Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie"

Transkrypt

1 Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością intelektualną. Wyniki pomiaru satysfakcji przedstawia poniższa tabela: Dzieci zdrowe Dzieci z niepełnosprawnością Matka Ojciec Matka Ojciec Przygotuj zbiór danych i wprowadź do niego dane z powyższej tabeli (Uwaga! Pamiętaj, że badani są oboje rodzice dziecka jego matka i ojciec). 2. Oblicz dla każdej pary rodziców średni poziom satysfakcji z życia (średnia z satysfakcji Jego i Jej) 3. Dokonaj opisu rozkładu ocen satysfakcji z życia kobiet i mężczyzn średnia, mediana, odchylenie standardowe, minimum i maksimum oraz skośność i kurtoza opisz interpretację tych wyników i zanalizuj rozkład zmiennych na histogramie. 4. Zweryfikuj hipotezę, że przeciętna satysfakcja z życia ojców jest WYŻSZA niż satysfakcja matek. b. Czy satysfakcja matek i ojców jest wzajemnie skorelowana? Jeśli tak jaka to jest korelacja? c. Czy hipotezę o wyższej satysfakcji ojców z życia od satysfakcji matek można przyjąć, czy należy ją odrzucić? 5. Zweryfikuj hipotezę, że stan zdrowia dziecka (dziecko zdrowe vs. dziecko niepełnosprawne) modyfikuje różnice (jest moderatorem) poziomu satysfakcji ojca i matki b. Podaj odpowiednie statystyki i opisz wykres prezentujący wyniki. Karol Karasiewicz 1

2 Odpowiedzi 1. Przygotuj zbiór danych i wprowadź do niego dane z powyższej tabeli (Uwaga! Pamiętaj, że badani są oboje rodzice dziecka jego matka i ojciec). Dane zostały zapisane w pliku DANE.SAV. W jego strukturze znajdują się 4 zmienne: ID liczba porządkowa pary małżeńskiej, zmienna porządkowa, GRUPA poziom sprawności dziecka, 0 dziecko zdrowe (grupa kontrolna); 1 dziecko z niepełnosprawnością (grupa kryterialna), zmienna na poziomie nominalnym, MATKA satysfakcja z życia w ocenie matki, zmienna na poziomie ilościowym, OJCIEC satysfakcja z życia na w ocenie ojca, zmienna na poziomie ilościowym. Obserwacją badaną jest jedno małżeństwo jedno małżeństwo jest jednym wierszem w zbiorze danych. Fragment zbioru danych wklejony jest poniżej: NR GRUPA MATKA OJCIEC Oblicz dla każdej pary rodziców średni poziom satysfakcji z życia (średnia z satysfakcji Jego i Jej) Aby obliczyć średnią satysfakcję w parze należy uruchomić z menu PRZEKSZTAŁCENIA polecenie OBLICZ WARTOŚCI i w otwartym polu dialogowym wpisujemy: 1) ŚREDNIA w polu Zmienna wynikowa, oraz MEAN(OJCIEC,MATKA) w polu Wyrażenie numeryczne, 2) Klikamy na przycisk Typ i etykieta i 3) w polu etykiety wpisujemy ŚREDNI POZIOM SATYSFAKCJI Z ŻYCIA. Analogicznie również możemy wykonać to polecenie za pomocą poleceń SYNTAX. Wystarczy jedynie otworzyć nowy plik poleceń (PLIK NOWY POLECENIE) i wpisać do niego polecenie: COMPUTE ŚREDNIA = MEAN(OJCIEC, MATKA). VARIABLE LABELS ŚREDNIA Średni poziom satysfakcji z życia. EXECUTE. A następnie uruchomić to polecenie np. klikając prawym klawiszem myszy i wybierając polecenie URUCHOM WSZYSTKO z menu skrótów. Karol Karasiewicz 2

