ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM"

Transkrypt

1 KOMISJA BUDOWY MASZY PA ODDZIAŁ W POZAIU Vol. 8 nr Archiwum Technologii Maszyn i Automatyzacji 8 LESZEK SKOCZYLAS ZARYS ŚLIMAKA TORUSOPOCHODEGO KSZTAŁTOWAEGO ARZĘDZIEM TRZPIEIOWYM W artykule przedstawiono matematyczny opis śrubowej powierzchni bocznej torusopochodnego ślimaka kształtowanego narzędziem trzpieniowym. W modelu opisującym powierzchnię śrubową uwzględniono możliwość ustawienia narzędzia trzpieniowego w dowolnym przekroju podłużnym ślimaka. Przedstawiono kilka przykładów zarysu zęba obliczonych dla wybranych parametrów ślimaka i narzędzia. Słowa kluczowe: przekładnie ślimakowe, ślimak torusopochodny 1. WSTĘP Duża różnorodność zarysów zwoju ślimaka w przekładniach ślimakowych stwarza możliwości poszukiwań kształtu zarysu, przy którym przekładnia miałaby jak najlepsze parametry eksploatacyjne. Jak pokazują badania [3], przekładnie ślimakowe ze ślimakiem o kołowo-wklęsłym zarysie zwoju charakteryzują się większą sprawnością i nośnością w porównaniu z zarysami prostoliniowymi i wypukłymi ślimaka. W praktyce jednakże głównie wytwarzane są przekładnie z łatwym do wykonania wypukłym zarysem ślimaka (ewolwentowym oraz stożkopochodnym kształtowanym narzędziem krążkowym). Ślimaki ewolwentowe nie tylko są łatwe do wykonania, ale są również proste w opisie matematycznym. Sytuacja wygląda odmiennie w przypadku ślimaków stożkopochodnych, których matematyczny opis charakteryzują skomplikowane zależności. Współczesny rozwój techniki komputerowej pozwala na przełamanie bariery obliczeniowej i analizę nieliniowego zarysu ślimaka, a także na analizę geometrii jego zazębienia ze ślimacznicą [ 8]. Przeglądając literaturę, można zauważyć ograniczoną liczbę modeli opisujących geometrię ślimaka, którego powierzchnia boczna zwoju definiowana jest za pomocą znamionowego zarysu narzędzia użytego do ich wykonania. Opracowania dotyczą głównie ślimaków stożkopochodnych kształtowanych narzędziem krążkowym [1,, 4, 5, 9]. arzędzia z nieli- Dr inż. Katedra Technologii Maszyn i Organizacji Produkcji Politechniki Rzeszowskiej.

2 13 L. Skoczylas niowym zarysem praktycznie nie są rozważane. Jednym z takich zarysów jest zarys kołowo-łukowy pozwalający na uzyskanie nieliniowego wklęsłego zarysu ślimaka (torusopochodnego). iniejsze opracowanie stanowi kontynuację zagadnień dotyczących opisu powierzchni bocznej zwoju ślimaka. Przedstawiono w nim zarys ślimaka torusopochodnego kształtowanego narzędziem trzpieniowym.. MATEMATYCZY OPIS POWIERZCHI ZWOJU ŚLIMAKA Śrubowa powierzchnia boczna zwoju ślimaka torusopochodnego definiowana jest za pomocą znamionowego kołowego zarysu narzędzia użytego do jego ukształtowania. Powstaje ona w wyniku względnego ruchu obrotowego i postępowego narzędzia względem ślimaka. Dlatego punktem wyjścia do określenia zarysu ślimaka jest znajomość geometrii narzędzia. Parametry opisujące geometrię narzędzia przedstawiono na rys. 1. Podstawowymi parametrami narzędzia (rys. 1) są średnica podziałowa narzędzia d, znamionowy kąt zarysu narzędzia α określany na średnicy podziałowej oraz promień krzywizny zarysu narzędzia R. Przy takich założeniach znamionowy kąt zarysu narzędzia narzuca położenie punktu zaczepienia promienia krzywizny R, którego odległość od średnicy znamionowej Rys. 1. Parametry narzędzia Fig. 1. Tool parameters x = R sinα. (1) Korzystając z rys. 1, parametryczne równanie powierzchni narzędzia można zapisać następująco: y z x = R d = + R d = + R ( sinα sinυ), ( cosυ cosα ) cosξ, ( cosυ cosα ) sinξ. W równaniu ξ i υ oznaczają parametry powierzchni narzędzia. Kinematykę kształtowania ślimaka przedstawiono na rys.. ()

3 Zarys ślimaka torusopochodnego kształtowanego narzędziem trzpieniowym 131 Rys.. Układ kinematyczny kształtowania zarysu zwoju ślimaka Fig.. Kinematic system of worm tooth profile shaping Przygotowując matematyczny model zarysu ślimaka, założono, że narzędzie odsunięte jest od osi ślimaka o wartość a (rys. ) odpowiadającą promieniowi podziałowemu ślimaka i na tym promieniu określana jest średnica i kąt znamionowy narzędzia. Dodatkowo założono, że narzędzie ma możliwość wychylenia o kąt ϕ wokół osi z układu narzędzia. Takie wychylenie odpowiada ustawieniu narzędzia w dowolnym przekroju ślimaka poza przekrojem osiowym. Przedstawiono to na rys. 3. W trakcie kształtowania ślimaka pomiędzy nim a narzędziem występuje liniowy styk, który zarazem określa jedną z tworzących śrubowej powierzchni ślimaka. Drugą tworzącą jest linia śrubowa ślimaka. Aby opisać powierzchnię zwoju ślimaka, należy określić równanie opisujące linię styku pomiędzy narzędziem a ślimakiem. Spełnia ona podstawowy warunek zazębienia: n t n t + n t =, (3) x x + y y z z Rys. 3. Wychylenie narzędzia względem ślimaka Fig. 3. Tilt of tool relative to worm

4 13 L. Skoczylas gdzie n x, n y, n z przedstawiają składowe wektora normalnego do powierzchni, a t x, t y, t z składowe wektora stycznego. Składowe wektora normalnego obliczane są na podstawie znanej powierzchnię, którą w tym przypadku jest powierzchnia narzędzia. Wykorzystując twierdzenie o normalnych do powierzchni, końcowe zależności opisujące składowe wektora normalnego przedstawia się następująco: n n n x y z = R = R = R cosυ sinυ, cos υ cosξ, cos υ sinξ. Wektorem stycznym może być prędkość względna narzędzia i ślimaka wynikająca z kinematyki kształtowania. Jej składowe wyliczone na podstawie rys. i 3 mają następującą postać: pz Vx = ω a + sinγ, π pz Vy = ω a + sinγ, π pz Vz = ω a sin γ +. π Składowe prędkości zależą od prędkości kątowej ślimaka ω, skoku p z oraz kąta wzniosu linii śrubowej zęba ślimaka γ i odległości układów współrzędnych a. Obliczając iloczyn skalarny wektorów normalnego i stycznego (3), po przekształceniach uzyskuje się następującą zależność: pz a sin γ π cos υ sinξ cosυ cosξ + sinυ =. (6) pz a + sin γ π Otrzymana zależność (6) pozwala na wyliczenie parametru ξ powierzchni narzędzia. Po podstawieniu wyliczonego parametru do równania () otrzymuje się współrzędne linii styku narzędzia z kształtowanym ślimakiem. Celem uzyskania powierzchni śrubowej ślimaka należy obrócić obliczoną uprzednio linię styku oraz przesunąć wzdłuż linii śrubowej ślimaka. ależy również zauważyć, że wyliczona linia styku jest określona w układzie x y z, wobec czego należy uwzględnić powiązanie układów narzędzia i ślimaka. Jako układ pośredniczący przyjęto układ stały x y z. Układ narzędzia x y z jest skręcony w stosunku do układu stałego x y z o kąt pochylenia narzędzia ϕ. Wobec tego macierz przejścia jest następująca: (4) (5)

5 Zarys ślimaka torusopochodnego kształtowanego narzędziem trzpieniowym 133. (7) 1 Dodatkowo układ narzędzia jest skręcony o kąt γ oraz odsunięty o wartość a od układu stałego, co można zapisać za pomocą następującej macierzy: a sinγ +. (8) sinγ 1 Z kolei układ ślimaka x y z jest skręcony o kąt ψ oraz przesunięty w stosunku do układu stałego x y z o wartość (p z ψ/(π)). Opisuje to macierz: cosψ sinψ sinψ cosψ + 1. (9) p z ψ π Uwzględniając macierze przejścia, końcową zależność opisującą współrzędne torusopochodnej powierzchni śrubowej ślimaka można zapisać: x = b y = b ( cosψ + sinψ )( x Rsinυ) + ( sinψ cosψ ) b Rcosα + Rcosυ cosξ + ( sinψ ) Rcosα Rcosυ sinξ sinγ + a ( cosψ sinψ )( x Rsinυ) + ( sinψ + cosψ ) o o b Rcosα + Rcosυ cosξ + ( cosψ ) Rcosα + Rcosυ sinξ sinγ a b z = sinγ sinψ ( xo Rsinυ) + sinγ cosψ Rcosα + Rcosυ cosξ + b pzψ + Rcosα + Rcosυ sinξ. π cosψ ψ sin (1) Osiowy zarys ślimaka otrzymuje się dla współrzędnej y =. Pozwala to na wyliczenie parametru ψ, którego równanie przedstawia się następująco:

6 134 L. Skoczylas tgψ = a ( x Rsinυ) + ( cosξ sinγ sinξ ) o + b b Rcosα + Rcosυ ( x Rsinυ) cosξ Rcosα + Rcosυ o (11) Mając wyliczony parametr ψ, z zależności (1) można obliczyć współrzędne x i z osiowego zarysu ślimaka. 3. KSZTAŁT ZARYSU ZWOJU ŚLIMAKA TORUSOPOCHODEGO Celem zobrazowania wpływu parametrów konstrukcyjnych ślimaka i narzędzia na kształt zarysu zwoju ślimaka opracowano kilka przykładów obliczeniowych. Przyjęte parametry do obliczeń przedstawiono w tablicy 1. Parametry ślimaka i narzędzia Worm and tool parameters Tablica 1 azwa parametru Wartość Moduł osiowy ślimaka 5 mm Wskaźnik średnicowy 1 Współczynnik grubości zęba ślimaka,5 Kąt zarysu narzędzia o Promień krzywizny narzędzia 5 mm Oprócz parametrów przedstawionych w tablicy na zarys ślimaka ma również wpływ liczba zwojów, od której zależy kąt wzniosu linii śrubowej oraz ustawienie narzędzia kształtującego ślimak. Założono, że parametry te są zmienne i względem nich przygotowano charakterystyki osiowego zarysu zwoju ślimaka torusopochodnego. Liczba zwojów, dla której obliczono zarysy zębów, wynosiła 1,, 4, 6. Ustawienie narzędzia określano przez kąt obrotu narzędzia względem osi z (rys. 3). Z uwagi na duży wpływ wychylenia narzędzia na zarys ślimaka przy dużym kącie wzniosu jego linii śrubowej przyjęto różne wartości kąta wychylenia. Dla jedno- i dwuzwojnego ślimaka przyjęte wartości kąta to: 4 o, o, o, o, 4 o. W pozostałych przypadkach kąt wychylenia wynosił: o, 1 o, o, 1 o, o. W każdym przypadku wartość promienia krzywizny zarysu narzędzia wynosiła 5 mm. Wyniki obliczeń zarysu ślimaka przedstawiono na rys. 4. Jak pokazuje rysunek, dla różnych parametrów ślimaka oraz ustawienia narzędzia uzyskuje się szeroki zakres zmian zarysu zwoju. Ponieważ w każdym przypadku promień krzywizny narzędzia jest taki sam, można zauważyć zmiany krzywizny zwoju ślimaka spowodowane różną liczbą zwojów ślimaka, a tym

7 Zarys ślimaka torusopochodnego kształtowanego narzędziem trzpieniowym 135 samym różnym kątem wzniosu linii śrubowej, oraz odpowiednim wychyleniem narzędzia. W każdym przypadku obserwowana jest taka prawidłowość, że wraz ze wzrostem kąta wychylenia narzędzia maleje kąt zarysu ślimaka na średnicy podziałowej. Zwiększa się również promień krzywizny zwoju i przyjmuje różne wartości w różnych punktach na zarysie. Tylko w jednym przypadku występuje odstępstwo od widocznej prawidłowości (rys. 4a). Zjawisko to zaobserwowano przy dużym wychyleniu narzędzia, po przekroczeniu określonej dodatniej wartości kąta wychylenia. a) b) c) d) Rys. 4. Kształt zarysu zwoju ślimaka torusopochodnego Fig. 4. Torusoidal worm teeth profile Oprócz wychylenia narzędzia duże zmiany w kształtowaniu zarysu ślimaka powoduje również promień krzywizny narzędzia. Celem wskazania wielkości tego wpływu dla skrajnych przypadków analizowanych parametrów opracowano zarys zwoju ślimaka ukształtowanego narzędziem o prostoliniowym zarysie (ślimak stożkopochodny). Wyniki przedstawiono na rys. 5. W przypadku prostoliniowego zarysu znamionowego narzędzia występuje również omawiana wcześniej prawidłowość dotycząca kąta zarysu i promienia krzywizny zwoju ślimaka. Ponadto dla liniowego zarysu narzędzia uzyskuje się dodatkowo wypukłe zarysy ślimaka.

8 136 L. Skoczylas a) b) Rys. 5. Kształt zarysu zwoju ślimaka stożkopochodnego Fig. 5. K-worm teeth profile 4. PODSUMOWAIE Przedstawiony w niniejszym artykule matematyczny opis zarysu zwoju ślimaka torusopochodnego kształtowanego narzędziem trzpieniowym pozwala na szczegółową analizę kształtu tego zwoju. Przedstawione obliczenia pokazują zarazem dużą zależność kształtu zarysu ślimaka nie tylko od geometrii narzędzia, ale również od jego ustawienia. Stwarza to możliwość poszukiwań kształtu zarysu ślimaka zapewniającego lepszą pracę przekładni przy jednoczesnym łatwym do zaprofilowania zarysie narzędzia, bez potrzeby posiadania skomplikowanego oprzyrządowania. Ocena tej grupy ślimaków wymaga jednakże badań eksperymentalnych, jak również analizy zazębienia tak ukształtowanego ślimaka ze ślimacznicą. LITERATURA [1] Kornberger Z., Przekładnie ślimakowe, Warszawa, WT [] Litvin F.L., Gonzalez-Perez I., Yukishima K., Fuentes A, Hayasaka K., Design, simulation of meshing, and contact stresses for an improved worm gear drive, Mechanism and Machine Theory, 7, vol. 4. [3] Marciniak T., Obciążalność zazębienia przekładni ślimakowych, Zeszyty aukowe Politechniki Łódzkiej, 4, nr 934. [4] Marciniak T., Przekładnie ślimakowe walcowe, Warszawa, PW 1. [5] Seol H. I., The design, generation, and simulation of meshing of worm-gear drive with longitudinally localized contacts, ASME Journal of Mechanical Design,, vol. 1. [6] Skoczylas L., Geometria zazębienia przekładni ślimakowej przy zmodyfikowanym zarysie ślimaka Archimedesa, Mechanik, 7, nr. [7] Skoczylas L., Linia styku zębów przekładni ślimakowej o stożkopochodnym zarysie ślimaka, Archiwum Technologii Maszyn i Automatyzacji, 6, vol. 6, nr, s [8] Skoczylas L., Geometria zazębienia przekładni ślimakowej ze stożkopochodnym ślimakiem kształtowanym narzędziem trzpieniowym, Zagadnienia Eksploatacji Maszyn, 7, vol. 4, z. 4 (15).

9 Zarys ślimaka torusopochodnego kształtowanego narzędziem trzpieniowym 137 [9] Su X., Houser D. R., Alternative equation of meshing for worm-gear drives and its aplication to determining undercutting and reverse engineering, ASME Journal of Mechanical Design,, vol. 1. Praca wpłynęła do Redakcji Recenzent: dr hab. inż. Tadeusz Marciniak PROFILE OF TORUSOIDAL WORM SHAPED BY SHAK TOOL S u m m a r y The paper presents mathematical description of helical side surface of torusoidal worm shaped by shank tool. The model describing helical surface takes into consideration the possibility of shank tool setting in arbitrary worm longitudinal section. A few examples of teeth profiles calculated for selected parameters of worm and tool were shown. Key words: worm gears, torusoidal worm

PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ

PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU ol. 7 nr Archiwum Technologii Maszyn i Automatyzacji 007 LESZEK SKOCZYLAS PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ W artykule przedstawiono sposób

Bardziej szczegółowo

WORM THREADS FINISHING BY USING CONICAL SHANK TOOLS

WORM THREADS FINISHING BY USING CONICAL SHANK TOOLS LESZEK SKOCZYLAS * OBRÓBKA WYKOŃCZENIOWA ZWOJÓW ŚLIMAKA STOŻKOWYMI NARZĘDZIAMI TRZPIENIOWYMI WORM THREADS FINISHING BY USING CONICAL SHANK TOOLS S t r e s z c z e n i e A b s t r a c t W niniejszym artykule

Bardziej szczegółowo

(62) Numer zgłoszenia, z którego nastąpiło wydzielenie:

(62) Numer zgłoszenia, z którego nastąpiło wydzielenie: PL 221466 B1 RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 221466 (21) Numer zgłoszenia: 409437 (22) Data zgłoszenia: 29.05.2009 (62) Numer zgłoszenia,

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 89 2015 p-issn: 0209-3324 e-issn: 2450-1549 DOI: Journal homepage:

Bardziej szczegółowo

Modelowanie powierzchni globoidalnych w środowisku CAD. The globoidal surface modeling by CAD systems

Modelowanie powierzchni globoidalnych w środowisku CAD. The globoidal surface modeling by CAD systems dr inż. Patrycja Ewa JAGIEŁOWICZ e-mail: pejagielowicz@prz.edu.pl Politechnika Rzeszowska im. I. Łukasiewicza Modelowanie powierzchni globoidalnych w środowisku CAD Streszczenie: W artykule został przedstawiony

Bardziej szczegółowo

LOKALIZACJA ŚLADU WSPÓŁPRACY W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWYCH

LOKALIZACJA ŚLADU WSPÓŁPRACY W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWYCH KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 26 nr 2 Archiwum Technologii Maszyn i Automatyzacji 2006 TADEUSZ MARCINIAK * LOKALIZACJA ŚLADU WSPÓŁPRACY W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWYCH Jedną z metod

Bardziej szczegółowo

MATEMATYCZNY MODEL OBRÓBKI KSZTAŁTOWEJ UZĘBIEŃ O KOŁOWO-ŁUKOWYM ZARYSIE ZĘBÓW TYPU NOWIKOWA

MATEMATYCZNY MODEL OBRÓBKI KSZTAŁTOWEJ UZĘBIEŃ O KOŁOWO-ŁUKOWYM ZARYSIE ZĘBÓW TYPU NOWIKOWA Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 90 2016 p-issn: 0209-3324 e-issn: 2450-1549 DOI: 10.20858/sjsutst.2016.90.12

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN KOREKCJA ZAZĘBIENIA ĆWICZENIE LABORATORYJNE NR 5 Z PODSTAW KONSTRUKCJI MASZYN OPRACOWAŁ: dr inż. Jan KŁOPOCKI Gdańsk 2000

Bardziej szczegółowo

ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH NOWIKOWA

ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH NOWIKOWA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Tadeusz MARKOWSKI 1, Michał BATSCH 2 ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH

Bardziej szczegółowo

Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi

Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej

Bardziej szczegółowo

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH SIŁ MIĘDZYZĘBNYCH W PRZEKŁADNIACH WALCOWYCH O ZĘBACH PROSTYCH I SKOŚNYCH

KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH SIŁ MIĘDZYZĘBNYCH W PRZEKŁADNIACH WALCOWYCH O ZĘBACH PROSTYCH I SKOŚNYCH MECHANIK 7/015 Mgr inż. Jerzy MARSZAŁEK Dr hab. inż. Józef DREWNIAK, prof. ATH Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.015.7.66 KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH

Bardziej szczegółowo

UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE

UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Biuletyn Polskiego Towarzystwa Geometrii i Grafiki Inżynierskiej 10 Zeszyt 12 (2001), str. 10 14 UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Paweł KAPROŃ Politechnika Częstochowska, ul.akademicka

Bardziej szczegółowo

ZWIĘKSZENIE DOKŁADNOŚCI KINEMATYCZNEJ ŚLIMACZNIC METODĄ WIÓRKOWANIA

ZWIĘKSZENIE DOKŁADNOŚCI KINEMATYCZNEJ ŚLIMACZNIC METODĄ WIÓRKOWANIA KOMSJA UDOWY MASZYN PAN ODDZAŁ W POZNANU Vol. 28 nr 2 Archiwum Technologii Maszyn i Automatyzacji 2008 TADEUSZ MARCNAK, DARUSZ OSTROWSK ZWĘKSZENE DOKŁADNOŚC KNEMATYCZNEJ ŚLMACZNC METODĄ WÓRKOWANA W artykule

Bardziej szczegółowo

PŁYNNOŚĆ PRZENIESIENIA NAPĘDU W PRZEKŁADNI Z KOŁAMI TYPU BEVELOID THE SMOOTHNESS OF TRANSSMISION IN BEVELOID GEAR

PŁYNNOŚĆ PRZENIESIENIA NAPĘDU W PRZEKŁADNI Z KOŁAMI TYPU BEVELOID THE SMOOTHNESS OF TRANSSMISION IN BEVELOID GEAR GRZEGORZ BUDZIK, MARIUSZ SOBOLAK, PIOTR STROJNY * PŁYNNOŚĆ PRZENIESIENIA NAPĘDU W PRZEKŁADNI Z KOŁAMI TYPU BEVELOID THE SMOOTHNESS OF TRANSSMISION IN BEVELOID GEAR S t r e s z c z e n i e A b s t r a c

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

METODA BADANIA KINETYKI ZUŻYWANIA PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM ARCHIMEDESA

METODA BADANIA KINETYKI ZUŻYWANIA PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM ARCHIMEDESA 3-009 T R I B O L O G I A 3 Miron CZERNIEC *, Jerzy KIEŁBIŃSKI * METODA BADANIA KINETYKI ZUŻYWANIA PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM ARCHIMEDESA THE INVESTIGATION METHOD OF KINETICS WEAR OF A WORM GEAR

Bardziej szczegółowo

METODA OBLICZENIOWA TRWAŁOŚCI PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM EWOLWENTOWYM

METODA OBLICZENIOWA TRWAŁOŚCI PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM EWOLWENTOWYM -03 T R I B O L O G I A 3 Miron CZERNIEC *, Jerzy KIEŁBIŃSKI ** METODA OBLICZENIOWA TRWAŁOŚCI PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM EWOLWENTOWYM CALCULATION METHOD LONGEVITY OF WORM GEAR WITH EVOLVENTARY

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn 0-05-7 Podstawy Konstrukcji Maszyn Część Wykład nr.3. Przesunięcie zarysu przypomnienie znanych zagadnień (wykład nr. ) Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate Podstawy Konstrukcji Maszyn Wykład nr. 13 Przekładnie zębate 1. Podział PZ ze względu na kształt bryły na której wykonano zęby A. walcowe B. stożkowe i inne 2. Podział PZ ze względu na kształt linii zębów

Bardziej szczegółowo

Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne

Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne Spis treści PRZEDMOWA... 9 1. OGÓLNA CHARAKTERYSTYKA I KLASYFIKACJA PRZEKŁADNI ZĘBATYCH... 11 2. ZASTOSOWANIE I WYMAGANIA STAWIANE PRZEKŁADNIOM ZĘBATYM... 22 3. GEOMETRIA I KINEMATYKA PRZEKŁADNI WALCOWYCH

Bardziej szczegółowo

METODA POMIARU DOKŁADNOŚCI KINEMATYCZNEJ PRZEKŁADNI ŚLIMAKOWYCH

METODA POMIARU DOKŁADNOŚCI KINEMATYCZNEJ PRZEKŁADNI ŚLIMAKOWYCH METODA POMIARU DOKŁADNOŚCI KINEMATYCZNEJ PRZEKŁADNI ŚLIMAKOWYCH Dariusz OSTROWSKI 1, Tadeusz MARCINIAK 1 1. WSTĘP Dokładność przeniesienia ruchu obrotowego w precyzyjnych przekładaniach ślimakowych zwanych

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

Nacinanie walcowych kół zębatych na frezarce obwiedniowej

Nacinanie walcowych kół zębatych na frezarce obwiedniowej POLITECHNIKA POZNAŃSKA Instytut Technologii Mechanicznej Maszyny technologiczne laboratorium Nacinanie walcowych kół zębatych na frezarce obwiedniowej Opracował: dr inż. Krzysztof Netter www.netter.strefa.pl

Bardziej szczegółowo

OBLICZANIE KÓŁK ZĘBATYCH

OBLICZANIE KÓŁK ZĘBATYCH OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć

Bardziej szczegółowo

(12) OPIS PATENTOWY (19)PL (11) (13) B1

(12) OPIS PATENTOWY (19)PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)160312 (13) B1 (21) Numer zgłoszenia: 280556 (51) IntCl5: Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 04.07.1989 F16H 57/12 (54)

Bardziej szczegółowo

WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ

WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 298, Mechanika 90 RUTMech, t. XXXV, z. 90 (4/18), październik-grudzień 2018, s. 481-489 Adam KALINA 1 Aleksander MAZURKOW 2 Stanisław WARCHOŁ 3 WYZNACZANIE LUZU

Bardziej szczegółowo

MODELOWANIE PROCESU TECHNOLOGICZNEGO KSZTAŁTOWANIA UZĘBIEŃ STOŻKOWEJ PRZEKŁADNI SPIROIDALNEJ

MODELOWANIE PROCESU TECHNOLOGICZNEGO KSZTAŁTOWANIA UZĘBIEŃ STOŻKOWEJ PRZEKŁADNI SPIROIDALNEJ MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 61-69, Gliwice 2010 MODELOWANIE PROCESU TECHNOLOGICZNEGO KSZTAŁTOWANIA UZĘBIEŃ STOŻKOWEJ PRZEKŁADNI SPIROIDALNEJ PIOTR FRĄCKOWIAK Instytut Technologii Mechanicznej

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

ności od kinematyki zazębie

ności od kinematyki zazębie Klasyfikacja przekładni zębatych z w zależno ności od kinematyki zazębie bień PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o zebach prostych o zębach

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, Spis treści

Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, Spis treści Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, 2012 Spis treści Część pierwsza Geometryczne zaleŝności w przekładniach zębatych I. Wiadomości podstawowe 21 1. Klasyfikacja

Bardziej szczegółowo

OPTYMALIZACJA PARAMETRÓW GEOMETRYCZNYCH KÓŁ ZĘBATYCH W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ KONTAKTOWYCH

OPTYMALIZACJA PARAMETRÓW GEOMETRYCZNYCH KÓŁ ZĘBATYCH W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ KONTAKTOWYCH 6-2011 T R I B O L O G I A 283 Jan ZWOLAK *, Marcin WITEK ** OPTYMALIZACJA PARAMETRÓW GEOMETRYCZNYCH KÓŁ ZĘBATYCH W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ KONTAKTOWYCH OPTIMIZATION OF THE GEOMETRICAL PARAMETERS

Bardziej szczegółowo

PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN

PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN PRO/ENGINEER ĆW. Nr. MODELOWANIE SPRĘŻYN 1. Śruba walcowa o stałym skoku W programie Pro/Engineer modelowanie elementów typu sprężyny można realizować poleceniem Insert/Helical Sweep/Protrusin. Dla prawozwojnej

Bardziej szczegółowo

Nacinanie walcowych kół zębatych na frezarce obwiedniowej

Nacinanie walcowych kół zębatych na frezarce obwiedniowej POLITECHNIKA POZNAŃSKA Instytut Technologii Mechanicznej Maszyny technologiczne laboratorium Nacinanie walcowych kół zębatych na frezarce obwiedniowej Opracował: dr inŝ. Krzysztof Netter www.netter.strefa.pl

Bardziej szczegółowo

2. Pręt skręcany o przekroju kołowym

2. Pręt skręcany o przekroju kołowym 2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo

Bardziej szczegółowo

AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych. Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice

AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych. Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice Streszczenie: W artykule opisano funkcje wspomagające

Bardziej szczegółowo

Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści

Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop. 2016 Spis treści Przedmowa XI 1. Podział przekładni ślimakowych 1 I. MODELOWANIE I OBLICZANIE ROZKŁADU OBCIĄŻENIA W ZAZĘBIENIACH ŚLIMAKOWYCH

Bardziej szczegółowo

Dobór sprzęgieł hydrokinetycznych 179 Bibliografia 183

Dobór sprzęgieł hydrokinetycznych 179 Bibliografia 183 Podstawy konstrukcji maszyn. T. 3 / autorzy: Tadeusz Kacperski, Andrzej Krukowski, Sylwester Markusik, Włodzimierz Ozimowski ; pod redakcją Marka Dietricha. wyd. 3, 3 dodr. Warszawa, 2015 Spis treści 1.

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017.

Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017. Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017 Spis treści Przedmowa XV 1. Znaczenie przekładni zębatych w napędach

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 89 2015 p-issn: 0209-3324 e-issn: 2450-1549 DOI: 10.20858/sjsutst.2015.89.14

Bardziej szczegółowo

ANALIZA KINEMATYCZNA ZŁOŻONYCH KONSTRUKCYJNIE PRZEKŁADNI OBIEGOWYCH DO ELEKTROMECHANICZNYCH ZESPOŁÓW NAPĘDOWYCH Z ZASTOSOWANIEM WZORÓW WILLISA

ANALIZA KINEMATYCZNA ZŁOŻONYCH KONSTRUKCYJNIE PRZEKŁADNI OBIEGOWYCH DO ELEKTROMECHANICZNYCH ZESPOŁÓW NAPĘDOWYCH Z ZASTOSOWANIEM WZORÓW WILLISA Maszyny Elektryczne - Zeszyty Problemowe Nr 1/2019 (121) 37 Szczepan Opach Instytut Napędów i Maszyn Elektrycznych KOMEL, Katowice ANALIZA KINEMATYCZNA ZŁOŻONYCH KONSTRUKCYJNIE PRZEKŁADNI OBIEGOWYCH DO

Bardziej szczegółowo

Wspomagane komputerowo projektowanie przekładni zębatej o krzywej tocznej zawierającej krzywe przejściowe

Wspomagane komputerowo projektowanie przekładni zębatej o krzywej tocznej zawierającej krzywe przejściowe DOMAŃSKI Janusz 1 BAJKOWSKI Marcin 2 Wspomagane komputerowo projektowanie przekładni zębatej o krzywej tocznej zawierającej krzywe przejściowe WSTĘP Przekładnie zębate podczas pracy podlegają różnego rodzaju

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

EVALUATION OF THE QUALITY OF MESHING FOR DESIGNED PAIR OF BEVEL GEARS WITH INDEPENDENT DESIGN SYSTEM

EVALUATION OF THE QUALITY OF MESHING FOR DESIGNED PAIR OF BEVEL GEARS WITH INDEPENDENT DESIGN SYSTEM Pisula Jadwiga, dr inż. Płocica Mieczysław, dr inż. Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa (17) 865 1662 jpisula@prz.edu.pl mplocica@prz.edu.pl OCENA JAKOŚCI WSPÓŁPRACY PROJEKTOWANEJ

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport

Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 90 2016 p-issn: 0209-3324 e-issn: 2450-1549 DOI: 10.20858/sjsutst.2016.90.2

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie UNIWERSYT E ZACHODNIOPOMOR T T E CH LOGICZNY W SZCZECINIE NO SKI KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZAKŁAD PODSTAW KONSTRUKCJI MASZYN

Bardziej szczegółowo

TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO

TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO Paweł PŁUCIENNIK, Andrzej MACIEJCZYK TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO Streszczenie W artykule przedstawiono

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-2 BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-2 BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie OB-2 Temat: BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ Opracował: mgr inż. St. Sucharzewski Zatwierdził: prof.

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo

Bardziej szczegółowo

Specjalna konstrukcja ślimaka do przetwórstwa tworzyw sztucznych

Specjalna konstrukcja ślimaka do przetwórstwa tworzyw sztucznych 942 MECHANIK NR 11/2017 Specjalna konstrukcja ślimaka do przetwórstwa tworzyw sztucznych Special construction of the screw for plastics processing TADEUSZ NIESZPOREK PAWEŁ PALUTKIEWICZ WŁODZIMIERZ BARANOWSKI

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

Geometria powłoki, wg publikacji dr inż. Wiesław Baran

Geometria powłoki, wg publikacji dr inż. Wiesław Baran Geometria powłoki, wg publikacji dr inż. Wiesław Baran Gładką i regularną powierzchnię środkową S powłoki można opisać za pomocą funkcji wektorowej (rys. 2.1) dwóch współrzędnych krzywoliniowych u 1 i

Bardziej szczegółowo

PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI

PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI Zadania zamknięte (0- pkt) Zadanie Jeżeli a = log 6 to a jest równe: 4 A. B. C. - Zadanie Warunek x ; 8 jest rozwiązaniem nierówności: A. x + 5 > B. x 5 C. x 5 x + 5 Zadanie Wskaż warunek, który opisuje

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

EKSPERYMENTALNA METODA OKREŚLANIA CHWILOWEGO ŚLADU STYKU W PRZEKŁADNI ZĘBATEJ

EKSPERYMENTALNA METODA OKREŚLANIA CHWILOWEGO ŚLADU STYKU W PRZEKŁADNI ZĘBATEJ KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 27 nr 2 Archiwum Technologii Maszyn i Automatyzacji 2007 MARIUSZ SOBOLAK * EKSPERYMENTALNA METODA OKREŚLANIA CHWILOWEGO ŚLADU STYKU W PRZEKŁADNI ZĘBATEJ

Bardziej szczegółowo

ĆWICZENIE NR OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA FREZARCE OBWIEDNIOWEJ

ĆWICZENIE NR OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA FREZARCE OBWIEDNIOWEJ ĆWICZENIE NR 6. 6. OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA FREZARCE OBWIEDNIOWEJ 6.1. Zadanie technologiczne Dla zadanego rysunkiem wykonawczym

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

WPŁYW WYBRANYCH PARAMETRÓW TECHNOLOGICZNYCH OBRÓBKI ZĘBNIKA NA JAKOŚĆ KINEMATYCZNĄ PRZEKŁADNI STOŻKOWEJ O KOŁOWO-ŁUKOWEJ LINII ZĘBA

WPŁYW WYBRANYCH PARAMETRÓW TECHNOLOGICZNYCH OBRÓBKI ZĘBNIKA NA JAKOŚĆ KINEMATYCZNĄ PRZEKŁADNI STOŻKOWEJ O KOŁOWO-ŁUKOWEJ LINII ZĘBA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 83 Nr kol. 1904 Jadwiga PISULA 1, Mieczysław PŁOCICA 2 WPŁYW WYBRANYCH PARAMETRÓW TECHNOLOGICZNYCH OBRÓBKI ZĘBNIKA NA JAKOŚĆ KINEMATYCZNĄ

Bardziej szczegółowo

DYSKRETNA NUMERYCZNA METODA α-bufora OKREŚLANIA GEOMETRYCZNEGO ŚLADU STYKU W PRZEKŁADNI ZĘBATEJ

DYSKRETNA NUMERYCZNA METODA α-bufora OKREŚLANIA GEOMETRYCZNEGO ŚLADU STYKU W PRZEKŁADNI ZĘBATEJ KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 27 nr 2 Archiwum Technologii Maszyn i Automatyzacji 2007 MARIUSZ SOBOLAK * DYSKRETNA NUMERYCZNA METODA α-bufora OKREŚLANIA GEOMETRYCZNEGO ŚLADU STYKU W

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Analiza kształtu i położenia strefy obróbki w procesie szlifowania powierzchni śrubowych ślimaków stożkowych

Analiza kształtu i położenia strefy obróbki w procesie szlifowania powierzchni śrubowych ślimaków stożkowych MECHANIK NR 8-9/2015 159 Analiza kształtu i położenia strefy obróbki w procesie szlifowania powierzchni śrubowych ślimaków stożkowych Analysis of the shape and position of machining zone in the process

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Mechanika Teoretyczna Kinematyka

Mechanika Teoretyczna Kinematyka POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl

Bardziej szczegółowo

Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego

Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego Przedmiotem wynalazku jest sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

1. K 5 Ruch postępowy i obrotowy ciała sztywnego

1. K 5 Ruch postępowy i obrotowy ciała sztywnego 1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość

Bardziej szczegółowo

X = r cosα = (R+r sinα) cosβ = (R+r sinα) sinβ

X = r cosα = (R+r sinα) cosβ = (R+r sinα) sinβ Krzywe Krzywa przez punkty XYZ Rysunek 18.1. Schemat wymiarów torusa i wynik nawinięcia W rozdziale zostanie przedstawiony przykład nawinięcia krzywej na ścianę torusa. Poniżej (rysunek 18.1) schemat wymiarów

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstawy Konstrukcji Maszyn Część Wykład nr. 1 1. Podstawowe prawo zazębienia I1 przełożenie kinematyczne 1 i 1 = = ω ω r r w w1 1 . Rozkład prędkości w zazębieniu 3 4 3. Zarys cykloidalny i ewolwentowy

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Globoidalna przekładnia ślimakowa z obrotowymi zębami z samoczynnym kasowaniem luzu

Globoidalna przekładnia ślimakowa z obrotowymi zębami z samoczynnym kasowaniem luzu SOBOLAK Mariusz 1 JAGIEŁOWICZ Patrycja Ewa 2 Globoidalna przekładnia ślimakowa z obrotowymi zębami z samoczynnym kasowaniem luzu WPROWADZENIE Przekładnie ślimakowe znajdują zastosowanie m.in. w maszynach

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1 Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Geometria ostrzy narzędzi skrawających KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1 Kierunek: Mechanika

Bardziej szczegółowo

ANALIZA NAPRĘŻEŃ W KOŁACH ZĘBATYCH WYZNACZONYCH METODĄ ELEMENTÓW BRZEGOWYCH

ANALIZA NAPRĘŻEŃ W KOŁACH ZĘBATYCH WYZNACZONYCH METODĄ ELEMENTÓW BRZEGOWYCH 3-2006 PROBLEMY EKSPLOATACJI 157 Piotr FOLĘGA Politechnika Śląska, Gliwice ANALIZA NAPRĘŻEŃ W KOŁACH ZĘBATYCH WYZNACZONYCH METODĄ ELEMENTÓW BRZEGOWYCH Słowa kluczowe Koła zębate, zużycie ścierne zębów,

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Badania eksploatacyjne przekładni ślimakowej z wklęsłym zarysem ZK2

Badania eksploatacyjne przekładni ślimakowej z wklęsłym zarysem ZK2 Dr hab. inż. Leszek Skoczylas, prof. PRz Faculty of Mechanical Engineering and Aeronautics Rzeszow University of Technology al. Powstańców Warszawy 12, 35 959 Rzeszów, Poland E mail: lsktmiop@prz.edu.pl

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II Wykład II I. Algebra wektorów 2.1 Iloczyn wektorowy pary wektorów. 2.1.1 Orientacja przestrzeni Załóżmy, że trójka wektorów a, b i c jest niekomplanarna. Wynika z tego, że żaden z tych wektorów nie jest

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

NUMERYCZNE WYBRANE METODY WYZNACZANIA ŚLADU WSPÓŁPRACY PRZEKŁADNI ZĘBATEJ NA PRZYKŁADZIE PARY STOŻKOWEJ O KOŁOWO-ŁUKOWEJ LINII ZĘBA

NUMERYCZNE WYBRANE METODY WYZNACZANIA ŚLADU WSPÓŁPRACY PRZEKŁADNI ZĘBATEJ NA PRZYKŁADZIE PARY STOŻKOWEJ O KOŁOWO-ŁUKOWEJ LINII ZĘBA dr inż. Jacek PACANA pacana@prz.edu.pl Politechnika Rzeszowska dr inż. Jadwiga PISULA jpisula@prz.edu.pl Politechnika Rzeszowska NUMERYCZNE WYBRANE METODY WYZNACZANIA ŚLADU WSPÓŁPRACY PRZEKŁADNI ZĘBATEJ

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo