METODY NUMERYCZNE. Wykład 2. Analiza błędów w metodach numerycznych. Met.Numer. wykład 2 1
|
|
- Danuta Sowa
- 5 lat temu
- Przeglądów:
Transkrypt
1 METODY NUMERYCZNE Wykład. Analiza błędów w metodach numerycznych Met.Numer. wykład 1
2 Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)? Przykład 1. W jaki sposób można zapisać liczbę na 5-ciu miejscach? Jak można zapisać najmniejszą liczbę w tym formacie? Jak można zapisać największą liczbę w tym formacie? Met.Numer. wykład
3 Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)? Przykład. W jaki sposób można zapisać liczbę na 5-ciu miejscach? zaokrąglenie (rounded off) urwanie (chopped) Wniosek: Błąd jest mniejszy niż 0.01 Met.Numer. wykład 3
4 Jaki błąd popełniamy? Błąd bezwzględny o wielkość dokładna lub rzeczywista o Błąd względny o o Obliczenia: ε t o o % 100% % Met.Numer. wykład 4
5 Jaki błąd popełniamy? Względne błędy wielkości małych są duże. Porównajmy: ε t o o % 100% % ε t o o % 100% % Błędy bezwzględne są jednakowe: o Met.Numer. wykład 5
6 Jak utrzymać błędy względne na podobnym poziomie? Można przedstawić liczbę w postaci: znak mantysa 10 wykł lub znak mantysa wykł czyli zapisujemy jako zapisujemy zapisujemy jako jako Met.Numer. wykład 6
7 Co zyskujemy stosując zapis zmiennoprzecinkowy? Zwiększa się zakres liczb, które możemy zapisać Jeżeli użyjemy tylko 5 miejsc do zapisu liczby (dodatniej o dodatnim wykładniku) to najmniejsza liczba zapisana to 1 a największa mantysa wykładnik Zakres możliwych do zapisania liczb zwiększył się od do Met.Numer. wykład 7
8 Co tracimy stosując zapis zmiennoprzecinkowy? Dokładność (precyzję). Dlaczego? Liczba będzie przedstawiona jako i na pięciu miejscach: mantysa wykładnik Wystąpi błąd zaokrąglenia. Met.Numer. wykład 8
9 Przykład do samodzielnego rozwiązania 1. Proszę przedstawić liczbę na pięciu miejscach w podobny sposób jak w poprzednim przykładzie: mantysa wykładnik. Proszę oszacować błąd bezwzględny i względny zaokrąglenia 3. Porównać z przykładem poprzednim (56.78) i wyciągnąć wnioski Met.Numer. wykład 9
10 Rozwiązanie przykładu do samodzielnego rozwiązania 1. Liczba zapisana na pięciu miejscach: mantysa wykładnik. Błąd bezwzględny przybliżenia wynosi 9.78 a względny % 3. Dla liczby te błędy wynoszą odpowiednio: 0.0 (mniejszy) i % (porównywalny) Met.Numer. wykład 10
11 Arytmetyka zmiennoprzecinkowasystem dziesiętny Postać liczby e σ m 10 wykładnik będący liczbą całkowitą znak liczby (-1 lub +1) mantysa (1) 10 m<(10) 10 Przykład σ 1 m.5678 e Met.Numer. wykład 11
12 Arytmetyka zmiennoprzecinkowasystem dwójkowy Postać liczby e σ m wykładnik będący liczbą całkowitą znak liczby (0 dla dodatniej lub 1 dla ujemnej liczby) Przykład ( ) (101) 1 nie jest zapisywane mantysa (1) m<() σ 0 m e 101 Met.Numer. wykład 1
13 Przykład do samodzielnego rozwiązania Mamy słowo 9-bitowe pierwszy bit odpowiada znakowi liczby, drugi bit znakowi wykładnika, następne cztery bity kodują mantysę, ostatnie trzy bity zapisują wykładnik 0 0 znak liczby znak wykładnika mantysa wykładnik Znajdź liczbę (w postaci dziesiętnej), która jest przedstawiona w podany sposób. Met.Numer. wykład 13
14 Odpowiedź ( 54.75) ( ) ( ) 10 ( ) ( ) nie jest zapisywane ( 54) 10 Met.Numer. wykład 14
15 Co to jest ε maszyny cyfrowej? Dla każdej maszyny cyfrowej definiuje się parametr epsilon ε określający dokładność obliczeń: ε N t gdzie: N (w zapisie dwójkowym), N10 (w zapisie dziesiętnym), t jest liczbą bitów w mantysie liczby ε jest tym mniejsze im więcej bitów przeznaczono na reprezentowanie mantysy M Epsilon ε można traktować jako parametr charakteryzujący dokładność obliczeniową maszyny (im mniejsze ε tym większa dokładność). Podwójna precyzja (Fortran) ε DP ε Met.Numer. wykład 15
16 Co to jest ε maszyny cyfrowej? Epsilon ε jest to najmniejsza liczba, która po dodaniu do produkuje liczbę, którą można przedstawić jako różną od Przykład: słowo dziesięciobitowe ( 1) 10 M N w znak liczby wykładnik mantysa następna znak wykładnika liczba ( ) ( ) 10 mach Met.Numer. wykład 16
17 Pojedyncza precyzja w formacie IEEE-754 (Institute of Electrical and Electronics Engineers) 3 bity dla pojedynczej precyzji znak (s) wykładnik (e ) mantysa (m) Liczba ( ) e' 17 1 m. s ( 1) Met.Numer. wykład 17
18 Przykład Sign (s) Biased Eponent (e ) Mantissa (m) Value ( ) s ( ) e' m ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) Met.Numer. wykład 18
19 Wykładnik dla 3-bitowego standardu IEEE bitów wykładnika oznacza 17 e 18 W istocie 1 e 54 0 e 55 Ustalone przesunięcie wykładnika wynosi 17 a zatem e 0 e 55 Liczby i są zarezerwowane dla przypadków specjalnych Zakres wykładnika 16 e 17 Met.Numer. wykład 19
20 Reprezentacja liczb specjalnych e 0 e 55 e same zera same jedynki s m Reprezentuje 0 same zera same zera 0 1 same zera same zera -0 0 same jedynki 1 same jedynki 0 lub 1 same jedynki same zera same zera różne od zera NaN Met.Numer. wykład 0
21 Format IEEE-754 Największa liczba ( ) Najmniejsza liczba 10 ( ) Epsilon maszyny cyfrowej ε mach Met.Numer. wykład 1
22 Analiza błędów Jeżeli nie znamy wielkości dokładnej o możemy obliczać błąd bezwzględny przybliżenia (ang. approimate error) jako różnicę wartości uzyskanych w kolejnych przybliżeniach : Błąd względny ε a : n n 1 ε a n n 1 n Met.Numer. wykład
23 Przykład Dla 0.5 f ( ) 7e w f dla h 0. 3 a) () f () b) dla h znajdź c) błąd przybliżenia Rozwiązanie f ' ( ) f ( + h) h f ( ) a) h 0.3 f '() f ( + 0,3) 0,3 f () 7e 0,5(,3) 7e 0,3 0,5() 10,65 Met.Numer. wykład 3
24 Przykład (cd) b) h 0.15 f '() f ( + 0,15) 0,15 f () 7e 0,5(,15) 7e 0,15 0,5() 9,880 c) ε a n n 1 n ε a 9,880 10,65 9,8800 0,0389 Błąd procentowy 3,89% Met.Numer. wykład 4
25 Błąd względny jako kryterium zakończenia procedury iteracyjnej Jeżeli błąd względny jest mniejszy lub równy od pewnej określonej wcześniej liczby to dalsze iteracje nie są konieczne ε a ε s Jeżeli wymagamy przynajmniej m cyfr znaczących w wyniku to ε a m Met.Numer. wykład 5
26 Podsumowanie przykładu ε a m h f () N/A εa m Wartość dokładna Met.Numer. wykład 6
27 Źródła błędów w obliczeniach numerycznych 1. Błędy wejściowe (błędy danych wejściowych). Błędy obcięcia (ang. truncation error) 3. Błędy zaokrągleń (ang. round off error) Błędy wejściowe występują wówczas gdy dane wejściowe wprowadzone do pamięci komputera odbiegają od dokładnych wartości tych danych. Błędy obcięcia są to błędy wynikające z procedur numerycznych przy zmniejszaniu liczby działań. Błędy zaokrągleń są to błędy, których na ogół nie da się uniknąć. Powstają w trakcie obliczeń i można je zmniejszać ustalając umiejętnie sposób i kolejność wykonywania zadań. Met.Numer. wykład 7
28 Błędy wejściowe Źródła błędów wejściowych: dane wejściowe są wynikiem pomiarów wielkości fizycznych skończona długość słów binarnych i konieczność wstępnego zaokrąglania wstępne zaokrąglanie liczb niewymiernych Przybliżanie liczb, których nie można wyrazić dokładnie dokonuje się poprzez: urywanie (ang. chopping) zaokrąglanie (ang. rounding) Met.Numer. wykład 8
