SPIS TREŚCI REFORMA TEMAT NUMERU NAUCZANIE MATEMATYKI MATERIAŁY ZOSTATNIEJŁAWKI. Jakub T. Lipski: Milla+... 3
|
|
- Liliana Szymczak
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 SPIS TREŚCI REFORMA Jakub T. Lipski: Milla TEMAT NUMERU Roman Augustyniak: Bezskrajności... 4 Zuzanna Mikołajska: Kalkulatory w szkole podstawowej... 6 Joanna Danielczyk: Jak to z przecinkiem było... 8 Julia Aleksandrowicz: Widnokrąg z kalkulatorem i bez... 9 Agnieszka Orzeszek: Kalkulator?! Hura! NAUCZANIE MATEMATYKI Danuta Zaremba: Pułapki procentowe List od Czytelniczki Adam Miziołek: Jak sobie radzić z kątami? Agnieszka Piecewska: Bób, magia i liczby Danuta Buniecka: π 2 g Agnieszka Ciesielska: Różne zadania, jednakowe wyniki Eugenia Załużna, Małgorzata Śliwińska, Małgorzata Czerwonka: Naukanapoziomie Stanisława Sypnicka: Ileosisymetriimaokrąg? Piotr Bonikowski: Zachodzące kwadraty Książki nadesłane Maria Glier: Wielokątny konkurs Zbigniew Blacharz: Liga (niekoniecznie sportowa) Uwaga, autorzy! Elżbieta Krzyścin: Zielone prostokąty Wejherowo i okolice Zuzanna Białkowska: Obniżki, podwyżki Grażyna Piotrowska: Lekcja matematyki w kręgu Agnieszka Piecewska: Historia Polski w zadaniach Mam pomysł Zofia Dobień: Romby przyjaźni MATERIAŁY Zadania z konkursów w Grajewie ZOSTATNIEJŁAWKI Dyslektyk na dyskotece... 46
3 Joanna Danielczyk Jak to z przecinkiem było... Odkrywamy reguły działań na ułamkach dziesiętnych. Kalkulator graficzny może być przydatny także w szkole podstawowej. Dzięki specjalnej przystawce wykonywane na nim działania widoczne są na dużym ekranie. W klasach IV V taki kalkulator przydał mi się podczas realizacji tematów: Mnożenie i dzielenie ułamków dziesiętnych przez 10, 100, 1000 itd. oraz Mnożenie i dzielenie ułamków dziesiętnych. Wystarczyło pokazać kilka działań typu: 3,21 10 = 32,1, 3, = 321, czy: 47,2 :10=4,72, 47,2 : 100 = 0,472, a dzieci same odgadywały regułę związaną z wędrującym przecinkiem i same potrafiły sformułować wniosek. Po przypomnieniu, że 3,21 = 3, nie miały dużego problemu z dopisywaniem zer. Przy mnożeniu i dzieleniu ułamków dziesiętnych przez liczbę całkowitą oraz mnożeniu ułamków dziesiętnych moja rola sprowadzała się do wyświetlania przykładów: 0,6 4=2,4 0,8 :2=0,4 0,06 4=0,24 2,4 :4=0,6 1,6 3=4,8 0,24 : 4 = 0, ,1 0,2 =2, 42 1,21 0,2 =0, Wnioski dzieci wysuwały same, a były przy tym bardzo aktywne. Zdolniejsze intuicyjnie podawały wyniki działań typu2: 5 = 0,4. Ten przykład wymagał wyjaśnień z mojej strony, bo miały być ułamki dziesiętne, a tu nie ma przecinka ani w dzielnej, ani w dzielniku. Zaraz jednak odwołaliśmy się do lekcji wcześniejszych, że 2 = 2,00... Najwięcej zaangażowania z mojej strony wymagał temat Dzielenie ułamków dziesiętnych. I tu bardzo pomocny okazał się kalkulator graficzny. Najpierw pokazałam przykład 16:2=8. Potem zwiększałam dzielnik i dzielną 10, 100, 1000 razy. Uczniowie zauważyli, że iloraz się nie zmienia, niektórzy ładnie formułowali wnioski, podawali swoje przykłady. Dlatego gdy doszłam do przykładu 1,6 :0,2 = 16 : 2, nie dziwili się zbytnio tej zamianie. W razie wątpliwości, bo takie się nasuwały przy dalszych przykładach, jak np. 32,4 :0,04 = = 3240 : 4, kłułam ich w oczy wnioskiem, który sami przecież sformułowali. Bez kalkulatora graficznego lekcje na ten temat zajmowały więcej czasu. Uczniowie pracowali wolniej, więc zdążali wykonać mniejszą liczbę przykładów. Użycie sprzętu uatrakcyjniło lekcje, ożywiło je, a moja rola w wielu przypadkach ograniczyła się tylko do naciskania guziczków. Uczniowie sami odkrywali reguły rządzące działaniami, formułowali wnioski, a co za tym idzie szybciej zapamiętywali. Jeśli uczeń ładnie sformułował wniosek, w zeszycie pod notatką zapisywaliśmy np. Autor: Kasia B. Sprawiało to dodatkową radość i mobilizowało do dalszych działań. 8 TEMAT NUMERU
4 Agnieszka Piecewska Bób, magia i liczby Co twierdzi Pitagoras na temat dzikich ptaków? Takie pytanie pada w komedii Szekspira Wieczór Trzech Króli. Gdy po imieniu mędrca aktor robi przerwę, prawdopodobnie duża część widowni ma przed oczyma trójkąt prostokątny irównośća 2 + b 2 = c 2.Zakończenie pytania musi więc budzić konsternację widzów. Tym bardziej odpowiedź: może się w nie wcielić dusza naszej prababki. Otóż jeszcze w czasach Szekspira Pitagoras kojarzony był raczej z filozofią i religią niż z matematyką. Ichybasłusznie. Pitagoras urodził się około roku 570 p.n.e., a gdy dorósł, założył coś, co dziś nazywamy Szkołą Pitagorejską. Wiadomo mniej więcej, jakie poglądy głosiła ta szkoła (czy raczej sekta), natomiast nie wiemy, co wymyślił Pitagoras,acojegouczniowie. Dlaczego nie wolno jeść bobu? Pitagorejczycy wierzyli w reinkarnację ibyliztegopowoduwegetarianami. Co ciekawe, uważali, że dusza człowieka może się wcielić nie tylko w zwierzęta czy ptaki, ale także w niektóre rośliny, m.in. bób. Legenda mówi, że Pitagoras został kiedyś napadnięty. Jedyna droga ucieczki prowadziła przez pole bobu i mędrzec wolał zginąć, niż podeptać swoich przodków. Według innej legendy Pitagoras złożył po odkryciu swojego twierdzenia hekatombę, czyli ofiarę ze stu wołów. Nie bardzo pasuje to do jego wegetarianizmu, ale po pierwsze to tylko legenda, a po drugie jeśli ludzie nie chcą jeść mięsa, to nie znaczy, że mają go odmawiać również bogom. Harmonia jak 2 : 3 Ważnym osiągnięciem pitagorejczyków było odkrycie, że pięknym współbrzmieniom strun odpowiadają proste proporcje liczbowe ich długości. Jeśli struny są jednakowe i jednakowo mocno napięte, ale jedna z nich jest dwa razy dłuższa od drugiej, to ich dźwięki różnią się o oktawę. Stosunek długości 3 : 2 to kwinta (jak różnica pomiędzy drugim i trzecim dźwiękiem w piosence Wyszły w pole kurki trzy). Stosunek 4:3 to kwarta (jak różnica pomiędzy pierwszym i drugim dźwiękiem w Płonie ognisko w lesie). A więc małym liczbom odpowiadają piękne współbrzmienia. Natomiast np. 37 : 23 to paskudny dysonans. Starożytni mieli dość niefrasobliwy stosunek do uogólniania spostrzeżeń. Pitagorejczycy stwierdzili więc, że skoro pięknem w muzyce rządzą 16 CO ZA HISTORIA!
5 liczby, to są one podstawą piękna w ogóle, a w takim razie podstawą wszystkiego. Ten pogląd miał dobroczynne skutki, bo skoro liczby są podstawą wszechrzeczy, to filozofowie powinni zająć się ich badaniem. Dzięki temu wielu spośród uczniów Pitagorasa zajęło się matematyką. Odkrycie zakończone samobójstwem Między geometrią i arytmetyką starożytną był ścisły związek: każdej liczbie odpowiada pewien stosunek odcinków, a każdemu stosunkowi odcinków odpowiada pewna liczba. Nagle zdarzyła się tragedia: okazało się, że druga część poprzedniego zdania nie jest prawdziwa. Przykładu nie trzeba było szukać daleko. W tak prostej figurze, jak kwadrat, stosunek długości przekątnej do długości boku nie wyraża się żadną liczbą wymierną, czyli w rozumieniu starożytnych żadną liczbą. Jak więc liczby mają opisywać cały świat, jeśli nie wystarczają do opisania kwadratu?! Podobno odkrywca tego faktu był tak przerażony, że popełnił samobójstwo. Współbracia zaś starali się zachować odkrycie w tajemnicy, ale jak to zwykle bywa w końcu wyszło ono na jaw. Czego nie wiedzą świnie Cały dalszy rozwój matematyki greckiej odbywał się pod wpływem odkrycia niewymierności. Geometrię uważano za coś lepszego od arytmetyki (bo każdej liczbie odpowiada odcinek, ale nie na odwrót). Nawet wzory skróconego mnożenia podawano w postaci geometrycznej: pole kwadratu zbudowanego na sumie odcinków jest równe sumie pól kwadratów zbudowanych na tych odcinkach i podwojonego pola prostokąta o bokach równych tym odcinkom. Uff! Chyba dzisiejsza algebra jest jednak prostsza. Nawet gdy wiele lat po Pitagorejczykach stworzono teorię niewymierności, nie mówiono o liczbach niewymiernych,ale o odcinkach niewspółmiernych. Wiedzę o odcinkach niewspółmiernych uważano za ważną dla ogólnego wykształcenia. Platon mówił nawet, że ich nieznajomość jest niegodna Hellenów i przystoi raczej świniom. a 2 + b 2 = c 2 A co z samym twierdzeniem Pitagorasa? Znane było już na długo przed nim. Mamy na to dowody w egipskich papirusach i na glinianych tabliczkach z Mezopotamii. Prawdopodobnie więc Pitagoras go nie wymyślił. Jeśli natomiast chodzi o dowód tego twierdzenia, to zawdzięczamy go prawdopodobnie uczniom Pitagorasa, ale chyba nie samemu mistrzowi. Pitagorejczycy odkryli zresztą wiele innych twierdzeń. Należy do nich twierdzenie o sumie kątów trójkąta, a także twierdzenie zwane twierdzeniemtalesa,którezuczonymzmiletu nie ma wiele wspólnego. CO ZA HISTORIA! 17
6 Konkursy W ósmym numerze pytaliśmy o przydatność szacowania wyników działań na egzaminie. Prawidłowa jest odpowiedź C: szacowanie może pomóc szybciej rozwiązać zadanie testowe. Większość Czytelników odpowiedziała prawidłowo, choć zdarzały się też odpowiedzi B. Ale ta odpowiedź jest błędna. Nie da się sprawdzić na egzaminie, czy uczeń na pewno oszacował wynik, czy wykonał na boku rachunki pisemne. Spośród uczestników konkursu wylosowaliśmy panią Renatę Uliasz z Gliwic. Gratulujemy wygranej! Rozstrzygnięty został również konkurs na najzabawniejszą anegdotę. Z powodu bardzo dużej liczby dobrych pomysłów jury postanowiło przyznać nie dwie, ale trzy pierwsze nagrody. Otrzymały je panie: Danuta Cembrzyńska, Jolanta Możejewska-Kruk i Stanisława Sypnicka. Natomiast drugie nagrody (książkowe) otrzymały panie: Katarzyna Bany, Beata Jaśkiewicz, Mieczysława Mateja i Hanna Przystajko. Serdecznie gratulujemy! Anegdoty (w formie komiksów) będziemy publikować w kolejnych numerach pisma. Pora na nowe pytanie Konkursu dla uważnych Czytelników: kto udowodnił twierdzenie Talesa? Nagrodą, jak zwykle, jest kalkulator Casio FX-65. Matematyka w Szkole Adres redakcji: Gdańsk, ul. Trzy Lipy 3, tel. (0-58) w. 232 fax (0-58) Dział handlowy: tel. (0-58) Adres do korespondencji: Matematyka w Szkole skr. poczt Gdańsk 52 gazetamws@gwo.com.pl Redaktor naczelny: Marcin Braun Wydawca: Gdańskie Wydawnictwo Oświatowe, Gdańsk, ul. Trzy Lipy 3 Dwumiesięcznik dla nauczycieli Redaguje kolegium: Marcin Braun Aleksandra Golecka Marcin Karpiński Joanna Kniter Jacek Lech Elżbieta Stawiarz Projekt graficzny, okładka, ilustracje: Sławomir Kilian Skład: Maria Chojnicka Zdjęcie na okładce: Leszek Jakubowski Druk i oprawa: Stella Maris Nakład: 6000 egz. 48 TEMAT NASTĘPNEGO NUMERU: GRY I ZABAWY
7
(ok p.n.e.)
(ok. 572-497 p.n.e.) Pitagoras pochodził z wyspy Samos. Znany jest głównie z słynnego twierdzenia o trójkącie prostokątnym, powszechnie zwanego jako twierdzenie Pitagorasa. Twierdzenie Pitagorasa ilustracja
SPIS TREŚCI SPIS TREŚCI 1 REFORMA I AKTUALNOŚCI NAUCZANIE MATEMATYKI MATERIAŁY Z OSTATNIEJ ŁAWKI INFORMACJE O PRENUMERACIE STR. 2
SPIS TREŚCI REFORMA I AKTUALNOŚCI Dyplom za podręczniki... 3 Marcin Braun: Nauka poszła w las... 4 NAUCZANIE MATEMATYKI Grażyna Miłosz: Ile było pszczół?... 6 Mam pomysł... 7 Bolesław Tykul: Funkcja na
ZAPRASZAM DO LEKTURY! 1
ZAPRASZAM DO LEKTURY! 1 Nie na temat Zuzanna Mikołajska pisze w swoim artykule (s. 42), że lekcja matematyki zawsze jest na jakiś temat, a wiele umiejętności matematycznych nie pasuje do żadnego tematu.
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:
Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy VII w roku 2019/2020.
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy VII w roku 2019/2020. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań edukacyjnych niezbędynych
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Wymagania na poszczególne oceny szkolne KLASA V
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Liczby. Wymagania programowe kl. VII. Dział
Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do
Twierdzenie Pitagorasa. Autor. Wstęp. Pitagoras. Dariusz Kulma
Twierdzenie Pitagorasa Autor Dariusz Kulma Wstęp Myli się ten kto myśli, że najbardziej znane twierdzenie na świecie dotyczące geometrii czyli twierdzenie Pitagorasa zawdzięczamy tylko samemu Pitagorasowi.
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy
Cud grecki. Cud grecki. Wrocław, 2 marca 2016
Wrocław, 2 marca 2016 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Wymagania edukacyjne z matematyki w klasie IV
Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8 Scenariusze na temat objętości Pominięcie definicji poglądowej objętości kolosalny błąd (w podsumowaniu
Wymagania edukacyjne z matematyki w klasie piątej
Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym
Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019
Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 LICZBY Uczeń otrzymuje ocenę dopuszczającą, jeśli: rozpoznaje cyfry używane do zapisu liczb w
Lista działów i tematów
Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe mnożenie i dzielenie Ile razy więcej, ile
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Matematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną.
Matematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI Temat: Oś symetrii figury. Cele operacyjne: Uczeń: - zna rodzaje trójkątów i ich własności, - zna rodzaje czworokątów ich własności, - odkrywa i formułuje definicję
Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum
Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Ułamki i działania 20 h Nazwa modułu I. Ułamki zwykłe
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8 Scenariusze na temat objętości Niestety scenariusze są słabe, średnia: 1,21 p./3p. Wiele osób zapomniało,
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII.
Przedmiotowy system oceniania z matematyki w klasie VII. Ocena roczna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza
Wymagania na poszczególne oceny szkolne w klasie V
Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Konstrukcja odcinków niewymiernych z wykorzystaniem. Twierdzenia Pitagorasa.
1 Konstrukcja odcinków niewymiernych z wykorzystaniem Twierdzenia Pitagorasa. Czas trwania zajęć: ok. 40 minut + 5 minut na wykład Kontekst w jakim wprowadzono doświadczenie: Doświadczenie warto zrealizować
Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:
Zakres tematyczny - PINGWIN Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania: zapisywanie i porównywanie liczb rachunki pamięciowe porównywanie
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE SIÓDMEJ SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE SIÓDMEJ SZKOŁY PODSTAWOWEJ WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Program nauczania: Matematyka z kluczem, program zgodny z nową podstawą programową
Wymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII Ocenę niedostateczną otrzymuje uczeń, który nie spełnia warunków poziomu koniecznego z poszczególnych działów. Ocenę dopuszczającą otrzymuje uczeń, który
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń
GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1
GSP077 klasa Pakiet 6 KArty pracy MateMatyka Ekstraklasa 6klasisty matematyka kpracy 6 pak.indd 9/24/3 2:2 PM Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania zapisz długopisem
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Działania pamięciowe Potęgowanie 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 7 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 7 SZKOŁY PODSTAWOWEJ Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program
STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf
STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf STRONA DO WSTAWIENIA: STR_RED\MEPGI1_002red.pdf Spis treści Od autorek (s. 7) 1. Statystyka (s. 9) 1.1. Wędrówki po krajach Unii Europejskiej. Wyszukiwanie
Program nauczania: Katarzyna Makowska, Łatwa matematyka. Program nauczania matematyki w klasach IV VI szkoły podstawowej.
ROZKŁAD MATERIAŁU DLA KLASY V SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY Treści i umiejętności Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu na poszczególne oceny celująca bardzo
Matematyka Matematyka z pomysłem Klasy 4 6
Szczegółowy rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej w klasach IV VI Klasa IV szczegółowe z DZIAŁ I. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM (19 godz.)
Program edukacyjny wspierający nauczanie matematyki w klasach III - VII
Program edukacyjny wspierający nauczanie matematyki w klasach III - VII Teresa Świrska Aleksandra Jakubowska Małgorzata Niedziela Wrocław 2019 I. W S T Ę P Intencją autorów programu Z kalkulatorem, kartami
GEOPLAN Z SIATKĄ TRÓJKĄTNĄ
TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4
ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem
ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Lang: Pole powierzchni kuli Nierówność dla objętości skorupki: (pow. małej kuli) h objętość skorupki
rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności
KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego.
Matematyka z kluczem
Matematyka z kluczem Szkoła podstawowa, klasy 4 8 Przedmiotowe zasady oceniania Klasa 7 I. Poziomy wymagań a ocena szkolna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 4. II. 07.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II (A) zna; (B) rozumie; umie zastosować wiadomości w sytuacjach typowych; (D) umie zastosować wiadomości w sytuacjach problemowych; 1. Pierwiastki i potęgi
Twierdzenie Pitagorasa
Imię Nazwisko: Paweł Rogaliński Nr indeksu: 123456 Grupa: wtorek 7:30 Data: 10-10-2012 Twierdzenie Pitagorasa Tekst artykułu jest skrótem artykułu Twierdzenie Pitagorasa zamieszczonego w polskiej edycji
Wymagania na poszczególne oceny szkolne KLASA VI
Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
WYMAGANIA EDUKACYJNE
SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 8 Szkoły Podstawowej str. 1 Wymagania edukacyjne
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka
Wymagania eduka cyjne z matematyki
Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na
Matematyka Szkoła podstawowa
Matematyka Szkoła podstawowa Podstawowe założenia, filozofia zmiany i kierunki działania Autorzy: Maciej Borodzik, Regina Pruszyńska Założenia Dostosowanie treści nauczania do rozwoju dziecka. Zachowanie
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Rozkład materiału nauczania z matematyki dla klasy V
Rozkład materiału nauczania z matematyki dla klasy V Lp. Temat lekcji uwagi D Lekcja organizacyjna. Zapoznanie uczniów z programem nauczania oraz systemem oceniania. LICZBY NATURALNE 1-22 1. Liczba, a
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
Troszkę Geometrii. Kinga Kolczyńska - Przybycień
Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Kilka słów o mierzeniu Otóż jak sama nazwa Geometria (z gr geo-ziemia, metria-miara) ma ona coś wspólnego
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA. Temat lekcji: Liczby firankowe
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji: Liczby firankowe Na podstawie pracy Joanny Jędrzejczyk oraz jej uczniów.
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności