Motywacje stosowania impulsowych przetwornic transformatorowych wysokiej częstotliwości
|
|
- Grażyna Agnieszka Borkowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Motywacje stosowania impulsowych przetwornic transformatorowych wysokiej częstotliwości Podwyższenie napięcia w dużym stosunku (> 2 5) przy wysokiej η dzięki transformatorowi Zmniejszenie obciążeń prądowych i napięciowych p.p.m. dzięki transformatorowi (jeśli odpowiednio dobrana topologia) Zmniejszenie wymiarów elementu magnetycznego dzięki transformatorowi (zamiast dławika) i wysokiej częstotliwości Izolacja galwaniczna wejścia i wyjścia dzięki transformatorowi bezpieczeństwo użytkowania Uzyskanie wielu napięć wyjściowych dzięki możliwości wykonania wielu uzwojeń wtórnych cele w systemach fotowoltaicznych: rozdział obciążeń w systemach autonomicznych specyficzne aplikacje niskonapięciowe (np. ładowarki wielokanałowe) porządnie stabilizowane poprzez zmianę D może być tylko jedno wyjście, pozostałe (cross-regulation) gorzej Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 11
2 Schemat zastępczy transformatora bezstratnego z idealnym sprzężeniem uzwojeń Schemat należy uzupełnić o indukcyjność magnesującą (główną) L M (L μ ) zwykle umieszczana po stronie pierwotnej, chociaż można by ją skojarzyć z dowolnym z uzwojeń (niezbyt użyteczne w analizie układów) indukcyjność, jaką zaobserwujemy/zmierzymy rozwierając wszystkie uzwojenia wtórne i wymuszając napięcie na pierwotnym pozwala opisać przepływ prądu w stanie rozwarcia zwarcie dla składowej stałej transformator jej nie przenosi zastępczy schemat elektryczny pozwalający wyznaczyć zależności między napięciami i prądami konstrukcja fizyczna Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 12
3 Indukcyjność magnesująca (magnetising inductance) Stosuje się do niej równanie cewki Prąd magnesujący i M i prądy uzwojeń (i 1, i 2, i 3 ) są niezależne W dobrze zaprojektowanym transformatorze L M jest duża Z M Z L (sumaryczna impedancja obciążenia przeniesiona na stronę pierwotną) i M i 1 ; i 1 i 1 Prąd i M nie jest mierzalny ale obserwowalne są skutki jego obecności Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 13
4 Nasycenie rdzenia transformatora Indukcyjność magnesująca opisuje też magnesowanie rdzenia Rdzeń nasyca się przy zbyt dużym i M (nie i 1 ) μ = db/dh L M i M straty mocy v 1 przestaje przenosić Ale energię przenosi i 1 (nie i M ) w przeciwieństwie do dławika gdzie te prądy są tożsame nasycenie przy większej mocy przetwarzanej lub mniejszy rdzeń dla uzyskania takiej samej W = L M i 2 M /2 W stanie ustalonym W(T s ) = W(0) i M (T s ) = i M (0) w przypadku transformatora to musi zapewnić układ rozmagnesowanie rdzenia (core reset) inaczej i M będzie ciągle narastał, co doprowadzi do nasycenia Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 14
5 Przetwornica mostkowa (full-bridge) Należy do grupy pochodnych od obniżającej identyczny (częściowo podwojony) podobwód wyjściowy Transformator można rozpatrywać jako 3-uzwojeniowy (1:n:n) oba uzwojenia wtórne jednakowe Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 15
6 Przebiegi prądów i napięć W każdym takcie v 2 = v 3 = nv 1 Takt 1 Q 1 Q 4 / Q 2 Q 3 on v T = v 1 = ±V g di M /dt Takt 2 Q 1 Q 4 off i 1 = 0 i 1 = i M i v 2 = v 3 < 0 D 6 on i D5 i D6 i/2 i const v 2 0 v T = v 2 /n 0 i M const Częstotliwość pracy L, C f s ; Q, T f s / 2 Rozmagnesowanie wymaga równych D w obu okresach T s ew. Q 2 Q 4 albo Q 1 Q 3 Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 16
7 Prądy diod strony wtórnej w takcie 2 Gdyby nie występował prąd magnesowania uzwojenie pierwotne rozwarte W rzeczywistości stąd z równania transformatora z prądowego prawa Kirchhoffa więc prąd wyjściowy dzieliłby się równo między diody D 5 i D 6 i M może płynąć przez uzwojenie pierwotne, wtórne lub wszystkie rozpływ zależy od rezystancji przyrządów półprzewodnikowych oraz indukcyjności rozproszenia Uwzględniając prąd magnesujący prąd magnesujący wprowadza asymetrię do obwodu wtórnego i D5 = i D6 = i/2 i M ni Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 17
8 Niezrównoważenie transformatora Aby transformator znajdował się w stanie ustalonym, v 1 dt = 0 (za 2T s ) W rzeczywistej przetwornicy nie jest to nigdy dokładnie spełnione rozrzut spadków napięć na tranzystorach rozrzut czasów przełączania nieidealność elementów układu sterowania (np. różnice w opóźnieniach) Prąd magnesujący będzie rósł z (podwojonego) okresu na okres Eliminacja niezrównoważenia niewielkie może zostać samoczynnie skompensowane w wyniku zmiany spadków napięć wskutek wzrostu prądu magnesującego kondensator w szereg z uzwojeniem pierwotnym niezrównoważenie spowoduje głównie odłożenie napięcia stałego na nim (a nie na uzwojeniu) sterowanie prądowe wartością szczytową: tranzystory są wyłączane w momencie osiągnięcia określonej wartości chwilowej prądu takiej samej dla obu okresów Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 18
9 Działanie przetwornicy mostkowej Funkcja przetwarzania napięcia v s = v L + v C = v L + V z warunku stanu ustalonego dla dławika v L = 0 jak dla obniżającej, tylko dodatkowo z przekładnią Może też pracować w DCM Diody D 1 D 4 obcinają przepięcia na tranzystorach do [0; V g ] (CCM) 0 D < 1 przy niskim obciążeniu (tak że prąd po stronie wtórnej spada do zera) zapewniają ścieżkę dla prądu magnesującego 4 tranzystory duży sumaryczny spadek potencjału komplikacja sterowania Stopień wykorzystania rdzenia dobry dwukierunkowe magnesowanie uzw. pierwotnego dobry w każdym okresie przenosi energię uzw. wtórnego połowiczne każda połowa przenosi energię tylko w co drugim okresie W takcie 2 płynie prąd bez transmisji energii zbędne straty mocy Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 19
10 Przetwornica półmostkowa (half-bridge) Jedna para tranzystorów zastąpiona przez duże C a = C b w stanie ustalonym VCb = v Q2 = V g /2 gdyż v T = 0 kondensator C a można pominąć (zwiększając C b ) v T dwukrotnie mniejsze (niż w mostkowej) tak samo v s Aby skompensować 2-krotny spadek M, można podwoić n i 1 moc strat Mniej tranzystorów zredukowana moc strat Stosowana przy niższych napięciach / mocach niskonapięciowe tranzystory na duże prądy są w miarę tanie istotny niski sumaryczny spadek potencjału Sterowanie prądowe trudne pomiar i Q1 niekonieczne C a, C b Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 20
11 Przetwornica przeciwsobna (push-pull) Oparta na obniżającej Obwód wtórny identyczny jak w mostkowej i półmostkowej Po stronie pierwotnej wyłącznie 2 tranzystory zawsze tylko 1 łącznik włączony między źródłem a uzwojeniem korzystne przy małych napięciach wejściowych Przebiegi jak w mostkowej Funkcja przetwarzania Pełen zakres 0 D < 1 można zmniejszyć n mniejszy prąd wejściowy mniejsze straty mocy, gabaryty i koszt elementów Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 21
12 Działanie Transformator wykorzystanie jak w mostkowej, ale uzwojenia pierwotnego połowiczne niezupełne rozmagnesowanie jak w mostkowej Sterowanie bezpośrednio przez D odradzane zalecane prądowe Topografia obwodu drukowanego niezbędna symetryzacja po stronie pierwotnej: V g oba Q oba L pri zalecana po wtórnej Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 22
13 Przetwornica przepustowa (forward) Oparta na obniżającej Tylko 1 tranzystor korzystne przy małych napięciach / mocach Wyjście LC ciągły prąd małe tętnienie napięcia mały prąd kondensatora niezależny od obciążenia korzystne dla dużych obciążeń Tryb pracy L M (+D 1 ) tylko DCM L (+D 3 ) DCM lub CCM Ograniczony zakres D Wykorzystanie transformatora rdzenia połowiczne, bo jednokierunkowy i M Φ uzwojeń dobre, bo każde przewodzi w każdym okresie Brak niepotrzebnych strat takt 1 prawie cały prąd przenosi energię (i 1 i M ) takt 2 mały i 2 = i M n 1 /n 2 takt 3 i 1 = i 2 = i 3 = i M = 0 0 D 0,5 dla n 1 = n 2 Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 23
14 Działanie takt 1 v M = v 1 = V g > 0 v D3 = v 3 = v 1 n 3 /n 1 = V g n 3 /n 1 > 0 i 1 = i M + i 1 = i M + ( i 3 ) n 3 /n 1 Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 24
15 Działanie takt 2 v 3 = v 2 n 3 /n 2 = V g n 3 /n 2 < 0 i 2 = i 1 n 1 /n 2 = i M n 1 /n 2 v M = v 1 = v 2 n 1 /n 2 = V g n 1 /n 2 < 0 v Q1 = V g + v M = V g (1 + n 1 /n 2 ) Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 25
16 Działanie takt 3 Gdy i M spada do 0, D 1 wyłącza się, gdyż także i 2 = 0 Brak ścieżki dla ujemnego i M i M = 0 = const v M = v 1 = 0 v DS = V g Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 26
17 Rozmagnesowanie transformatora Warunkowo pełne i automatyczne z zasady działania Typowy wybór: n 1 = n 2 D ½ w przeciwnym razie ujemne napięcie przyłożone zbyt krótko v 1 dt > 0 i M stopniowo narasta Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 27
18 Współczynnik przetwarzania napięcia i obciążenie napięciowe tranzystorów NPK dla obwodu wyjściowego v D3 = v L + v C = 0 + V Zmniejszenie transformatora (n 3 ) możliwe gdyby D max co wymaga n 2 /n 1 bo wówczas i M opada (rozmagnesowanie) szybciej w takcie 2 Jednak maksymalne napięcie na tranzystorze w takcie 2 D max v Q1(max) dla n 1 = n 2 Łukasz Starzak, Przetwarzanie energii elektrycznej w fotowoltaice, zima 2014/15 28
Przetwornica mostkowa (full-bridge)
Przetwornica mostkowa (full-bridge) Należy do grupy pochodnych od obniżającej identyczny (częściowo podwojony) podobwód wyjściowy Transformator można rozpatrywać jako 3-uzwojeniowy (1:n:n) oba uzwojenia
Część 4. Zmiana wartości napięcia stałego. Stabilizatory liniowe Przetwornice transformatorowe
Część 4 Zmiana wartości napięcia stałego Stabilizatory liniowe Przetwornice transformatorowe Bloki wyjściowe systemów fotowoltaicznych Systemy nie wymagające znaczącego podwyższania napięcia wyjście DC
Właściwości przetwornicy zaporowej
Właściwości przetwornicy zaporowej Współczynnik przetwarzania napięcia Łatwa realizacja wielu wyjść z warunku stanu ustalonego indukcyjności magnesującej Duże obciążenie napięciowe tranzystorów (Vg + V/n
Część 4. Zmiana wartości napięcia stałego. Stabilizatory liniowe Przetwornice transformatorowe
Część 4 Zmiana wartości napięcia stałego Stabilizatory liniowe Przetwornice transformatorowe Bloki wyjściowe systemów fotowoltaicznych Systemy nie wymagające znaczącego podwyższania napięcia wyjście DC
Przetwornica zaporowa (flyback)
Przetwornica zaporowa (flyback) Oparta na przetwornicy odwracającej (obniżająco-podwyższającej) Dzięki transformatorowi: dowolna polaryzacja V sterowanie Q względem masy tak jakby nawinąć dławik 2 równoległymi
Przerywacz napięcia stałego
Przerywacz napięcia stałego Efektywna topologia układu zmienia się w zależności od stanu łącznika Łukasz Starzak, Przyrządy i układy mocy, lato 2018/19 1 Napięcie wyjściowe przerywacza prądu stałego Przełączanie
Dobór współczynnika modulacji częstotliwości
Dobór współczynnika modulacji częstotliwości Im większe mf, tym wyżej położone harmoniczne wyższe częstotliwości mniejsze elementy bierne filtru większy odstęp od f1 łatwiejsza realizacja filtru dp. o
Część 4. Zagadnienia szczególne
Część 4 Zagadnienia szczególne a. Tryb nieciągłego prądu dławika Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 2011/12 1 Model przetwornicy w trybie nieciągłego prądu DC DC+AC Napięcie
Sterowane źródło mocy
Sterowane źródło mocy Iloczyn prądu i napięcia jest zawsze proporcjonalny (równy) do pewnej mocy p Źródła tego typu nie mogą być zwarte ani rozwarte Moc ujemna pochłanianie mocy W rozważanym podobwodzie
Przekształtniki napięcia stałego na stałe
Przekształtniki napięcia stałego na stałe Buck converter S 1 łącznik w pełni sterowalny, przewodzi prąd ze źródła zasilania do odbiornika S 2 łącznik diodowy zwiera prąd odbiornika przy otwartym S 1 U
Przetwornice napięcia. Stabilizator równoległy i szeregowy. Stabilizator impulsowy i liniowy = U I I. I o I Z. Mniejsze straty mocy.
Przetwornice napięcia Stabilizator równoległy i szeregowy = + Z = Z + Z o o Z Mniejsze straty mocy Stabilizator impulsowy i liniowy P ( ) strat P strat sat max o o o Z Mniejsze straty mocy = Średnie t
Teoria Przekształtników - kurs elementarny
W6. PRZEKSZTAŁTNIKI IMPLSOWE PRĄD STAŁEGO -(2) [L5:str. 167-196] Podstawowym parametrem branym pod uwagę przy projektowaniu przekształtników impulsowych jest częstotliwość łączeń. Zwiększanie częstotliwości
Teoria Przekształtników - kurs elementarny
W6. PRZEKSZTAŁTNIKI IMPLSOWE PRĄD STAŁEGO -(2) [L5:str. 167-196] Podstawowym parametrem branym pod uwagę przy projektowaniu przekształtników impulsowych jest częstotliwość łączeń. Zwiększanie częstotliwości
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie
11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu
11. Wzmacniacze mocy 1 Wzmacniacze mocy są układami elektronicznymi, których zadaniem jest dostarczenie do obciążenia wymaganej (na ogół dużej) mocy wyjściowej przy możliwie dużej sprawności i małych zniekształceniach
Stabilizatory impulsowe
POITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ EEKTRYCZNY Jakub Dawidziuk Stabilizatory impulsowe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Przekształtnik obniżający 4. Przekształtnik
Przekształtniki impulsowe prądu stałego (dc/dc)
Przekształtniki impulsowe prądu stałego (dc/dc) Wprowadzenie Sterowanie napięciem przez Modulację Szerokości Impulsów MSI (Pulse Width Modulation - PWM) Przekształtnik obniżający napięcie (buck converter)
Prostowniki. Prostownik jednopołówkowy
Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego
Przetwornica SEPIC. Single-Ended Primary Inductance Converter z przełączanym jednym końcem cewki pierwotnej Zalety. Wady
Przetwornica SEPIC Single-Ended Primary Inductance Converter z przełączanym jednym końcem cewki pierwotnej Zalety Wady 2 C, 2 L niższa sprawność przerywane dostarczanie prądu na wyjście duże vo, icout
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych
. Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich
PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL
PL 226485 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226485 (13) B1 (21) Numer zgłoszenia: 409952 (51) Int.Cl. H02J 3/01 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
II. Elementy systemów energoelektronicznych
II. Elementy systemów energoelektronicznych II.1. Wstęp. Główne grupy elementów w układach impulsowego przetwarzania mocy: elementy bierne bezstratne (kondensatory, cewki, transformatory) elementy przełącznikowe
Podzespoły i układy scalone mocy część II
Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep
PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe
PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe 1. UWAGA: W podanych poniżej zadaniach w każdym przypadku odniesionym do określonego obwodu przekształtnikowego należy narysować kompletny schemat wraz zastrzałkowanymi
Część 4. Zagadnienia szczególne. b. Sterowanie prądowe i tryb graniczny prądu dławika
Część 4 Zagadnienia szczególne b. Sterowanie prądowe i tryb graniczny prądu dławika Idea sterowania prądowego sygnał sterujący pseudo-prądowy prąd tranzystora Pomiar prądu tranzystora Zegar Q1 załączony
PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe
PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe 1. UWAGA: W podanych poniżej zadaniach w każdym przypadku odniesionym do określonego obwodu przekształtnikowego należy narysować kompletny schemat wraz z zastrzałkowanymi
PL 217306 B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL 27.09.2010 BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL 31.07.
PL 217306 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217306 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387605 (22) Data zgłoszenia: 25.03.2009 (51) Int.Cl.
transformatora jednofazowego.
Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia
Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"
Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
Badanie układów prostowniczych
Instrukcja do ćwiczenia: Badanie układów prostowniczych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia Poznanie budowy, zasady działania i właściwości podstawowych układów elektronicznych,
Modelowanie i badania transformatorowych przekształtników napięcia na przykładzie przetwornicy FLYBACK. mgr inż. Maciej Bączek
Modelowanie i badania transformatorowych przekształtników napięcia na przykładzie przetwornicy FLYBACK mgr inż. Maciej Bączek Plan prezentacji 1. Wprowadzenie 2. Cele pracy 3. Przetwornica FLYBACK 4. Modele
(57) 1. Układ samowzbudnej przetwornicy transformatorowej (12) OPIS PATENTOWY (19) PL (11) (13) B2 PL B2 H02M 3/315. fig.
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 161056 (13) B2 (21) Numer zgłoszenia: 283989 (51) IntCl5: H02M 3/315 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 23.02.1990 (54)Układ
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11
NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu
Rys. 1. Przebieg napięcia u D na diodzie D
Zadanie 7. Zaprojektować przekształtnik DC-DC obniżający napięcie tak, aby mógł on zasilić odbiornik o charakterze rezystancyjnym R =,5 i mocy P = 10 W. Napięcie zasilające = 10 V. Częstotliwość przełączania
Prostowniki. 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników. Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY
POLITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY Prostowniki 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników ELEKTRONIKA Jakub Dawidziuk sobota, 16
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Zalety sterowanie polowe niska moc sterowania wyłącznie nośniki większościowe krótki czas przełączania wysoka maksymalna częstotliwość pracy
LABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)
7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu buck
Przegląd półprzewodnikowych przyrządów mocy
Przegląd półprzewodnikowych przyrządów mocy Rozwój przyrządów siłą napędową energoelektroniki Najważniejsze: zdolność do przetwarzania wielkich mocy (napięcia i prądy znamionowe), szybkość przełączeń,
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Część 5. Dostarczanie energii do odbiorników prądu przemiennego. Falowniki napięcia Współpraca z siecią energetyczną
Część 5 Dostarczanie energii do odbiorników prądu przemiennego Falowniki napięcia Współpraca z siecią energetyczną Podstawa działania współczesnych falowników elektronicznych (inverters) Topologia mostka
IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych Z TR C. Materiał ilustracyjny do przedmiotu. (Cz. 3)
Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów lektrycznych Z A KŁ A D M A S Z YN L K TR C Materiał ilustracyjny do przedmiotu LKTROTCHNKA Y Z N Y C H Prowadzący: * * M N (Cz. 3) Dr inż. Piotr
POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C
ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego
Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.
Impulsowy konwerter napięcia stałego z transformatorem układ przeciwbieżny (zaporowy) - flyback converter , wersja 1.1
Impulsowy konwerter napięcia stałego z transformatorem układ przeciwbieżny (zaporowy) - flyback converter 26 03 1013, wersja 1.1 Maciej Radtke m.radtke@elka.pw.edu.pl Uwaga: przed przeczytaniem tego dziełka
Elementy indukcyjne. Konstrukcja i właściwości
Elementy indukcyjne Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elementy indukcyjne Induktor
Miernictwo I INF Wykład 13 dr Adam Polak
Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części
Zasilacze: - prostowniki, - filtry tętnień, - powielacze napięcia. Rodzaje transformatorów sieciowych
Zasilacze: - prostowniki, - filtry tętnień, - powielacze napięcia Główne parametry transformatora sieciowego Moc (jednofazowe do 3kW) Znamionowe napięcie wejściowe (np. 3V +% -%) zęstotliwość pracy (np.
ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji
Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 5 Pomiary rezystancji, pojemności, indukcyjności, impedancji
PRZEKSZTAŁTNIKI IMPULSOWE zadania zaliczeniowe
PRZEKSZTAŁTNIKI IMPULSOWE zadania zaliczeniowe 1. UWAGA: W podanych poniżej zadaniach w każdym przypadku odniesionym do określonego obwodu przekształtnikowego należy narysować kompletny schemat wraz z
Zasilacze: Prostowniki niesterowane, prostowniki sterowane
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich Politechnika Warszawska Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E1 - instrukcja Zasilacze: Prostowniki niesterowane, prostowniki
Odbiór energii z modułu fotowoltaicznego
Odbiór energii z modułu fotowoltaicznego Charakterystyki pracy typowych odbiorników biernych są w większości nieoptymalne dla poboru energii z ogniw fotowoltaicznych Dopasowanie obciążenia: przełączanie
Wzmacniacz jako generator. Warunki generacji
Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
Impulsowe przekształtniki napięcia stałego. Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki
Impulsowe przekształtniki napięcia stałego Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki 1 1. Wstęp 2. Urządzenia do przetwarzanie energii elektrycznej 3. Problemy symulacji i projektowania
Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład...
Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy
EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody II stopnia 1. Wykorzystując rachunek liczb zespolonych wyznacz impedancję
Liniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie
Porównanie uzysku energetycznego z użyciem falownika centralnego i mikrofalowników
Porównanie uzysku energetycznego z użyciem falownika centralnego i mikrofalowników mikrofalowniki falownik centralny wzorzec National Renewable Energy Laboratory (USA) 40 Główne grupy rozwiązań falowników
Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji
BADANIE TRANSFORMATORA I.
BADANIE TRANSFORMATORA I. Cel ćwiczenia: zapoznanie się z budową i działaniem transformatora w trybie stanu jałowego oraz stanu obciążenia (roboczego), wyznaczenie przekładni transformatora, jego sprawności
ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH
ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH Cel ćwiczenia: zbadanie wpływu typu układu prostowniczego oraz wartości i charakteru obciążenia na parametry wyjściowe zasilacza. 3.1. Podstawy teoretyczne 3.1.1.
Przekształtniki DC/DC
UWAGA! Teoria Przekształtników zadania zaliczeniowe cz. II ( Przekształtniki impulsowe - PI) 1.Przy rozwiązywaniu każdego zdania należy podać kompletny schemat przekształtnika wraz z zastrzałkowanymi i
Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)
Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach
Temat: Wzmacniacze operacyjne wprowadzenie
Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym
Podstawowe układy energoelektroniczne
WYKŁAD 3 Podstawowe układy energoelektroniczne Podział ze względu na charakter przebiegów wejściowych i wyjściowych Przebieg wejściowy Przemienny (AC) Przemienny (AC) Stały (DC) Stały (DC) Przebieg wyjściowy
Systemy autonomiczne (Stand-Alone / Autonomous)
Systemy autonomiczne (Stand-Alone / Autonomous) Napięcia stałego np. przyczepa kempingowa DC 12/24 V ograniczona grupa odbiorników niskie napięcie mała moc (przy dużym prądzie duże spadki napięć) nieoptymalny
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
Część 2. Sterowanie fazowe
Część 2 Sterowanie fazowe Sterownik fazowy prądu przemiennego (AC phase controller) Prąd w obwodzie triak wyłączony: i = 0 triak załączony: i = ui / RL Zmiana kąta opóźnienia załączania θz powoduje zmianę
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem
Pracownia Elektrotechniki
BADANIE TRANSFORMATORA I. Cel ćwiczenia: zapoznanie się z budową i działaniem transformatora w trybie stanu jałowego oraz stanu obciążenia (roboczego), wyznaczenie przekładni i sprawności transformatora.
KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI
KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE
Analiza ustalonego punktu pracy dla układu zamkniętego
Analiza ustalonego punktu pracy dla układu zamkniętego W tym przypadku oznacza stałą odchyłkę od ustalonego punktu pracy element SUM element DIFF napięcie odniesienia V ref napięcie uchybu V e V ref HV
DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.
Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika
Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski
Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala
Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień
Część 1 Wprowadzenie Przegląd funkcji, układów i zagadnień Źródło energii w systemie fotowoltaicznym Ogniwo fotowoltaiczne / słoneczne photovoltaic / solar cell pojedynczy przyrząd półprzewodnikowy U 0,5
Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO
Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO CEL ĆWICZENIA: poznanie zasady działania, budowy, właściwości i metod badania transformatora. PROGRAM ĆWICZENIA. Wiadomości ogólne.. Budowa i
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost
Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności
Transformatory. Budowa i sposób działania
Transformatory Energię elektryczną można w sposób ekonomiczny przesyłać na duże odległości tylko wtedy, gdy stosuje się wysokie napięcia i małe wartości prądu. Zadaniem transformatorów jest przetwarzanie
X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 20/202 Odpowiedzi do zadań dla grupy elektrycznej na zawody II stopnia Zadanie Na rysunku przedstawiono schemat obwodu
Generatory drgań sinusoidalnych LC
Generatory drgań sinusoidalnych LC Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Generatory drgań sinusoidalnych
X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną
Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego
Badanie przekładnika prądowego
Katedra Elektryfikacji i Automatyzacji Górnictwa Ćwiczenia laboratoryjne nstrukcja do ćwiczenia Badanie przekładnika prądowego Autor: dr inż. Sergiusz Boron Gliwice, czerwiec 2009 -2- Celem ćwiczenia jest
Lekcja 14. Obliczanie rozpływu prądów w obwodzie
Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego
Liniowe układy scalone
Liniowe układy scalone Wykład 3 Układy pracy wzmacniaczy operacyjnych - całkujące i różniczkujące Cechy układu całkującego Zamienia napięcie prostokątne na trójkątne lub piłokształtne (stała czasowa układu)
15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH
15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych
Wzmacniacze operacyjne
Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie
OBWODY MAGNETYCZNE SPRZĘśONE
Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym
BADANIE PRZEKŁADNIKÓW PRĄDOWYCH
1. Podstawy teoretyczne ĆWCENE NR 4 BADANE PREKŁADNKÓW PRĄDOWYCH Przekładnik prądowy jest to urządzenie elektryczne transformujące sinusoidalny prąd pierwotny na prąd wtórny o wartości dogodnej do zasilania
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko
Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych
Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany
Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH
Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,
Badanie transformatora
POLITECHIKA ŚLĄSKA WYDIAŁ IŻYIERII ŚRODOWISKA I EERGETYKI ISTYTUT MASY I URĄDEŃ EERGETYCYCH LABORATORIUM ELEKTRYCE Badanie transformatora (E 3) Opracował: Dr inż. Włodzimierz OGULEWIC 3. Cel ćwiczenia