł ż Ą ń ń ć ż ż ż ć Ą Ę Ł ń Ł ć ń ń ż ż ż ż ź ż ż ż ć Ę ć ż ż ż ż ż ć ż Ą ć ż ż ć Ń ż Ę ż ż ń ć ż ż ć Ń ż ż ć ń Ę ż ż ć Ą ż ź ż ć ż Ę Ę ż ć ń
Ż Ę ć Ć ć ć Ą
Ś Ł Ż Ą Ż Ę ć Ć ć ć Ą ŚĘ Ż ź Ś Ż Ś Ś Ń Ę Ą Ś Ł Ś Ł Ż Ż ź ż Ą Ś Ż Ż Ś Ł Ą Ą Ó Ż Ż ż ć Ż ż ć ż Ó Ż ż ć ż ć ż Ą Ę ż Ó Ó ż ż Ó ć Ż ć Ż ć ć ź Ę Ę Ę ć Ż Ź Ż ż ć ż Ź Ę Ż ż ć Ś ć Ż Ę ż Ę ż ż ż Ż ż ż ż ż ĘŁ ż ż
Analityczne metody kinematyki mechanizmów
J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier
Ł ź Ż Ń Ł ż ż ź Ą
Ł Ł Ń Ń Ł ź Ż Ń Ł ż ż ź Ą Ł Ł Ś Ń ż ż ż żń ż ż ż ć Ż ć ć ć Ż ż ż ż ż ż ż ż ż ż ż ż ć ź ż ż ż ż ć Ś ż ż ż ż ż ć ż ż ć ż ć ż ź ż ż ż ż ż ż ć ć ż ż Ś ć ż ć ż ć Ś ż ż ż ż ż ż ż ć ż ż ż ż ż ć ć ż ż ż Ś ż ż
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
ć ć ź Ń Ś ŚĆ ź
Ą ć ć ć ź Ń Ś ŚĆ ź ć Ś ŚĆ Ń Ó Ó ć ć Ś Ń ć ć Ś Ś Ś ź ć Ś Ń ź ć Ś ź ź ŚĆ Ń Ń Ś Ę ć Ó Ś ć Ę Ś Ś Ą ć ź Ń Ń ć ć ź Ę ź ź Ś ŚĆ ź Ę ĘĄ Ę Ż Ó ć ć Ą ź Ą Ą Ę Ń ć ć Ą Ę Ą ć Ń Ń Ś ź ź Ą Ż Ó ć Ę Ę ź ź ź ź Ą Ń Ę Ą
Ź
Ź Ł Ł ź ź Ł Ł Ź Ą Ó ź ń ź Ń ź ź ź ź Ź Ą ź Ć Ź Ń ź Ą ź Ł Ł Ł ź Ą Ą Ą ź ź ź ź ź Ś Ą Ź Ą ź ź Ł Ł ź Ł Ś ź ź Ł ź Ś ź Ń Ź ź Ł Ł ź ź Ś Ł ź Ł Ł Ł Ł ź ź Ł Ł Ł Ł ź Ł ź Ł Ł Ł Ł ź Ą ź Ś Ł Ą ź Ś ź ź ń ź ź Ą ź ź Ą
Ę ś Ł ń ś ś ć ć ś ś ś ń ń ń ść ń ść ś Ł ć ź ć Ę Ą ś ś ś ś ś ś ń ń źń ś ń ń ś ń ń ś ź ń Ę ń Ą Ę ś ś ć ń ś ń ń Ł ś ś ń ś ź ś ś ń ć ść ść ść ń ś ź ś ń ś ś ść ś ń ń ń ś Ę Ł ń Ą ś Ś Ę ń Ś Ę ść ś ś ń Ę ń ś ź
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Ę ó ą ż Ę Ń ó ś ź ń ś ś Ę óń ż ńó Ę ń ń ń ą ń ź ż ń ś ó Ż ó ąż ż łś ż żń ż ź ó ż ę ż ó ł Ń ń ń Ń ą Ńź óś ńńóń ń ń ń ż śż ó ś ż ż ą ó Ą Ń ż ł ń ą ż ą ż
Ę ą Ę Ń ś ź ś ś Ę Ę ą ź ś Ż ą ś Ń ź ę Ń Ń ą Ńź ś ś ś ą Ą Ń ą ą Ę ą ą Ę ąą ą Ś ą ę ą Ś ą Ł Ś ś Ń Ą ź ź Ę ź Ć ą ą ś Ść Ą Ż Ł ś ęę ę ś ś ś ć ą ą Ń ę ęś ęść ą ęść ą ą ść ź ć ć ą ś ą ę ć ź ęść ę ć ą ęść ś ść
ź -- ć ł ź ł -ł ł --
------ --------- --ł ----ć -------- --------------- ---ę- --- ----------- ------- ------ó- ------------ ----- --- -- ----- - ------------ --ó- --ś -- -- ------- --------- ------ ---- --------- -------ą
Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś
Ł ń ść ś Ż ś ś ć ś ś Ż ż ś ś ść ś śń ż Ż ć ś ń Ś ż ć ż ść Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ą Ż Ą ś ż ż ż ż ż ż ż ż ć ż ż ś ć ż ż ź ź ń ś ć ż ć ć ż ż ć ż ż ż ś ć ż ż źć ż ż ż ż Ż ż ń ż ż
Ą Ł Ą Ę Ą Ę Ą Ą Ń Ń Ą Ł Ł ŁĄ Ą
Ą Ą Ł Ł Ń Ą Ą Ł Ą Ę Ą Ę Ą Ą Ń Ń Ą Ł Ł ŁĄ Ą Ó Ą Ą Ą Ą Ę Ł Ą Ą Ę Ę Ą Ł Ą Ą Ę Ą Ę Ę Ę Ł Ę Ę Ą Ą Ł Ą Ą Ą Ę ĄĘ Ł Ą Ą Ą Ą Ą Ą Ę Ł Ą Ę Ó Ł Ą Ę Ą Ł Ę Ę Ą Ą Ź Ł Ń Ń Ą Ó Ż Ą ĄĘ Ę Ą Ą Ą Ę Ą Ł Ą Ą Ę Ł Ę Ó Ł Ł Ł Ę
ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó
ć ń ó ą ś ą ą ż ó ó ą ż ó ś ą ś ą ś ć ż ść ó ó ą ó ą ń ą ę ą ę ż ń ą ó ś ą ą ą ń ó ą ą ą ś ą ó ż ś ęż ęś ś ń ą ęś ś ą ą ś ż ś Ę ę ń Ż ą ż ń ą ą ą ę ą ę ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż
Ł ż ć żń Ę ń żń Ę żń ż Ń Ą Ę ć ń ż Ł ń ć ź Ę ć ć ć ż ć ć ć Ę ń Ź ń Ę Ę Ę ń ń ż ż źń Ź ć Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż Ł ń ć żń żń ń ń ń ż Ł ć Ą ć ń ż ń ć
Ę Ł ź ź ć ź ć Ń ć ź ź Ł
Ł Ą Ą Ą ź Ł Ę Ń ź ć ć ź ź Ę Ę Ł ź ź ć ź ć Ń ć ź ź Ł ź ć Ń ź Ą Ó Ę Ę ź ć ź ć Ę ć Ż ć Ę Ę ć Ą ć Ą Ł ć Ą ć ć Ń Ń Ń ź ć Ń Ł Ń Ń ź ć ć ć Ę ć Ń ć Ł ć Ń ć ź ź Ę ć Ś ź ć Ą Ę ć Ą ć Ź Ń ź ć ź Ż ć Ł ć Ń ć ź Ą ź Ł
Ę Ę Ę Ś Ł Ł Ł Ś
Ł Ł Ś Ś Ś Ę ĘĄ Ę Ę Ę Ś Ł Ł Ł Ś Ł Ł Ł Ś Ś Ł Ś Ę ź Ź Ż Ę Ś ć Ł Ę Ł Ś Ł Ł ź Ś Ś Ń Ł Ś Ą Ś Ł Ł Ż ć ć Ż Ś Ś Ł Ś Ś Ż Ż Ż Ż Ł Ż Ś ć ć Ż Ż Ż Ż ć Ś Ż ć Ż Ż Ł Ą Ł Ń ź Ń Ń Ę Ń Ą Ń Ż Ż Ó Ż Ż ź ź Ź Ż Ż Ż Ś Ś Ż Ż ź
Przekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł
ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś
ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć
Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć
Wrocław, dnia 31 marca 2017 r. Poz UCHWAŁA NR XXXVII/843/17 RADY MIEJSKIEJ WROCŁAWIA. z dnia 23 marca 2017 r.
ZENN URZĘY EÓZTA LNŚLĄE, 31 2017.. 1547 UHAŁA NR XXXV/843/17 RAY EE RŁAA 23 2017. p ó p gó N p. 18. 2 p 15 8 1990. ą g (. U. 2016. p. 814, 1579 1948). 210. 1. 4 14 g 2016. p pą ę - ś (. U. 2017. p. 60),
Ż ń Ż
Ó Ł Ż ń Ż Ę ć Ź Ę ź ć ć ć ć Ł ć ć ć Ż ć ć ć ć ć Ę ź Ż Ż ć ć ć Ą Ł ć Ż ć ć Ę ć ć ć ć ź Ę ć Ę Ę ć ć ć ć Ę ć ć Ż Ę Ę ć Ż ć Ę ć Ę Ż ć ń ć ć Ż Ż ć Ż ć ń ć ć Ż ń ń ź ć ń ń ć Ę ć ć ć ń ć ć ć Ę ń Ę ć ć ć ź Ę ń
ś ź Ą ś Ą ś ś Ę Ą ń ń ń ś ń ńś ś ń ć ń ś ś ź ć ś ś ź ź Ę Ę ś ć ś ś ć ś ść ń Ę ć ć ć ś ń ć ć ć ś ś Ą ź ść ĘĄ ś ś ć ść ć Ś ś ś ś Ą ś ź ś ś ź ń Ą ś ź Ń ś ś ś Ń ń ź ć ś ś ś ć Ń ś ń ś ź ś ń ń ć ć ś ń ć ń ć
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Ł Ą Ź Ą Ń Ą Ą ź Ń Ł Ł
Ł Ń Ł Ą Ź Ą Ń Ą Ą ź Ń Ł Ł Ł ź ź ź Ó Ż ź ź Ń Ł Ł Ł ź Ż Ł ź Ą ź ź Ł ź Ą Ć Ł Ń Ż ź Ł Ż Ć ź Ł Ą Ź Ł Ą Ł Ń Ż Ą Ą ź ź Ą Ó ĄÓ ź ź Ą ź Ł ź Ł ź Ł źń Ć ź Ś Ó Ć Ż Ą Ś Ą Ń ź ź ź Ł Ś ź Ą Ó ź Ą Ó ź Ż Ł ź ź Ł Ń Ł
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Wyk lad 3 Grupy cykliczne
Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż
Ś ó ż ż ó ó Ż ó ó ż ę Ż ż ę ó ę Ż Ż ć ó ó ę ó Ż ę Ź ó Ż ę ę ę ó ó ż ę ż ó ęż ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż
WŁADCY BENELUKSU PRZEMYSŁAW JAWORSKI
1 2 L u b o ń.. 9- WŁADCY BENELUKSU G e n e a l o g i a d o m ó w p a n u j ą c y c h w N i d e r l a n d a c h/ B e l g i i i L u k s e m b u r g u o p r a c o w a ł RZEMYSŁAW JAWORSKI 3 4 K s i ą ż k
ż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż
Ł ę ź ę ż ę ć ęż ę ę Ł ć ę ę ż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż ż ż ę ę ż ć ę ę Ń ę ę ż ę ę żę ż ć ę ć ę ę ć ę ć Ź ż ć ę ę ę Ą ę ę ę ź ę ż ę Ó ż ę ę ż ć ć ź ż ę ę ę ż ę ż ć ę ę ż ę ę ż ż ć ę ę
Podstawowe definicje
W-8 (Jarswc na ba J. Rukwsk) 5 slajów Ruch rgający Psaww fncj Swbn rgana harmncn Drgana łumn Drgana wymusn Skłaan rgań 3/8 L.R. Jarswc Psaww fncj rgana prcsy, w kórych ana wlkść fycna na prman rśn malj
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
; -1 x 1 spełnia powyższe warunki. Ale
AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle