Postulaty±ci Ameryka«scy
|
|
- Kornelia Kaczmarczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Postulaty±ci Ameryka«scy Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl KHL 62 Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 1 / 24
2 Wst p Plan na dzi± Omawiamy prace niektórych matematyków ameryka«skich, publikowane w trzech pierwszych dekadach XX wieku w Transactions of the American Mathematical Society. Szczególn uwag po±wi camy wyªanianiu si poj metalogicznych (kategoryczno±ci oraz zupeªno±ci). Odczyt stanowi streszczenie fragmentu cz ±ci pierwszej przygotowywanej rozprawy Extremal Axioms. Oprócz oryginalnych tekstów ¹ródªowych wykorzystujemy te» ustalenia z: Awodey, Reck 2002, Corcoran 1981, Scanlan 1991, 2003, Tarski Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 2 / 24
3 Wst p Projekt badawczy NCN Odczyt zostaª przygotowany w ramach projektu badawczego NCN 2015/17/B/HS1/02232: Aksjomaty ekstremalne: aspekty logiczne, matematyczne i kognitywne. Projekt jest realizowany w Zakªadzie Logiki i Kognitywistyki UAM ( ). Strona projektu: W ramach projektu przewiduje si dwa skromne stypendia dla doktorantów, ewentualnie zainteresowanych wspóªprac. Konkurs zostanie ogªoszony pod koniec 2016 roku. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 3 / 24
4 Wst p Tªo Matematyczne korzenie bada«logicznych Matematyka w Europie w XIX wieku Trend algebraiczny w logice Aksjomaty dla systemów liczbowych Rewolucyjne zmiany w algebrze, geometrii i analizie Matematyka w USA w XIX wieku O±rodki akademickie oraz wybitni matematycy American Mathematical Society (1888) Transactions of the American Mathematical Society (1900) Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 4 / 24
5 Wst p Tªo Prapocz tki metalogiki Gottlob Frege, Bertrand Russell: logika jest jedna i uniwersalna. Gregorius Itelson (1904): Moreover, no science, no theory can be prior to or higher than Logic, which is the foundation of any science and of any theory; one can say, in parodying the word of Pascal: that which surpasses Logic surpasses us; thus there cannot be metalogic. Gerhard Stammler (1928): There is no metalogic as extralogical grounding of logic. Logic stands for itself. Pierwsze wyniki w metalogice: Löwenheim 1915, Skolem 1919, Bernays 1918, Post Carnap: Versuch einer Metalogik (1931). Alfred Tarski: Pocz tek Przygód Metalogicznych. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 5 / 24
6 Osoby Ojcowie Zaªo»yciele Postulaty±ci Ameryka«scy Eliakim Hastings Moore ( ). Postulaty dla: grup oraz geometrii n-wymiarowej. Pó¹niej: prace z analizy matematycznej. Oswald Veblen ( ). Postulates for: geometrii euklidesowej oraz rzutowej, kontinuum oraz zbiorów dobrze uporz dkowanych. Pó¹niej: prace z topologii algebraicznej oraz geometrii ró»niczkowej. Edward Vermilye Huntington ( ). Postulaty dla: grup, ciaª, dodatnich liczb caªkowitych i wymiernych, geometrii, wielko±ci ci gªych, algebry zespolonej, algebr Boole'a. Leonard Eugene Dickson ( ). Postulaty dla: grup, ciaª, ª cznych algebr liniowych. Liczne prace dotycz ce algebr z dzieleniem oraz algebraicznej teorii liczb. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 6 / 24
7 Osoby Ojcowie Zaªo»yciele Eliakim Hastings Moore Leonard Eugene Dickson Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 7 / 24
8 Osoby Ojcowie Zaªo»yciele Oswald Veblen Edward Vermilye Huntington Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 8 / 24
9 Osoby Inni Kilka dalszych postaci Robert Lee Moore ( ) B. A. Bernstein ( ) Earle Raymond Hedrick ( ) John Robert Kline ( ) Henry Maurice Sheer ( ) John Wesley Young ( ) Cassius Jackson Keyser ( ) Cooper Harold Langford ( ) Norbert Wiener ( ) Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL 62 9 / 24
10 Osoby Inni Cooper Harold Langford Robert Lee Moore Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