29 Przykład: π 3,1415 π 3, π 3,1416 urywanie zaokrąglanie Zaokrąglanie prowadzi do mniejszego błędu niż urywanie. Met.Numer. wykład 9
30 Błąd obcięcia Spowodowany jest użyciem przybliżonej formuły zamiast pełnej operacji matematycznej: przy obliczaniu sum nieskończonych szeregów przy obliczaniu wielkości będących granicami (całka, pochodna) W lim Δ 0 F Δ 1 1 Fd praca Met.Numer. wykład 30
31 Szereg Taylora Jeżeli funkcja jest ciągła i wszystkie pochodne f, f, f n istnieją w przedziale [, +h] to wartość funkcji w punkcie +h można obliczyć jako: f ( + h) f ( ) + f ( ) h + f ( ) f ( )! h + 3! h 3 +L Szereg Maclaurina jest to rozwinięcie wokół 0 f h! h 3! ( 0 + h) f ( 0) + f ( 0) h + f ( 0) + f ( 0) + L+ 3 Met.Numer. wykład 31
32 Przykłady Typowe rozwinięcia w szereg wokół zera cos( ) 1! + 4 4! 6 6! +L sin( ) 3 3! + 5 5! 7 7! +L e 1+ +! + 3 3! +L Met.Numer. wykład 3
33 Met.Numer. wykład 33 Błąd obcięcia w szeregu Taylora ( ) ( ) ( ) ( ) ( ) ( ) ( ) R n h f h f h f f h f n n n !! '' L reszta ( ) ( ) () c f n h R n n n 1 1 1)! ( ) ( h c + < <
34 Przykład Rozwinięcie w szereg e wokół 0 e 1+ +! + 3 3! + +L Im większa ilość wyrazów jest uwzględniana w rozwinięciu, tym błąd obcięcia jest mniejszy i możemy znaleźć tym dokładniejszą wartość wyrażenia Pytanie: Ile należy uwzględnić wyrazów aby otrzymać przybliżoną wartość liczby e z błędem mniejszym niż 10-6? 1 e ! ! 1 + 4! Met.Numer. wykład ! 1 + 5! ! +L
35 Rozwiązanie 0, h 1, f ( ) e R n n+ 1 h ( n + 1)! ( n+ 1 ( ) f ) () c R n ( 0) 1 n+ 1 ( n + ) 1! f ( n+ 1 ) () c ale < c < + h 0 < c < < c < 1 ( n n+ () 1 1 ( + 1) e n! 1 < R ( 0) n < + 1)! ( n c e + 1)! Met.Numer. wykład 35
36 Rozwiązanie ( e n + 1)! < 10 6 założony poziom błędu 6 ( n + 1)! > 10 e ( n + 1)! > n 9 Co najmniej 9 wyrazów musimy zastosować aby otrzymać wartość błędu na poziomie 10-6 Met.Numer. wykład 36
37 Przykład tragicznego błędu zaokrąglenia 5 lutego 1991 w Dhahran, Arabia Saudyjska, zginęło 8 amerykańskich żołnierzy w wyniku ataku irackiej rakiety Scud. System obrony Patriot nie wykrył zagrożenia. Dlaczego? System oblicza powierzchnię, którą powinien skanować na podstawie prędkości obiektu i czasu ostatniej detekcji. Zegar wewnętrzny był ustawiony na pomiar co 1/10 sekundy. Długość słowa 4 bity. Z powodu zaokrągleń błąd bezwzględny wyniósł s a po 100 godzinach: sec Przesunięcie obliczone na tej podstawie 687 m. Obiekt jest uznany poza zakresem gdy przesunięcie wynosi 137 m Met.Numer. wykład 37
38 Działania arytmetyczne 1. Dodawanie i odejmowanie Aby dodać lub odjąć dwie znormalizowane liczby w zapisie zmiennoprzecinkowym, wykładniki w powinny być zrównane poprzez odpowiednie przesunięcie mantysy. Przykład: Dodać 0, do 0, przesuwamy 0, , , Wniosek: Tracimy pewne cyfry znaczące Met.Numer. wykład 38
39 . Mnożenie Działania arytmetyczne Przykład: Pomnożyć 0, przez 0, Mnożymy mantysy i wykładniki w dodajemy. 0, , , , Dzielenie Przykład: Podzielić 0, przez 0, , /0, , Za każdym razem tracimy pewne cyfry znaczące co jest źródłem błędu Met.Numer. wykład 39
40 Kolejność działań (a+b)-c (a-c)+b brak przemienności, łączności a(b-c) (ab-ac) brak rozdzielności mnożenia względem dodawania Przykład: a 0, , b0, , c0, (a+b)0, , , , , (a+b)-c0, , , (a-c)0, , , , (a-c)+b0, , , Met.Numer. wykład 40
41 Wnioski z dotychczasowych rozważań W wielu przypadkach można uniknąć błędów wejściowych i błędów obcięcia. W trakcie obliczeń pojawiają się nowe błędy (błędy zaokrągleń), których nie da się uniknąć. Błędy zaokrągleń można zmniejszyć ustalając umiejętnie sposób i kolejność wykonywania działań. Met.Numer. wykład 41
42 Zadanie do samodzielnego rozwiązania zapisu części ułamkowej liczby. Różnica akumuluje się co 1/10 sekundy przez dobę. Jaka jest jej wartość? Met.Numer. wykład 4
43 Propagacja błędów 140 y u(y) funkcja y f() styczna dy/d u (y) u() u() dy d Met.Numer. wykład 43
44 Metoda różniczki zupełnej Dla wielkości złożonej yf( 1,,... n ) gdy niepewności maksymalne Δ 1, Δ,... Δ n są małe w porównaniu z wartościami zmiennych 1,,... n niepewność maksymalną wielkości y wyliczamy z praw rachunku różniczkowego: y y Δ y Δ1 + Δ y n Δ n Met.Numer. wykład 44
45 Przykład Oszacować błąd pomiaru gęstości ρ kuli o masie m i promieniu R ρ( m, R) (4 m 3)πR 3 błąd bezwzględny Δρ ρ Δm m + ρ ΔR R ale ρ m 1 ( ) πr ρ R 3 ( ) πr błąd względny ε ε + 3ε ρ m R Met.Numer. wykład 45
46 Nie można obecnie wyświetlić tego obrazu. Błędy działań arytmetycznych Błąd sumy A a ± Δa B b ± Δb błędy bezwzględne składników sumy A + B a + b ± Δa ± Δb a + b ± Δ( a + b) błąd bezwzględny sumy Zatem błąd bezwzględny sumy (różnicy) jest równy sumie błędów składników. Δ ( a ± b) Δa + Δb Met.Numer. wykład 46
47 Błędy działań arytmetycznych Błąd względny sumy ε a+ b Δa a + Δb + b Błąd względny różnicy ε a b Δa a + Δb b Błąd względny różnicy może być duży nawet gdy błędy względne odjemnej i odjemnika są małe. Należy unikać odejmowania prawie równych liczb przybliżonych! Zjawisko zwane redukcją cyfr znaczących Szczególnie istotne przy obliczeniach ilorazów różnicowych przybliżających pochodne funkcji, pierwiastków równania kwadratowego przy dominującym współczynniku przy pierwszej potędze, itp. Met.Numer. wykład 47
48 Koncepcja zera Tracimy dokładny sens liczby 0 jeśli dokonujemy obliczeń numerycznych + 0 pierwiastkami są 1± 3 w przybliżeniu 0, o Sprawdzić, że po podstawieniu rozwiązań przybliżonych nie otrzymujemy dokładnie liczby zero Powinno się zatem unikać odejmowania bliskich sobie liczb i warunek w pętli nie powinien być ustawiany do zera, if a-b<ε Met.Numer. wykład 48
49 Wnioski praktyczne Przy obliczeniach numerycznych korzystne jest: ponowne rozwiązanie tego samego zagadnienia inną metodą lub taką samą metodą, ale z inną kolejnością operacji ponowne rozwiązanie zagadnienia przy nieznacznej zmianie danych wejściowych Met.Numer. wykład 49
50 Zadania i algorytmy numeryczne Zadanie numeryczne wymaga jasnego i niedwuznacznego opisu powiązania funkcjonalnego między danymi wejściowymi czyli zmiennymi niezależnymi zadania i danymi wyjściowymi, tj. szukanymi wynikami. Zadanie numeryczne jest problemem polegającym na wyznaczeniu wektora wyników w na podstawie wektora danych a a D odwzorowanie W w zadanie dobrze postawione r w r W (a) jednoznaczne przyporządkowanie Met.Numer. wykład 50
51 Zadania i algorytmy numeryczne Algorytm numeryczny jest pełnym opisem poprawnie określonych operacji przekształcających wektor dopuszczalnych danych wejściowych (zbiór DN) na wektor danych wyjściowych. Algorytm jest poprawnie sformułowany gdy liczba niezbędnych działań będzie skończona DN D w WN( a, ε) a DN odwzorowanie WN w wektor wyniku zależy od dokładności obliczeniowej ε maszyny cyfrowej Met.Numer. wykład 51
52 Przykłady algorytmów Dana jest liczba zespolona a+iy. Obliczyć 1/a Algorytm I: 1. t y / (tangens fazy liczby a). 3. a + Re 1 y 1 a / a / + (kwadrat modułu liczby a) 1 t 1 t Im 1 1 t t a / a / 1+ Zadanie jest dobrze postawione, jeżeli: + y 0 czyli: D R {(0,0)} Algorytm jest poprawnie sformułowany (11 niezbędnych działań) Met.Numer. wykład 5
53 Przykłady algorytmów Nie dla każdej pary danych (,y) 0 można znaleźć rozwiązanie zadania stosując algorytm I. 1. Wystąpi nadmiar liczb zmiennopozycyjnych (dla 0 ale także z powodu zaokrąglenia do zera). Nadmiar może nastąpić może już w pierwszym kroku gdy 10-5 i y10 5 z powodu dzielenia y/ 3. Dla 0, istniejącego dla y 0 rozwiązania nie można wyznaczyć stosując ten algorytm. Wzrost dokładności obliczeń nie zmieni tego faktu. Algorytm I nie jest numerycznie stabilny Met.Numer. wykład 53
54 Przykłady algorytmów Dana jest liczba zespolona a+iy. Obliczyć 1/a Algorytm II: 1. r Re 1 a + y y. u Im 1 a y + y Algorytm II jest poprawnie sformułowany (9 niezbędnych działań) Algorytm II jest numerycznie stabilny co wynika z ciągłości wzorów dla + y 0 Met.Numer. wykład 54
55 Schemat Hornera Przykład wzoru rekurencyjnego Aby obliczyć wartość wielomianu: n n 1 + a an 1 p ( ) + w danym punkcie z, korzystamy ze schematu: p z + p + 1 a 1 zp1 a p + n zpn 1 ) p n p ( z co odpowiada obliczaniu wartości wyrażenia: { z[ z...( z + a1 ) + a] a n 1} an z + a n a n Met.Numer. wykład 55
56 Schemat Hornera Schemat Hornera umożliwia znaczne zmniejszenie liczby działań arytmetycznych. W schemacie Hornera wykonujemy n-1 mnożeń i n dodawań. Obliczając bezpośrednio: zz... z + + a1 z... z an 1z a o n razy n-1 razy wykonujemy (n-1)(n+)/ mnożeń i n dodawań. Oszacowanie wielkości błędów zaokrągleń jest identyczne dla obu metod Met.Numer. wykład 56
57 Schemat Hornera Przykład: oblicz 0 3 p ( z) a z + a z + a z + a 1 3 w schemacie Hornera dla obliczeń ręcznych: p ( z) (( a z + a 0 z + a1) z + a) a 0 a 1 a a 3 3 zb 0 zb 1 zb b 0 b 1 b b 3 p(z)b 3 Zadanie: Oblicz p(8) dla p() p(8)1039 Met.Numer. wykład 57
58 Schemat blokowy b:a 0 i:0 i:i+1 b:a i +zb nie in? tak wyjście Met.Numer. wykład 58
59 Uwarunkowanie zadania i stabilność algorytmów Algorytm obliczeniowy jest numerycznie stabilny, jeżeli dla dowolnie wybranych danych a 0 D istnieje taka dokładność obliczeń ε 0, że dla ε<ε 0 mamy a 0 DN( ε ) oraz WN ( a, ε) W ( a ) lim 0 0 ε 0 Algorytm obliczeniowy jest numerycznie stabilny wtedy, gdy zwiększając dokładność obliczeń można wyznaczyć ( z dowolną dokładnością) dowolne istniejące rozwiązanie zadania. Met.Numer. wykład 59
60 Uwarunkowanie zadania i stabilność algorytmów Uwarunkowaniem zadania nazywamy cechę, która mówi jak bardzo wynik dla zaburzonego wektora danych różni się od wyniku dla dokładnego wektora danych czyli: W(a + δa) W(a) Wskaźnik uwarunkowania zadania B(a) jest to liczba, dla której jest spełniony warunek: δw w B(a) δa a δw WN( a, ε) W ( a) Met.Numer. wykład 60
61 Wskaźnik uwarunkowania zadania Przyjmijmy względny błąd wielkości ~ ~ Względny błąd wielkości f() f ( ) f f ( ~ ) ( ~ ) f '( ~ )( f ( ~ ) ~ ) Wskaźnik uwarunkowania: ~ f '( ~ ) f ( ~ ) Met.Numer. wykład 61
62 Wskaźnik uwarunkowania zadania Przykład f ( ) Wskaźnik uwarunkowania: ~ f f '( ~ ) ( ~ ) 1 1 zadanie dobrze uwarunkowane Met.Numer. wykład 6
63 Wskaźnik uwarunkowania zadania Przykład f ( ) 10 1 Wskaźnik uwarunkowania: ~ f f '( ~ ) ( ~ ) 1 zadanie źle uwarunkowane w pobliżu 1 i -1 Met.Numer. wykład 63
METODY NUMERYCZNE. Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)?
METODY NUMERYCZNE Wykład 2. Analiza błędów w metodach numerycznych Met.Numer. wykład 2 1 Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)? Przykład 1. W jaki sposób można zapisać
Bardziej szczegółowoMETODY NUMERYCZNE. Wykład 1. Wprowadzenie do metod numerycznych
METODY NUMERYCZNE Wykład 1. Wprowadzenie do metod numerycznych dr hab.inŝ. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak Met.Numer. wykład
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 2 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Arytmetyka zmiennopozycyjna
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
Bardziej szczegółowoBŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
Bardziej szczegółowoLiczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Bardziej szczegółowoMetody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61
Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of
Bardziej szczegółowoWprowadzenie do metod numerycznych. Krzysztof Patan
Wprowadzenie do metod numerycznych Krzysztof Patan Metody numeryczne Dział matematyki stosowanej Każde bardziej złożone zadanie wymaga opracowania indywidualnej metody jego rozwiązywania na maszynie cyfrowej
Bardziej szczegółowoPrzedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Bardziej szczegółowoMetody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p.
Metody numeryczne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/2002 23:02 p.1/63 Plan wykładu 1. Dokładność w obliczeniach numerycznych 2. Złożoność
Bardziej szczegółowoTechnologie Informacyjne Wykład 4
Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część
Bardziej szczegółowoREPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
Bardziej szczegółowoZestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Bardziej szczegółowoREPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
Bardziej szczegółowoKod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci
Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Bardziej szczegółowoLiczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowoEMN. dr Wojtek Palubicki
EMN dr Wojtek Palubicki Zadanie 1 Wyznacz wszystkie dodatnie liczby zmiennopozycyjne (w systemie binarnym) dla znormalizowanej mantysy 3-bitowej z przedziału [0.5, 1.0] oraz cechy z zakresu 1 c 3. Rounding
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowoPracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Bardziej szczegółowoSystemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Bardziej szczegółowoLuty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoBŁĘDY PRZETWARZANIA NUMERYCZNEGO
BŁĘDY PRZETWARZANIA NUMERYCZNEGO Maciej Patan Uniwersytet Zielonogórski Dlaczego modelujemy... systematyczne rozwiązywanie problemów, eksperymentalna eksploracja wielu rozwiązań, dostarczanie abstrakcyjnych
Bardziej szczegółowoZwykle liczby rzeczywiste przedstawia się w notacji naukowej :
Arytmetyka zmiennoprzecinkowa a procesory cyfrowe Prawa algebry stosują się wyłącznie do arytmetyki o nieograniczonej precyzji x=x+1 dla x będącego liczbą całkowitą jest zgodne z algebrą, dopóki nie przekroczymy
Bardziej szczegółowoWstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoPowtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoReprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej
Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne
Bardziej szczegółowoStan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Bardziej szczegółowoObliczenia Naukowe. O arytmetyce komputerów, Czyli jak nie dać się zaskoczyć. Bartek Wilczyński 29.
Obliczenia Naukowe O arytmetyce komputerów, Czyli jak nie dać się zaskoczyć Bartek Wilczyński bartek@mimuw.edu.pl 29. lutego 2016 Plan semestru Arytmetyka komputerów, wektory, macierze i operacje na nich
Bardziej szczegółowo3.3.1. Metoda znak-moduł (ZM)
3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoArytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoDokładność obliczeń numerycznych
Dokładność obliczeń numerycznych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 MOTYWACJA Komputer czasami produkuje nieoczekiwane wyniki >> 10*(1-0.9)-1 # powinno być 0 ans = -2.2204e-016 >>
Bardziej szczegółowoPracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowox y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoPodstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30
Bardziej szczegółowoNaturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Bardziej szczegółowoSystem liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja
Bardziej szczegółowoWprowadzenie do metod numerycznych Wykład 1 Przybliżenia
Wprowadzenie do metod numerycznych Wykład 1 Przybliżenia Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Poprawność obliczeń komputerowych 2
Bardziej szczegółowoArytmetyka stało i zmiennoprzecinkowa
Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoDYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
Bardziej szczegółowoMetody numeryczne. Postać zmiennoprzecinkowa liczby. dr Artur Woike. Arytmetyka zmiennoprzecinkowa. Uwarunkowanie zadania.
Ćwiczenia nr 1 Postać zmiennoprzecinkowa liczby Niech będzie dana liczba x R Mówimy, że x jest liczbą zmiennoprzecinkową jeżeli x = S M B E, gdzie: B N, B 2 (ustalona podstawa systemu liczbowego); S {
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowoZapis zmiennopozycyjny, arytmetyka, błędy numeryczne
Zapis zmiennopozycyjny, arytmetyka, błędy numeryczne Plan wykładu: 1. zapis zmiennopozycyjny 2. arytmetyka zmiennopozycyjna 3. reprezentacja liczb w standardzie IEEE754 4. błędy w obliczeniach numerycznych
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoBardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
Bardziej szczegółowoPodstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoUkłady arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011
Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy
Bardziej szczegółowoArchitektura komputerów Reprezentacja liczb. Kodowanie rozkazów.
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoArytmetyka zmiennoprzecinkowa wer. 5
Arytmetyka zmiennoprzecinkowa wer. 5 Wojciech Myszka, Maciej Panek listopad 2014r. Ułamki Powinniśmy wiedzieć już wszystko na temat arytmetyki liczb całkowitych. Teraz zajmiemy się liczbami zmiennoprzecinkowymi.
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
Bardziej szczegółowoMETODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
Bardziej szczegółowoPochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
Bardziej szczegółowoWykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Bardziej szczegółowoMatematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Bardziej szczegółowoPozycyjny system liczbowy
Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w
Bardziej szczegółowoPrefiksy binarne. kibibit (Kibit) mebibit (Mibit) gibibit (Gibit) tebibit (Tibit) pebibit (Pibit) exbibit (Eibit) zebibit (Zibit) yobibit (Yibit)
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowo2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze
23 Wyznaczanie wartości wielomianu pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 231 Systemy liczbowe Definicja Systemem liczbowym nazywamy zbiór zasad określających sposób
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoOperacje arytmetyczne
PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik
Bardziej szczegółowo1259 (10) = 1 * * * * 100 = 1 * * * *1
Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoArytmetyka stałopozycyjna
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoMetody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoSYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M
SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Bardziej szczegółowoProgramowanie w C++ Wykład 2. Katarzyna Grzelak. 5 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41
Programowanie w C++ Wykład 2 Katarzyna Grzelak 5 marca 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41 Reprezentacje liczb w komputerze K.Grzelak (Wykład 1) Programowanie w C++ 2 / 41 Reprezentacje
Bardziej szczegółowoPracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Bardziej szczegółowoPlan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY
Bardziej szczegółowoSYSTEMY LICZBOWE. Zapis w systemie dziesiętnym
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoKod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowoWstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoWstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Sposoby reprezentacji liczb całkowitych i rzeczywistych patrz wykład z Teoretycznych Podstaw
Bardziej szczegółowo