3 3. Dokonaj opisu rozkładu ocen satysfakcji z życia kobiet i mężczyzn średnia, mediana, odchylenie standardowe, minimum i maksimum oraz skośność i kurtoza opisz interpretację tych wyników i zanalizuj rozkład zmiennych na histogramie. Aby odpowiedzieć na to pytanie można przeprowadzić analizę rozkładu częstości wybierając ANALIZA OPIS STATYSTYCZNY CZĘSTOŚCI. 1) Do testowanych zmiennych przenosimy zmienne MATKA i OJCIEC oraz ŚREDNIA. 2) Następnie po przyciśnięciu STATYSTYKI wybieramy statystyki minimum dla zmiennych ilościowych: Średnią, medianę, odch. standardowe, minimum i maksimum oraz skośność i kurtozę. 3) A po przyciśnięciu przycisku WYKRESY żądamy HISTOGRAMU z krzywą normalną. 4) Możemy również dla zmiennych ilościowych rzadko nas to interesuje odznaczyć żądanie pokazywania tabel ze szczegółowym rozkładem, wówczas raport staje się krótszy, bardziej zwarty, jednak nie jest to konieczne. Po uruchomieniu analizy otrzymujemy raport, w którym znajduje się tabela Statystyki oraz histogramy dla wszystkich analizowanych zmiennych.. Statystyki N Ważne Braki danych Średnia Mediana Odchylenie standardowe Skośność Błąd standardowy skośności Kurtoza Błąd standardowy kurtozy Minimum Maksimum SATYSFAK CJA MATKI Z ŻYCIA SATYSFAK CJA OJCA Z ŻYCIA ,67 7,02 7,00 7,00 1,801 1,546 -,650 -,655,309,309,454,173,608, Wyniki przedstawione w powyższej tabeli wskazują, że zadowolenie badanych kobiet mieści się w przedziale od 1 do 10 punktu (tj w całej rozciągłości skali), natomiast przeciętna kobieta ocenia swoje zadowolenie na 6,67 punktu z odchyleniem standardowym 1,801 pkt. Tzn. że statystyczna matka ocenia swoje zadowolenie w przedziale od 4,869 (średnia minus odch. standardowe) do 8,471 (średnia plus odch. standardowe) pkt. Połowa badanych matek ocenia swoje zadowolenie z życia na co najwyżej 7 pkt. Karol Karasiewicz 3

4 Analiza rozkładu wyników przedstawionych na wykresie wskazuje, że rozkład ten można uznać za zbliżony do normalnego, co potwierdzają również wartości wskaźników kurtozy i skośności mieszczące się w przedziale (-,70 do,70). Oczywiście w analogiczny sposób można równięż przeanalizować (używając tego samego schematu) wyniki rozkładu ocen satysfakcji mężczyzn i różnicy zadowolenia obojga małżonków. 4. Zweryfikuj hipotezę, że przeciętna satysfakcja z życia ojców jest WYŻSZA niż satysfakcja matek. Najpierw więc sformułujmy tę hipotezę w sposób ścisły tzn. matematyczny. Hipoteza ta dotyczy różnicy dwóch średnich w próbach zależnych: H 0 : OJCA MATKI 0 H0 : OJCA MATKI 0 W problemie jest postawiona hipoteza badawcza, tj. hipoteza alternatywna, faktycznie zatem nie można jej zweryfikować wprost (o czym mowa jest szczegółowo na statystyce), ale można się ku niej skłaniać poprzez odrzucenie hipotezy zerowej. W celu analizy postawionego zagadnienia można posłużyć się testem t dla prób zależnych. Tzn. należy wybrać ANALIZA PORÓWNYWANIE ŚREDNICH TEST T DLA PRÓB ZALEŻNYCH. 1) Należy wybrać parę zmiennych MATKA i OJCIEC (klikając je na liście po lewej i kliknąć przycisk strzałki) KONIECZNIE należy zwrócić uwagę na kolejność zmiennych w sekcji Aktualny wybór, Jest tak, że wynik testu t (a dokładniej znak statystyki testowej t) zależy od kolejności wprowadzonych zmiennych. W postawionej powyżej hipotezie zerowej uznaliśmy, że wynik testu t powinien być DODATNI, aby móc odrzucić H 0, jednakże działo się tak przy zmiennych wprowadzonych w odwrotnej kolejności tego nie można zmienić z poziomu okienek do klikania. Tę samą analizę można uruchomić za pomocą polecenia SYNTAX, gdzie wystarczy jedynie wpisać: Karol Karasiewicz 4

5 TTEST /PAIRS = OJCIEC WITH MATKA. I uruchomić polecenie klikając na nie prawym przyciskiem i wybierając z otwartego menu URUCHOM BIEŻĄCE. Proszę zwrócić uwagę, że z poziomu SYNTAX możemy kontrolować kolejność wprowadzania zmiennych. i pojawi się raport z wynikami przeprowadzonych analiz. W nim znajdują się trzy istotne tabele: W tabeli Statystyki dla prób zależnych można przeczytać średnie i odchylenia standardowe obu par zmiennych, w tabeli Korelacje dla prób zależnych można odczytać siłę zależności między obu wynikami i w tabeli Testy t dla prób zależnych istotność różnicy (bezpośredni test hipotezy zerowej) obu porównywanych średnich. b. Czy satysfakcja matek i ojców jest wzajemnie skorelowana? Jeśli tak jaka to jest korelacja? Z tabeli Korelacje dla prób zależnych można odczytać, że korelacja (Liniowa Pearsona) między pomiarami satysfakcji z życia obu małżonków wynosi r=,623 i jest istotnie różna od zera p<0,001. Można zatem powiedzieć, że satysfakcja z życia obojga małżonków jest wzajemnie powiązana dodatnio im wyższa jest satysfakcja kobiety, tym wyższa jest również satysfakcja mężczyzny a zależność tę można uznać za silną. c. Czy hipotezę o wyższej satysfakcji ojców z życia od satysfakcji matek można przyjąć, czy należy ją odrzucić? Przeciętny poziom zadowolenia kobiet z życia wynosi M=6,67 z odchyleniem standardowym SD=1,80, natomiast przeciętny poziom satysfakcji z życia mężczyzn wynosi M=7,02 z odchyleniem standardowym SD=1,55. Różnica ta jest zgodna z oczekiwaną i okazuje się statystycznie istotna na poziomie <,05 [t(df=59)=1,832; p=,035]. Należy zauważyć, że podana w tabeli istotność statystyki testowej t jest oszacowana dla hipotezy bezkierunkowej. Natomiast w analizowanym przykładzie hipoteza ma postać kierunkową można zatem podzielić podaną istotność przez 2 dla oceny prawdopodobieństwa odrzucenia H 0. Stąd też hipotezę tę należy odrzucić (nie jak to by bezpośrednio wynikało z tabeli przyjąć). Hipotezę tę można jeszcze zweryfikować za pomocą testu t dla pojedynczej próby, gdzie zmienną zależną będzie (obliczona wcześniej) różnica między satysfakcją męża i żony, natomiast wartością testowaną jest 0 które jest testowane w hipotezie zerowej. Aby ten test przeprowadzić należy kliknąć ANALIZA PORÓWNANIA ŚREDNICH TEST T DLA JEDNEJ PRÓBY. Karol Karasiewicz 5

6 Po kliknięciu przycisku OK. obliczony zostanie raport, w którym zostanie wyrzucona wartość statystyki testowej t oraz poziom istotności (również dwustronny), który pozwala zweryfikować dokładnie tę samą hipotezę, jak zostało to przedstawione powyżej. 5. Zweryfikuj hipotezę, że stan zdrowia dziecka (dziecko zdrowe vs. dziecko niepełnosprawne) modyfikuje różnice (jest moderatorem) poziomu satysfakcji ojca i matki Ponownie jak to w psychologii zwykle bywa hipoteza ta została sformułowana w postaci hipotezy alternatywnej (badawczej), której de facto nie można zweryfikować wprost jedynie poprzez odrzucenie hipotezy zerowej, że nie ma istotnej statystycznie interakcji między obu czynnikami (sprawności dziecka i płci rodzica) we wpływie na zadowolenie z życia. H 0 : Nie istnieje interakcja wpływu płci rodzica i stopnia sprawności dziecka (dziecko niepełnosprawne pełnosprawne) we wpływie na satysfakcję z życia, H 1 : Różnica w zadowoleniu z życia kobiet i mężczyzn jest zależna od poziomu sprawności dziecka istnieje interakcja między płcią rodzica i sprawnością dziecka we wpływie na poziom satysfakcji z życia. Test tej hipotezy należy przeprowadzić za pomocą ANOVA 2x(2) w modelu mieszanym poziom sprawności dziecka x płeć rodzica z powtarzanym pomiarem w obrębie czynnika płci rodzica. Aby przeprowadzić ten test należy kliknąć na polecenie 1) ANALIZA OGÓLNY MODEL LINIOWY POWTARZANE POMIARY i następnie 2) w polu Nazwa czynnika wewnątrzobiektowego wpisać nazwę np. POMIAR oraz liczbę pomiarów (poziomów) do pola Liczba poziomów a więc 2, ponieważ są jedynie dwie płcie rodziców. Następnie po kliknięciu przycisku DEFINIUJ należy wprowadzić zmienne do czynników wewnątrzobiektowyh (powtarzanych pomiarów prób zależnych) oraz czynników międzyobiektowych (czynników stałych). A więc do czynników wewnątrzobiektowych przenosimy MATKA i OJCIEC a międzyobiektowych GRUPA Karol Karasiewicz 6

7 Warto dodać wykres prezentujący istnienie ewentualnej interakcji klikając w polecenie WYKRESY i przenosząc POMIAR (czynnik wewnątrzobiektowy) do poziomej osi X a GRUPA (czynnik międzyobiektowy) do oddzielnych linii. Podobnie również warto na karcie OPCJE zaznaczyć co najmniej Statystyki opisowe oraz Oceny wielkości efektów, niektórzy również zaznaczają Obserwowana moc co pozwala na testowanie mocy efektu a posteriori podejście równie często krytykowane, co stosowane. b. Podaj odpowiednie statystyki i opisz wykres prezentujący wyniki. Po przeprowadzeniu analizy otrzymujemy raport, w którym najważniejsze spośród wygenerowanych przez SPSS tabel to Testy efektów wewnątrzobiektowych, Testy efektów międzyobiektowych oraz wykres profili. Wyniki przeprowadzonej analizy statystycznej wskazują, że brak jest istotnej statystycznie różnicy między zadowoleniem z życia rodziców dzieci z niepełnosprawnością i dzieci zdrowych [F(1;58)= 2,574; p=,114; Eta 2 =,042]. Tzn. nie można odrzucić hipotezy zerowej o braku istotnych różnic między rodzicami dzieci niepełnosprawnych i pełnosprawnych co do zadowolenia z życia. Ponadto efekt różnicy między obu rodzicami jest statystycznie istotny na poziomie <,10 [F(1;58)= 3,344; p=,073], i choć wielkość efektu jest satysfakcjonująca (jak na badania psychologiczne) Eta 2 =,055, to na poziomie <,05 efekt ten charakteryzuje się bardzo niską mocą (1- =,436). Można jednocześnie powiedzieć, że hipoteza o braku interakcji między płcią rodzica, a poziomem sprawności dziecka znajduje swoje potwierdzenie [F(1;58)=,068; p=,795; Eta 2 =,001], można zatem powiedzieć, e postawiona hipoteza badawcza nie znajduje swojego potwierdzenia w wynikach przeprowadzonych analiz. Karol Karasiewicz 7

Gimnastyka artystyczna

Gimnastyka artystyczna Gimnastyka artystyczna Zbadano losową próbę N=40 dziewcząt i chłopców z klas o profilu ogólnym i sportowym pod kątem ich ogólnej sprawności fizycznej ocenianej na skali Hirscha (od 0 do 20 pkt.), gdzie

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Dysleksja jest dla inteligentnych?

Dysleksja jest dla inteligentnych? Dysleksja jest dla inteligentnych? Zbadano losową próbę 116 chłopców i dziewcząt z trudnościami w uczeniu się pod kątem ilorazu inteligencji (Badanie baterią APIS-Z). Uzyskano następujące wyniki: Tabela

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby

Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby 1. Wstęp teoretyczny Prezentowane badanie dotyczy analizy wyników uzyskanych podczas badania grupy rodziców pod kątem wpływu ich przekonań

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Zadanie 1. Analiza Analiza rozkładu

Zadanie 1. Analiza Analiza rozkładu Zadanie 1 data lab.zad 1; input czas; datalines; 85 3060 631 819 805 835 955 595 690 73 815 914 ; run; Analiza Analiza rozkładu Ponieważ jesteśmy zainteresowani wyznaczeniem przedziału ufności oraz weryfikacja

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Zadanie 1. Tworzenie wykresów zmiennych jakościowych wyrażonych w skali nominalnej i porządkowej. Utworzyć wykres

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości

Bardziej szczegółowo

ZARZĄDZANIE DANYMI W STATISTICA

ZARZĄDZANIE DANYMI W STATISTICA Wprowadzenie do STATISTICA Krzysztof Regulski AGH, WIMiIP ZARZĄDZANIE DANYMI W STATISTICA 1) Zastosowanie: STATISTICA umożliwia w zakresie zarządzania danymi m.in.: scalanie plików sprawdzanie danych sortowanie

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy

Bardziej szczegółowo

laboratoria 24 zaliczenie z oceną

laboratoria 24 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne

Bardziej szczegółowo

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona

Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona Nieparametryczne odpowiedniki testów T-Studenta stosujemy gdy zmienne mierzone są na skalach porządkowych (nie można liczyć średniej) lub kiedy mierzone są na skalach ilościowych, a nie są spełnione wymagania

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

Niestandardowa tabela częstości

Niestandardowa tabela częstości raportowanie Niestandardowa tabela częstości Przemysław Budzewski Predictive Solutions Do czego dążymy W Generalnym Sondażu Społecznym USA w 1991 roku badaniu poddano respondentów należących do szeregu

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II Podział zmiennych Zmienne zależne zmienne, które są przedmiotem badania, których związki z innymi zmiennymi chcemy określić Zmienne

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności.

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Jedzenie w kawiarni KLASYCZNE PRZEBOJE

Jedzenie w kawiarni KLASYCZNE PRZEBOJE Jedzenie w kawiarni W pewnej kawiarni puszczano trojakiego rodzaju podkład muzyczny do posiłku ballady rockowe, klasyczne przeboje lub muzykę taneczną. Badano czas przeznaczony przez losowo wybranych gości

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że kilka średnich dla analizowanej zmiennej grupującej mają jednakowe wartości średnie.

Bardziej szczegółowo

EXCEL TABELE PRZESTAWNE

EXCEL TABELE PRZESTAWNE EXCEL TABELE PRZESTAWNE ZADANIE 1. (3 punkty). Ze strony http://www.staff.amu.edu.pl/~izab/ pobierz plik o nazwie Tabela1.xlsx. Używając tabel przestawnych wykonaj następujące polecenia: a) Utwórz pierwszą

Bardziej szczegółowo

Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2

Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi dwuczynnikowej analizy wariancji w schemacie 2x2. Wszystkie rozwiązania są

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

KORELACJE (zmienne ilościowe i porządkowe)

KORELACJE (zmienne ilościowe i porządkowe) OBLICZENIE WSPÓŁCZYNNIKA KORELACJI R-Persona, Rho-Spearmana, tau-b Kendala Aby policzyć korelacje między zmiennymi ilościowymi/porządkowymi (R-Persona, Rho-Spearmana, tau-b Kendala): - wybieramy menu Analiza>Korelacje>Parami

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Przypomnienie: Ćwiczenie 1.

Przypomnienie: Ćwiczenie 1. Strona1 Przypomnienie: Zmienne statystyczne można podzielić na: 1. Ilościowe, czyli mierzalne (przedstawiane liczbowo) w tym: skokowe inaczej dyskretne (przyjmują skończoną lub co najwyżej przeliczalną

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich.

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie T.TEST. Zastosowana

Bardziej szczegółowo

Żródło: https://scepticemia.com/2012/09/21/william-gosset-a-true-student/

Żródło: https://scepticemia.com/2012/09/21/william-gosset-a-true-student/ Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Test

Bardziej szczegółowo

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego plik

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Kilka uwag o testowaniu istotności współczynnika korelacji

Kilka uwag o testowaniu istotności współczynnika korelacji 341 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Piotr Peternek Uniwersytet Ekonomiczny we Wrocławiu Marek Kośny Uniwersytet Ekonomiczny we Wrocławiu Kilka uwag o testowaniu istotności

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

Obliczanie wartości średniej i odchylenia standardowego średniej w programie Origin

Obliczanie wartości średniej i odchylenia standardowego średniej w programie Origin Obliczanie wartości średniej i odchylenia standardowego średniej w programie Origin Po uruchomieniu programu pojawia się arkusz kalkulacyjny Data1, do którego (w dowolnej kolumnie) wpisujemy wyniki pomiarów

Bardziej szczegółowo

SPIS ILUSTRACJI, BIBLIOGRAFIA

SPIS ILUSTRACJI, BIBLIOGRAFIA SPIS ILUSTRACJI, BIBLIOGRAFIA Ćwiczenie 1 Automatyczne tworzenie spisu ilustracji 1. Wstaw do tekstu roboczego kilka rysunków (WSTAWIANIE OBRAZ z pliku). 2. Ustaw kursor w wersie pod zdjęciem i kliknij

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

WSPIERANIE ZADAŃ ANALITYCZNYCH Z ZASTOSOWANIEM STATISTICA NA PRZYKŁADZIE BIOTON S.A.

WSPIERANIE ZADAŃ ANALITYCZNYCH Z ZASTOSOWANIEM STATISTICA NA PRZYKŁADZIE BIOTON S.A. WSPIERANIE ZADAŃ ANALITYCZNYCH Z ZASTOSOWANIEM STATISTICA NA PRZYKŁADZIE BIOTON S.A. Jan Grzesik, Zespół Specjalistów ds. Zapewnienia Jakości w BIOTON S.A. Wymagania statystycznego opracowania wyników

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące

Bardziej szczegółowo

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

Szybka instrukcja tworzenia testów dla E-SPRAWDZIAN-2 programem e_kreator_2

Szybka instrukcja tworzenia testów dla E-SPRAWDZIAN-2 programem e_kreator_2 Szybka instrukcja tworzenia testów dla E-SPRAWDZIAN-2 programem e_kreator_2 Spis treści: 1. Tworzenie nowego testu. str 2...5 2. Odczyt raportów z wynikami. str 6...7 3. Edycja i modyfikacja testów zapisanych

Bardziej szczegółowo

MS Excell 2007 Kurs podstawowy Filtrowanie raportu tabeli przestawnej

MS Excell 2007 Kurs podstawowy Filtrowanie raportu tabeli przestawnej MS Excell 2007 Kurs podstawowy Filtrowanie raportu tabeli przestawnej prowadzi: dr inż. Tomasz Bartuś Kraków: 2008 04 04 Przygotowywanie danych źródłowych Poniżej przedstawiono zalecenia umożliwiające

Bardziej szczegółowo

Jak korzystać z przeglądarki danych ESS SoftReport

Jak korzystać z przeglądarki danych ESS SoftReport Jak korzystać z przeglądarki danych ESS SoftReport Instalacja 1. Do korzystania z przeglądarki konieczne jest zainstalowanie programu ESS SoftReport. W tym celu należy wejść na stronę internetową http://www.ifispan.waw.pl/ess

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak

Bardziej szczegółowo

Ćw. IV. Tabele przestawne

Ćw. IV. Tabele przestawne Ćw. IV. Tabele przestawne Przykład 1. Dysponujemy raportem w formacie tabeli (Arkusz: Tabele Przestawne ) o trzech kolumnach zawierających: nazwę produktu, kategorie, do której produkt ten należy, oraz

Bardziej szczegółowo