11 Osoby Wybrane prace Wybrane prace Prace Postulatystów Ameryka«skich s dost pne on line na stronach Transactions of the American Mathematical Society. Dickson, L.E Denitions of a group and a eld by independent postulates. Transactions of the American Mathematical Society 6, Moore, E.H On the projective axioms of geometry. Transactions of the American Mathematical Society 3, Huntington, E.V A complete set of postulates for the theory of absolute continuous magnitude. Transactions of the American Mathematical Society 3, Veblen, O A system of axioms for geometry. Transactions of the American Mathematical Society 5, Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
12 Osoby Cytaty Cytaty: Huntington A complete set of postulates for the theory of absolute continuous magnitude (1902): The object of the work which follows is to show that these six postulates form a complete set; that is, they are (I) consistent, (II) sucient, (III) independent (or irreducible). By these three terms we mean: (I) there is at least one assemblage in which the chosen rule of combination satises all the six requirements; (II) there is essentially only one such assemblage possible; (III) none of the six postulates is a consequence of the other ve. Powy»szy cytat jest reprezentatywny dla wszystkich prac Postulatystów Ameryka«skich dotycz cych zestawów postulatów. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
13 Osoby Cytaty Cytaty: Huntington A set of postulates for ordinary complex algebra (1905): In the case of any categorical set of postulates one is tempted to assert the theorem that if any proposition can be stated in terms of the fundamental concepts, either it is itself deducible from the postulates, or else its contradictory is so deducible; it must be admitted, however, that our mastery of the processes of logical deduction is not yet, and possibly never can be, suciently complete to justify this assertion. A set of postulates for real algebra, comprising postulates for a one-dimensional continuum and for the theory of groups (1905): In conclusion, it should be noticed that the eight postulates of Ÿ 2 form a disjunctive, not a categorical set; for an abelian group may contain any nite number of elements, or be innite; and even if the number of elements in two groups is the same, the groups are not necessarily isomorphic; hence there are many propositions concerning K and + which are neither deducible from these postulates, nor in contradiction with them. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
14 Osoby Cytaty Cytaty: Veblen A system of axioms for geometry (1904): [...] any proposition which can be made in terms of points and order either is in contradiction with our axioms or is equally true of all classes that verify our axioms. The validity of any possible statement in these terms is therefore completely determined by the axioms; and so any further axiom would have to be considered redundant. [Footnote: Even were it not deducible from the axioms by a nite number of syllogisms.] Thus, if our axioms are valid geometrical propositions, they are sucient for the complete determination of euclidian geometry. The foundations of geometry: A historical sketch and a simple example (1906): But if a proposition is a consequence of the axioms, can it be derived from them by a syllogistic process? Perhaps not. Uwaga: syllogistic process nale»y tu rozumie jako dowód. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
15 Osoby Cytaty Cytaty: Veblen Euclid's parallel postulate (1905): How shall we use the word exist? There is a technical usage which says that a mathematical science... exists if no two propositions deducible from its hypotheses are in contradiction. In this sense (due to Hilbert) we are able to say that all mathematical sciences exist if arithmetic exists i.e., the science of positive whole numbers. One is tempted to say that surely the whole numbers 1, 2, 3,... etc. exist. But what would be the content of such statement? And do we know these numbers except by the propositions which we wish to prove consistent? Cytowane za: Scanlan 1991, 992. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
16 Metodologia Wybór terminów pierwotnych Co jest najbardziej podstawowe? Algebra E.H. Moore: tabliczka dziaªania (rule of combination) dla grup. Huntington: dziaªania: (grupy); oraz (ciaªa);, oraz relacja < (algebra logiki); relacja ternarna (grupy). Dickson: funkcja (grupy); funkcje oraz (ciaªa); liniowo niezale»ne jednostki lub wspóªrz dne (ª czne algebry liniowe). Geometria E.H. Moore: punkty, proste, odcinki. Veblen: punkty i porz dek (relacja le»enia mi dzy). Huntington: sfery oraz inkluzja. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
17 Metodologia Dedukcje Rozumowania matematyczne Wspóªczesny czytelnik mo»e bez trudno±ci czyta omawiane teksty, cho napisane zostaªy ponad sto lat temu. Postulaty±ci Ameryka«scy deklarowali korzystanie z formalizmu logicznego w przygotowywaniu dowodów, ale (z nielicznymi wyj tkami) nie u»ywali go w publikacjach. Postulaty±ci Ameryka«scy w kilku przypadkach poprawiali wyniki wcze±niej uzyskane przez innych. W kilku przypadkach dokonywali te» korekt wªasnych dokona«. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
18 Metodologia Niezale»no± postulatów Ekonomia opisu Dowody niezale»no±ci postulatów prowadzone s metod znan z Grundlagen der Geometrie Hilberta. Aby pokaza,»e zbiór A postulatów jest niezale»ny, dowodzi si,»e dla dowolnego A A istnieje struktura speªniaj ca wszystkie warunki z A {A}, lecz nie speªniaj ca A. W dowodach niezale»no±ci omawiani autorzy korzystaj ze standardowych obiektów matematycznych: liczb caªkowitych, rzeczywistych i zespolonych, sfer oraz innych obiektów geometrycznych. Niektóre z rozwa»anych przykªadów s do± zabawne (np. egg-shaped objects w jednej z prac Huntingtona). Zdarzaj si te» trudne do wyja±nienia przykªady. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
19 Poj cia metalogiczne Niesprzeczno±, niezale»no±, kategoryczno± Tworzenie poj metalogicznych Niesprzeczno±. Rozumiana semantycznie przez Huntingtona (istnienie struktury). Veblen zgªaszaª pewne zastrze»enia (zob. cytaty powy»ej). Wynikanie. Rozumiane na sposób semantyczny. Niezale»no±. Rozumiana na sposób przed chwil omówiony. Suciency. Termin wprowadzony przez Huntingtona (1902): nieodró»nialno± ze wzgl du na izomorzm. Kategoryczno±. Veblen zast piª powy»szy termin terminem categoricity (1904). Kategoryczno± w mocy. Nie jest brana pod uwag. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
20 Poj cia metalogiczne Zupeªno±, deniowalno±, rozstrzygalno± Tworzenie poj metalogicznych Zupeªno±. Nie ma precyzyjnego poj cia zupeªno±ci, ale omawiani autorzy wyra»aj pewne przeczucia metodologiczne (zob. cytaty powy»ej). Deniowalno±. Denicje rozumiane jako skróty. Tarski skorygowaª pewne nietrafne stwierdzenia Veblena dotycz ce deniowalno±ci. Aksjomat zupeªno±ci Hilberta. Wspominany w pracach Huntingtona i Veblena. Rozstrzygalno±. Praca Langforda (1926) dotycz ca g stych liniowych porz dków. Neutralno± epistemologiczna. Postulaty±ci Ameryka«scy unikaj deklaracji lozocznych. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
21 Pó¹niejsze badania Podstawy matematyki Wpªyw i kontynuacja Skolem 1919: twierdzenie Löwenheima-Skolema. Fraenkel 1923: rozwa»ania o zupeªno±ci. Carnap 1930: Gabelbarkeitssatz. Zermelo 1930: twierdzenia o izomorzmie dziedzin normalnych. Twierdzenia o izomorzmie w algebrze (Frobenius 1878, Hurwitz 1898/1923, Ostrowski 1916, Pontriagin 1932). Seminaria Tarskiego w Warszawie ( ): wypracowanie wielu poj metalogicznych. Tarski, Lindenbaum 1935: m.in. warunek wystarczaj cy dla implikacji zupeªno± kategoryczno±. Tarski 1940: uwagi o kategoryczno±ci i zupeªno±ci. Tarski: aksjomaty dla geometrii oraz teorii ciaª rzeczywi±cie domkni tych. Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
22 Sªowo ko«cowe Aksjomaty ekstremalne Logiczny i matematyczny punkt widzenia Przykªady aksjomatów ekstremalnych: Geometria: aksjomat zupeªno±ci (Hilbert), zast piony pó¹niej przez aksjomat ci gªo±ci. Arytmetyka: aksjomat indukcji (Peano). Algebra: aksjomat ci gªo±ci (Cantor, Dedekind). Twierdzenia o izomorzmie (Ostrowski, Frobenius, Hurwitz, Pontriagin). Teoria mnogo±ci: aksjomaty ograniczenia (Fraenkel, Gödel, Suszko, Myhill). Aksjomaty maksymalno±ci: aksjomaty istnienia du»ych liczb kardynalnych (Zermelo oraz wspóªczesne propozycje). Klasyczne prace o aksjomatach ekstremalnych: Carnap, Bachmann 1936, Baer 1928, Baldus 1928, Bernays 1955, Fraenkel Bar Hillel Levy Prace wspóªczesne: Hintikka (analiza pogl dów Carnapa), Schiemer (aksjomat ograniczenia Fraenkla). Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
23 Sªowo ko«cowe Co dalej? Charakterystyka modeli zamierzonych Cz ± I: Aspekty logiczne Tworzenie poj metalogicznych Konsekwencje twierdze«limitacyjnych Cz ± II: Aspekty matematyczne Przyj te oraz odrzucone aksjomaty ekstremalne Wspóªczesne wyniki dotycz ce kategoryczno±ci i zupeªno±ci Cz ± III: Aspekty kognitywne Do czego potrzebujemy modeli zamierzonych? Intuicje profesjonalnych matematyków Rozumienie w matematyce Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
24 Wybrane pozycje bibliograczne Awodey, S., Reck, E.H Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic. History and Philosophy of Logic 23, 130. Carnap, R., Bachmann, F Über Extremalaxiome. Erkenntnis 6, Corcoran, J From Categoricity to Completeness. History and Philosophy of Logic 2, Scanlan, M Who were the American Postulate Theorists? The Journal of Symbolic Logic Volume 56, Number 3, Scanlan, M American Postulate Theorists and Alfred Tarski. History and Philosophy of Logic 24, Tarski, A On the Completeness and Categoricity of Deductive Systems. In: Mancosu, P The Adventure of Reason. Interplay between Philosophy of Mathematics and Mathematical Logic, Oxford University Press, Oxford, Jerzy Pogonowski (MEG) Postulaty±ci Ameryka«scy KHL / 24
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Metalogika. Jerzy Pogonowski. Geneza metalogiki. Zakªad Logiki i Kognitywistyki UAM
Metalogika Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.logic.amu.edu.pl pogon@amu.edu.pl Geneza metalogiki Jerzy Pogonowski (MEG) Metalogika Geneza metalogiki 1 / 22 Wst p Cel wykªadów Cel
Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA
Steeple #3: Gödel s Silver Blaze Theorem Selmer Bringsjord Are Humans Rational? Dec 6 2018 RPI Troy NY USA Gödels Great Theorems (OUP) by Selmer Bringsjord Introduction ( The Wager ) Brief Preliminaries
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Maªgorzata Murat. Modele matematyczne.
WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia
Metalogika Wstęp. Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika Wstęp Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika Wstęp Uniwersytet Opolski 1 / 22 Wstęp Cel wykładów
Aksjomaty ekstremalne
Aksjomaty ekstremalne Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Filozofia matematyki II Jerzy Pogonowski (MEG) Aksjomaty ekstremalne Filozofia matematyki II 1
AKSJOMATY EKSTREMALNE
AKSJOMATY EKSTREMALNE JERZY POGONOWSKI, UAM ABSTRAKT. Termin aksjomaty ekstremalne odnosi się do tych aksjomatów, które miały zapewniać, iż zawierająca je teoria jednoznacznie charakteryzuje swój model
Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego
Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
AE i modele zamierzone
AE i modele zamierzone Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 PKK, 3XII2010 Jerzy Pogonowski (MEG) AE i modele zamierzone 4 PKK, 3XII2010 1 / 17 Wstęp Czy
JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE
MACIEJ MATASEK JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE 1 Copyright by Wydawnictwo HANDYBOOKS Poznań 2014 Wszelkie prawa zastrzeżone. Każda reprodukcja lub adaptacja całości bądź części
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
Juwenilia logiczne Romana Suszki
Juwenilia logiczne Romana Suszki Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 12 maja 2009 Jerzy Pogonowski (MEG) Juwenilia logiczne Romana Suszki 12 maja 2009 1
WYKŁAD 3: METODA AKSJOMATYCZNA
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 3: METODA AKSJOMATYCZNA III rok kognitywistyki UAM, 2016 2017 Plan na dziś: 1. Przypomnimy, na czym polega aksjomatyczna metoda dowodzenia twierdzeń.
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Logika intuicjonistyczna
9 listopada 2011 Plan 1 2 3 4 Plan 1 2 3 4 Intuicjonizm Pogl d w lozoi matematyki wprowadzony w 1912 L. E. J. Brouwera. Twierdzenia matematyczne powstaj dzi ki intuicjom naszego umysªu. Skupienie si na
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
Matematyka jest logiką nieskończonego
Matematyka jest logiką nieskończonego Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wrocław, 27 VI 2008 Jerzy Pogonowski (MEG) Matematyka jest logiką nieskończonego
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
ITIL 4 Certification
4 Certification ITIL 3 Certification ITIL Master scheme ITIL Expert 5 Managing across the lifecycle 5 3 SS 3 SD 3 ST 3 SO 3 CS1 4 OSA 4 PPO 4 RCV 4 SOA Ścieżka lifecycle Ścieżka Capability 3 ITIL Practitioner
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera
POLITYKA PRYWATNOŚCI / PRIVACY POLICY
POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka
Twierdzenia Gödla. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Twierdzenia Gödla Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Twierdzenia Gödla Funkcje rekurencyjne 1 / 21 Wprowadzenie
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia
Teoria mnogo±ci. Twierdzenia podziaªowe. Piotr Zakrzewski. Toru«, 31 sierpnia 2009. Instytut Matematyki Uniwersytet Warszawski
Teoria mnogo±ci Twierdzenia podziaªowe Piotr Zakrzewski Instytut Matematyki Uniwersytet Warszawski Toru«, 31 sierpnia 2009 Istota twierdze«podziaªowych Jesli,du»y' zbiór podzielimy na,niewielk ' liczb
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Matematyczne fantazje kognitywistów
Matematyczne fantazje kognitywistów Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wrocªaw 2013 Jerzy Pogonowski (MEG) Matematyczne fantazje kognitywistów Wrocªaw 2013
ZDANIA ANGIELSKIE W PARAFRAZIE
MACIEJ MATASEK ZDANIA ANGIELSKIE W PARAFRAZIE HANDYBOOKS 1 Copyright by Wydawnictwo HANDYBOOKS Poznań 2014 Wszelkie prawa zastrzeżone. Każda reprodukcja lub adaptacja całości bądź części niniejszej publikacji,
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy
Willard Van Quine. teaching mathematical logic.
Willard Van Quine Born: 5 June 98 in Akron, Ohio, USA Died: 5 Dec in Boston, Massachusetts, USA Amerkański filozof i logik., prof.. Uniwerstetu Harvarda w Cambridge, twórca orginalnego ujęcia logiki i
Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)
112 Informator o egzaminie maturalnym z języka angielskiego od roku szkolnego 2014/2015 2.6.4. Część ustna. Przykładowe zestawy zadań Przykładowe pytania do rozmowy wstępnej Rozmowa wstępna (wyłącznie
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
OPIS PRZEDMIOTU. Podstawy edukacji matematycznej. Wydzia Pedagogiki i Psychologii
OPIS PRZEDMIOTU Nazwa przedmiotu Kod przedmiotu Wydzia Wydzia Pedagogiki i Psychologii Instytut/Katedra INSTYTUT PEDAGOGIKI, Zak ad Pedagogiki Wczesnoszkolnej i Edukacji Plastycznej Kierunek pedagogika,
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO. Internet Rzeczy w wyobraźni gracza komputerowego
GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO Internet Rzeczy w wyobraźni gracza komputerowego NAUKA PRZEZ ZABAWĘ Strategia nauczania: Planowe, Zorganizowane Lub zainicjowane przez nauczyciela
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Argumenty z intuicji matematycznej
Argumenty z intuicji matematycznej Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl ArgDiaP 2011 Jerzy Pogonowski (MEG) Argumenty z intuicji matematycznej ArgDiaP 2011
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
The Lorenz System and Chaos in Nonlinear DEs
The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of
SEMINARIUM MAGISTERSKIE
Prof. zw. dr hab. JERZY POGONOWSKI Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl SEMINARIUM MAGISTERSKIE 2010 2014 Podajemy dwa tuziny propozycji tematów rozpraw magisterskich, dzieląc
Komputerowe dowodzenie twierdze ń matematycznych
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Komputerowe dowodzenie twierdze ń matematycznych
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
SNP SNP Business Partner Data Checker. Prezentacja produktu
SNP SNP Business Partner Data Checker Prezentacja produktu Istota rozwiązania SNP SNP Business Partner Data Checker Celem produktu SNP SNP Business Partner Data Checker jest umożliwienie sprawdzania nazwy
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych. Warszawa, 15 stycznia 2015 r. Zbigniew Długosz
Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych Warszawa, 15 stycznia 2015 r. Zbigniew Długosz 1 do czego można wykorzystywać bankowość elektroniczną? nowe usługi płatnicze a korzystanie
Warsztaty Ocena wiarygodności badania z randomizacją
Warsztaty Ocena wiarygodności badania z randomizacją Ocena wiarygodności badania z randomizacją Każda grupa Wspólnie omawia odpowiedź na zadane pytanie Wybiera przedstawiciela, który w imieniu grupy przedstawia
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:
DODATKOWE ĆWICZENIA EGZAMINACYJNE
I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What
Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4
Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4 Strona 1 z 23 Andrzej Sładek, Instytut Matematyki UŚl sladek@math.us.edu.pl Letnia Szkoła Instytutu Matematyki 20-23 września
ALFRED TARSKI. Życie i logika Kalendarium. Joanna Golińska-Pilarek. Marian Srebrny.
ALFRED TARSKI Życie i logika Kalendarium Joanna Golińska-Pilarek j.golinska@uw.edu.pl Marian Srebrny marians@ipipan.waw.pl KRAKÓW 28 maja 2009 Początek 14 stycznia 1901 rok Miejsce: Warszawa Rodzice: Róża
Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska
- Wstęp Dear Mr. President, Dear Mr. President, Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska Dear Sir, Dear Sir, Formalny, odbiorcą jest mężczyzna, którego nazwiska
Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form
Formularz recenzji magazynu Review Form Identyfikator magazynu/ Journal identification number: Tytuł artykułu/ Paper title: Recenzent/ Reviewer: (imię i nazwisko, stopień naukowy/name and surname, academic
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
JĘZYK ANGIELSKI GRAMATYKA DLA POCZĄTKUJĄCYCH
MACIEJ MATASEK JĘZYK ANGIELSKI GRAMATYKA DLA POCZĄTKUJĄCYCH GIMNAZJUM / LICEUM HANDYBOOKS 1 Copyright by Wydawnictwo HANDYBOOKS Poznań 2014 Wszelkie prawa zastrzeżone. Każda reprodukcja lub adaptacja całości
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.
ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
ISBN
1 Copyright by Wydawnictwo HANDYBOOKS Poznań 2014 Wszelkie prawa zastrzeżone. Każda reprodukcja lub adaptacja całości bądź części niniejszej publikacji, niezależnie od zastosowanej techniki reprodukcji
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
1 HAPPY ANIMALS B09 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z T G1 17 szt. / pcs 13 szt. / pcs B1 13 szt. / pcs W4 13 szt. / pcs W6 14 szt. / pcs U1 1 szt. / pcs U N1
Struktury proponowane dla unikalnych rozwiązań architektonicznych.
23 Struktury proponowane dla unikalnych rozwiązań architektonicznych.. System fundamentu zespolonego może być zastosowany jako bezpieczna podstawa dla obiektów silnie obciążonych mogących być zlokalizowanymi
Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)
Dolny Slask 1:300 000, mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition) Click here if your download doesn"t start automatically Dolny Slask 1:300 000, mapa turystyczno-samochodowa: Plan Wroclawia
tradycyjna normalny multicache bardzo du y mobilna
mikro ma³y nietypowa tradycyjna normalny du y quiz multicache bardzo du y mobilna If you found this container by accident: It is part of a worldwide game dedicated to GPS (Global Positioning System) users,
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
WYKŁAD 2: PRELIMINARIA LOGICZNE
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 2: PRELIMINARIA LOGICZNE III rok kognitywistyki UAM, 2016 2017 1 Plan na dziś Wprowadzimy kilka pojęć, które będą istotnie wykorzystywane w
Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)
Czy mobilność pracowników uczelni jest gwarancją poprawnej realizacji mobilności studentów? Jak polskie uczelnie wykorzystują mobilność pracowników w programie Erasmus+ do poprawiania stopnia umiędzynarodowienia
Jak zasada Pareto może pomóc Ci w nauce języków obcych?
Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o
Intuicja Matematyczna
Intuicja Matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Filozofia Matematyki III Jerzy Pogonowski (MEG) Intuicja Matematyczna Filozofia Matematyki III
ZASADY ZALICZANIA PRZEDMIOTU:
WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language
First-order logic. Usage Tautologies, using rst-order logic, relations to natural language A few important tautologies 1 x(ϕ ψ) ( xϕ xψ); A few important tautologies 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x
istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,
Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy
Podstawy matematyki dla informatyków
Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru
Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach
Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach If you are looking for the ebook by Anna Stelmach Polski krok po kroku: Tablice gramatyczne (Polish Edition) in pdf form, in
1. INFORMACJE OGÓLNE
1 1. INFORMACJE OGÓLNE 1.1 Cel Zapytania Ofertowego Celem niniejszego Zapytania Ofertowego jest wybranie Firmy w Konkursie Ofert na dostawę: Drążarki wgłębnej CNC. 1.2 Zakres oferty Państwa propozycja
CPX Cisco Partner Excellence CSPP program partnerski
CPX Cisco Partner Excellence CSPP program partnerski Hotel Double Tree by Hilton Łukasz Wilkowski Distributor Service Development Manager lwilkows@cisco.com Łódź 14 maja 2015 - Cisco Service Partner Program