PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN"

Transkrypt

1 PRO/ENGINEER ĆW. Nr. MODELOWANIE SPRĘŻYN 1. Śruba walcowa o stałym skoku W programie Pro/Engineer modelowanie elementów typu sprężyny można realizować poleceniem Insert/Helical Sweep/Protrusin. Dla prawozwojnej sprężyny o stałym skoku należy z menu Atrributes wybrać opcje przedstawione poniżej. Rysunek okno atrybutów polecenia Helical Sweep

2 Po wybraniu opcji i ich zatwierdzeniu program przechodzi do szkicownika, w którym należy narysować tworzącą walca linii śrubowej oraz oś symetrii. Po tej operacji program przechodzi do rysowania przekroju profilu w szkicowniku, linie referencyjne będą w nim wstawione automatycznie na początku tworzącej walca linii śrubowej. Po narysowaniu profilu dla sprężyny, podaniu skoku i zatwierdzeniu jej parametrów zastanie wygenerowany model

3 2. Śruba walcowa o zmienny, skoku Rysunek model sprężyny śrubowej walcowej W celu dogięcia ostatniego zwoju sprężyny wykorzystano możliwości stosowania zmiennego skoku. W oknie atrybutów sprężyny wybrano opcję Variable. Ze względu na to, ze tworząca tej sprężyny jest określona tylko przez dwa punkty, w szkicowniku wstawiono dodatkowy punkt, w którym nastąpić ma zmiana skoku.

4 UWAGA! Zaawansowane modele sprężyn można uzyskać, wprowadzając dodatkowe punkty na tworzącej. 3. Śruba stożkowa W celu utworzenia sprężyny stożkowej można np. pochylić tworzącą np. jak poniżej dla poprzedniego przypadku 4. Parametryczny model sprężyny rozciąganej z dwoma uchami Dla zbudowania modelu parametrycznego sprężyny o strukturze przedstawionej poniżej można użyć podobnego postępowania jak powyżej lub wykorzystać możliwości użycia relacji oraz tworzenia krzywych za pomocą równań. Przedstawiony zostanie ten drugi sposób a) W pierwszej kolejności utworzona zostanie krzywa prowadząca, czyli trajektoria. Krzywa ta składa się z linii śrubowej, łuków płaskich i przestrzennych oraz odcinków prostych, które zostaną użyte do opisania jej kolejnych segmentów poleceniem Curve. W celu ułatwienia zapisu równań dla początków krzywych zostaną zdefiniowane dodatkowe układy współrzędnych. Rozpoczynając wykreślanie trajektorii z punktu (0,0,0) i zaczepiając na końcu pierwszego segmentu następny układ współrzędnych, uzyskamy ciągłość krzywej. W omawianym przykładzie, w każdym ze zdefiniowanych układów współrzędnych, koniec poprzedniej krzywej będzie stanowił początek następnej.

5 Modelowanie rozpoczęto od wprowadzenia danych i zależności poleceniem Tools/Relations. Oznaczenia: DW- średnica drutu RR- średnica linii śrubowej PITCH- skok HS- wysokość linii śrubowej NREV- liczba zwojów L_EARN- odległość osi ucha od części walcowej sprężyny L_OPEN- długość niedomknięcia ucha RW- zmienna pomocnicza b) Następnie wygenerowano linie śrubową poprzez polecenie Curve/From Equation, wybrano cylindryczny układ współrzędnych, oraz krzywą zapisano równaniem parametrycznym

6 Otrzymujemy: c) Przed zdefiniowanie następnego układu współrzędnych na końcu krzywej zbudowano dodatkowe elementy pomocnicze: - pomocniczą oś o nazwie AXIS1 na przecięciu płaszczyzn Right i Top - punkt PNT0 jako punkt końcowy krzywej - pomocniczą płaszczyznę DTM1 przechodzącą przez punkt PNT0 oraz oś AXIS1. d) Następnie do płaszczyzny DTM1 wygenerowano płaszczyznę normalną DTM2, przechodzącą przez oś AXIS1. Na przecięciu trzech płaszczyzn DTM1,DTM2 i Front zdefiniowano układ współrzędnych CS0. Nadano mu orientację zgodną z osią Z, wzdłuż osi sprężyny w stronę ucha.

7 e) W układzie tym poleceniem Curve/From Equation wygenerowano krzywą przestrzenną opisującą odgięcie. Wykonano to za pomocą kolejnego równania parametrycznego f) Na końcu powstałej krzywej zdefiniujemy punkt PNT1, który dalej zostanie wykorzystany w konstrukcji trajektorii sprężyny g) W celu skonstruowania odcinka krzywej rozpoczynającego się z punktu końcowego tego łuku zdefiniowana płaszczyznę pomocniczą DTM3 przechodzącą przez oś AXIS1 oraz punkt PNT2. W płaszczyźnie tej leżeć będzie płaska część ucha sprężyny. h) W szkicowniku otwartym na płaszczyźnie DTM3, korzystając z poleceń rysowania linii i łuków, wykonujemy szkic trajektorii ucha. Rysowanie trzeba rozpocząć od zaczepienia odcinka na końcu poprzedniej krzywej. Tę część krzywej zwymiarowano za pomocą dwóch parametrów, to jest odległości środka promienia łuku oraz długości niedomknięcia. (wartości zdefiniowana w poleceniu Relations- L_OPEN i L_EARN)

8 i) Dla zdefiniowania trajektorii drugiego końca uch postępujemy analogicznie wykonując Punty (c)-(h). A więc punkt PNT3 na końcu drugiego końca, odpowiednie płaszczyzny, następnie wygenerowano krzywą i na jej końcu kolejny punkt PNT4

9 j) Kolejnym etapem będzie wykonanie operacji pozwalającej na przesunięcie przekrojem wzdłuż utworzonej trajektorii. Uczynimy to za pomocą polecenia Var Sect Sweep. UWAGA! Polecenie to należy użyć dla każdego z fragmentów powstałej krzywej W poleceniu tym należy wskazać krzywą prowadzącą oraz zdefiniować profil. Jako profil zdefiniujmy okrąg o średnicy DW.

10 Poniżej efekt dla pierwszej krzywej:

11 5. Tworzenie rodziny sprężyn za pomocą modyfikacji danych w poleceniu Relations W ćwiczeniu 4 do wykonania sprężyny użyto danych wpisanych na sztywno w polecenie Relations. Dane te można w każdej chwili modyfikować uzyskując całą rodzinę różnych sprężyn np. różne średnice zewnętrzne, średnice drutu, różne położenia i długość ucha. Sposób modelowania z użyciem trajektorii można wykorzystać do budowania modeli zaawansowanych np. dyszy spiralnej do tłumienia wylotu powietrza wykonanej jako sprężyna o zmiennym skoku, zmiennym przekroju i pochylonym zarysie linii śrubowej Wykorzystanie polecenia Swept Blend a) dodajemy krzywą o zadanej trajektorii Insert/Curve/ from Equation b) dodajemy oś symetrii na przecięciu płaszczyzn Right i Top przechodzącą przez środek trajektorii c) Wchodzimy w Insert/Swept Blend/ Protrusion. W opcji section wskazujemy dwa elementy (jeden będzie już zadany w menu trzeba tylko wskazać punkt na trajektorii

12 natomiast drugi trzeba dodać poleceniem Insert). Przy wskazaniu danego punktu wchodzimy do szkicownika i dokonujemy zadania profilu wyciągnięcia d) ostatecznie otrzymujemy dyszę o zmiennym skoku ĆWICZENIE: Spróbuj utworzyć sprężynę jak na rysunku poniżej:

13

TUTORIAL: wyciągni. gnięcia po wielosegmentowej ście. cieżce ~ 1 ~

TUTORIAL: wyciągni. gnięcia po wielosegmentowej ście. cieżce ~ 1 ~ ~ 1 ~ TUTORIAL: Sprężyna skrętna w SolidWorks jako wyciągni gnięcia po wielosegmentowej ście cieżce ce przykład Sprężyny występują powszechnie w maszynach, pojazdach, meblach, sprzęcie AGD i wielu innych

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

Przykłady zastosowania zaawansowanych operacji

Przykłady zastosowania zaawansowanych operacji Przykłady zastosowania zaawansowanych operacji Wyciągnięcie po ścieżce Rysunek 17.1. Szkic okręgu Wyciągnięciem po ścieżce można: Dodać materiał, poleceniem. Odjąć materiał, poleceniem. W przykładzie przedstawiono

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.

Bardziej szczegółowo

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać

Bardziej szczegółowo

Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych

Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych Wprowadzenie Utworzone elementy bryłowe należy traktować jako wstępnie wykonane elementy, które dopiero po dalszej obróbce będą gotowymi częściami

Bardziej szczegółowo

PORÓWNANIE NARZĘDZI DOSTĘPNYCH W OBSZARZE ROBOCZYM SZKICOWNIKA NX Z POLECENIAMI ZAWARTYMI W ANALOGICZNEJ PRZESTRZENI GEOMETRYCZNEJ CATIA V5

PORÓWNANIE NARZĘDZI DOSTĘPNYCH W OBSZARZE ROBOCZYM SZKICOWNIKA NX Z POLECENIAMI ZAWARTYMI W ANALOGICZNEJ PRZESTRZENI GEOMETRYCZNEJ CATIA V5 PORÓWNANIE NARZĘDZI DOSTĘPNYCH W OBSZARZE ROBOCZYM SZKICOWNIKA NX Z POLECENIAMI ZAWARTYMI W ANALOGICZNEJ PRZESTRZENI GEOMETRYCZNEJ CATIA V5 Tworzenie profili o charakterystycznym kształcie NARZĘDZIA, KTÓRE

Bardziej szczegółowo

OPROGRAMOWANIE UŻYTKOWE

OPROGRAMOWANIE UŻYTKOWE R 3 OPROGRAMOWANIE UŻYTKOWE PROJEKTOWANIE Z WYKORZYSTANIEM PROGRAMU Solid Edge Cz. I Part 14 A 1,5 15 R 2,5 OO6 R 4,5 12,72 29 7 A 1,55 1,89 1,7 O33 SECTION A-A OPRACOWANIE: mgr inż. Marcin Bąkała Uruchom

Bardziej szczegółowo

Projektowanie 3D Tworzenie modeli przez wyciągnięcie profilu po krzywej SIEMENS NX Sweep Along Guide

Projektowanie 3D Tworzenie modeli przez wyciągnięcie profilu po krzywej SIEMENS NX Sweep Along Guide Projektowanie 3D Narzędzie do tworzenia modeli bryłowych lub powierzchniowych o stałym przekroju opartych na krzywoliniowym profilu otwartym. Okno dialogowe zawiera następujące funkcje: Section wybór profilu

Bardziej szczegółowo

PRO/ENGINEER. ĆW. Nr. PROJEKT SPRZĘGŁA- ZŁOŻENIE

PRO/ENGINEER. ĆW. Nr. PROJEKT SPRZĘGŁA- ZŁOŻENIE PRO/ENGINEER ĆW. Nr. PROJEKT SPRZĘGŁA- ZŁOŻENIE Rysunek 1 projektowane element- efekt końcowy W celu wykonania złożenia końcowego (jak na rysunku) trzeba wykonać wszystkie elementy. Następnie złożyć w

Bardziej szczegółowo

Ćwiczenie nr 3 Edycja modeli bryłowych

Ćwiczenie nr 3 Edycja modeli bryłowych Ćwiczenie nr 3 Edycja modeli bryłowych 1. Fazowanie oraz zaokrąglanie. Wykonaj element pokazany na rys. 1a. Wymiary elementu: średnice 100 i 40. Długość wałków 30 i 100 odpowiednio. Następnie wykonaj fazowanie

Bardziej szczegółowo

Materiały pomocnicze z programu AutoCAD 2014.

Materiały pomocnicze z programu AutoCAD 2014. Materiały pomocnicze z programu AutoCAD 2014. Poniżej przedstawiony zostanie przykładowy rysunek wykonany w programie AutoCAD 2014. Po uruchomieniu programu należy otworzyć szablon KKM, w którym znajdują

Bardziej szczegółowo

Modelowanie powierzchniowe cz. 2

Modelowanie powierzchniowe cz. 2 Modelowanie powierzchniowe cz. 2 Tworzenie modelu przez obrót wokół osi SIEMENS NX Revolve Opis okna dialogowego Section wybór profilu do obrotu Axis określenie osi obrotu Limits typ i parametry geometryczne

Bardziej szczegółowo

Materiały pomocnicze do programu AutoCAD 2014

Materiały pomocnicze do programu AutoCAD 2014 Łukasz Przeszłowski Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Konstrukcji Maszyn Materiały pomocnicze do programu AutoCAD 2014 UWAGA: Są to materiały pomocnicze

Bardziej szczegółowo

Przeciąganie, rzutowanie, płaszczyzna konstrukcyjna

Przeciąganie, rzutowanie, płaszczyzna konstrukcyjna Przeciąganie, rzutowanie, płaszczyzna konstrukcyjna Wykonajmy projekt tłumika z elementami rur wydechowych, rys. 1 Rys. 1. Efekt końcowy projektu Przyjmując jako płaszczyznę szkicu płaszczyznę XY, narysujmy

Bardziej szczegółowo

1 Tworzenie brył obrotowych

1 Tworzenie brył obrotowych 1 Tworzenie brył obrotowych Do tworzenia brył obrotowych w programie Blender służą dwa narzędzia: Spin i SpinDup. Idea tworzenia brył obrotowych jest prosta i polega na narysowania połowy przekroju poprzecznego

Bardziej szczegółowo

Katedra Zarządzania i Inżynierii Produkcji 2013r. Materiały pomocnicze do zajęć laboratoryjnych

Katedra Zarządzania i Inżynierii Produkcji 2013r. Materiały pomocnicze do zajęć laboratoryjnych Materiały pomocnicze do zajęć laboratoryjnych 1 Używane w trakcie ćwiczeń moduły programu Autodesk Inventor 2008 Tworzenie złożenia Tworzenie dokumentacji płaskiej Tworzenie części Obserwacja modelu/manipulacja

Bardziej szczegółowo

AutoCAD laboratorium 3

AutoCAD laboratorium 3 AutoCAD laboratorium 3 Spis treści UWAGA: PRZED ROZPOCZĘCIEM ZAJĘĆ PRZYWRÓĆ USTAWIENIA DOMYŚLNE PROGRAMU AUTOCAD.... 3 1 SPRAWDZENIE WIADOMOŚCI Z POPRZEDNICH ZAJĘĆ... 3 Zad. 1. Narysuj używając polecenia

Bardziej szczegółowo

Wyciągnięcie po linii prostej w ujęciu powierzchniowym w NX firmy Siemens Industry Software

Wyciągnięcie po linii prostej w ujęciu powierzchniowym w NX firmy Siemens Industry Software Wyciągnięcie po linii prostej w ujęciu powierzchniowym w NX firmy Siemens Industry Software 1. Extrude opis okna dialogowego: Section wybór profilu do wyciągnięcia, Direction określenie kierunku i zwrotu

Bardziej szczegółowo

ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS.

ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS. Anna BŁACH, Piotr DUDZIK, Anita PAWLAK Politechnika Śląska Ośrodek Geometrii i Grafiki Inżynierskiej ul. Krzywoustego 7 44-100 Gliwice tel./ fax: 0-32 237 26 58, e-mail: anna.blach@polsl.pl, piotr.dudzik@polsl.pl,

Bardziej szczegółowo

Przykładowe plany zajęć lekcyjnych Design the Future Poland

Przykładowe plany zajęć lekcyjnych Design the Future Poland Przykładowe plany zajęć lekcyjnych Design the Future Poland 1 Spis treści Plik projektu... 3 Brelok Krok po kroku... 5 Tron dla komórki krok po kroku... 15 Plik projektu... 15 Tron na komórkę... 17 Figury

Bardziej szczegółowo

1. Instrukcja 3: Projekt obudowy zasilacza komputerowego w systemie NX 6.0

1. Instrukcja 3: Projekt obudowy zasilacza komputerowego w systemie NX 6.0 1. Instrukcja 3: Projekt obudowy zasilacza komputerowego w systemie NX 6.0 Przed przystąpieniem do modelowania należy ustawić globalne parametry modułu sheet metal w zakładce Preferences > NX sheet metal

Bardziej szczegółowo

Narysujemy uszczelkę podobną do pokazanej na poniższym rysunku. Rys. 1

Narysujemy uszczelkę podobną do pokazanej na poniższym rysunku. Rys. 1 Narysujemy uszczelkę podobną do pokazanej na poniższym rysunku. Rys. 1 Jak zwykle, podczas otwierania nowego projektu, zaczynamy od ustawienia warstw. Poniższy rysunek pokazuje kolejne kroki potrzebne

Bardziej szczegółowo

Następnie zdefiniujemy utworzony szkic jako blok, wybieramy zatem jak poniżej

Następnie zdefiniujemy utworzony szkic jako blok, wybieramy zatem jak poniżej Zadanie 1 Wykorzystanie opcji Blok, Podziel oraz Zmierz Funkcja Blok umożliwia zdefiniowanie dowolnego złożonego elementu rysunkowego jako nowy blok a następnie wykorzystanie go wielokrotnie w tworzonym

Bardziej szczegółowo

Wymiarowanie i teksty. Polecenie:

Wymiarowanie i teksty. Polecenie: 11 Wymiarowanie i teksty Polecenie: a) Utwórz nowy rysunek z pięcioma warstwami, dla każdej warstwy przyjmij inny, dowolny kolor oraz grubość linii. Następnie narysuj pokazaną na rysunku łamaną warstwie

Bardziej szczegółowo

Tworzenie nowego rysunku Bezpośrednio po uruchomieniu programu zostanie otwarte okno kreatora Nowego Rysunku.

Tworzenie nowego rysunku Bezpośrednio po uruchomieniu programu zostanie otwarte okno kreatora Nowego Rysunku. 1 Spis treści Ćwiczenie 1...3 Tworzenie nowego rysunku...3 Ustawienia Siatki i Skoku...4 Tworzenie rysunku płaskiego...5 Tworzenie modeli 3D...6 Zmiana Układu Współrzędnych...7 Tworzenie rysunku płaskiego...8

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

W module Część-ISO wykonać kubek jak poniżej

W module Część-ISO wykonać kubek jak poniżej W module Część-ISO wykonać kubek jak poniżej rozpoczniemy od wyciągnięcia walca o średnicy 75mm i wysokości 90mm z płaszczyzny xy wykonujemy szkic do wyciągnięcia zamykamy szkic, oraz wprowadzamy wartość

Bardziej szczegółowo

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert)

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert) Procesy i techniki produkcyjne Wydział Mechaniczny Ćwiczenie 3 (2) CAD/CAM Zasady budowy bibliotek parametrycznych Cel ćwiczenia: Celem tego zestawu ćwiczeń 3.1, 3.2 jest opanowanie techniki budowy i wykorzystania

Bardziej szczegółowo

Podstawowe zasady modelowania śrub i spoin oraz zestawienie najważniejszych poleceń AutoCAD 3D,

Podstawowe zasady modelowania śrub i spoin oraz zestawienie najważniejszych poleceń AutoCAD 3D, Podstawowe zasady modelowania śrub i spoin oraz zestawienie najważniejszych poleceń AutoCAD 3D, które są niezbędne przy tworzeniu nieregularnych geometrycznie obiektów Modelowanie 3D śrub i spoin oraz

Bardziej szczegółowo

Podczas tej lekcji przyjrzymy się, jak wykonać poniższy rysunek przy pomocy programu BobCAD-CAM

Podczas tej lekcji przyjrzymy się, jak wykonać poniższy rysunek przy pomocy programu BobCAD-CAM Rysowanie Części 2D Lekcja Pierwsza Podczas tej lekcji przyjrzymy się, jak wykonać poniższy rysunek przy pomocy programu BobCAD-CAM Na wstępie należy zmienić ustawienia domyślne programu jednostek miary

Bardziej szczegółowo

Nadają się do automatycznego rysowania powierzchni, ponieważ może ich być dowolna ilość.

Nadają się do automatycznego rysowania powierzchni, ponieważ może ich być dowolna ilość. CAD 3W zajęcia nr 2 Rysowanie prostych powierzchni trójwymiarowych. 1. 3wpow (3dface) powierzchnia trójwymiarowa Rysujemy ją tak, jak pisze się literę S (w przeciwieństwie do powierzchni 2W (solid), którą

Bardziej szczegółowo

4.2. ELIPSA. 1. W linii statusowej włączamy siatkę i skok, które ułatwią rysowanie:

4.2. ELIPSA. 1. W linii statusowej włączamy siatkę i skok, które ułatwią rysowanie: 4.2. ELIPSA 1. W linii statusowej włączamy siatkę i skok, które ułatwią rysowanie: 2. Rysujemy Elipsę (_Ellipse) zaczynając w dowolnym punkcie, koniec osi definiujemy np. za pomocą współrzędnych względnych

Bardziej szczegółowo

Koło zębate wału. Kolejnym krokiem będzie rozrysowanie zębatego koła przeniesienia napędu na wał.

Koło zębate wału. Kolejnym krokiem będzie rozrysowanie zębatego koła przeniesienia napędu na wał. Witam w kolejnej części kursu modelowania 3D. Jak wspomniałem na forum, dalsze etapy będą przedstawiały terminy i nazwy opcji, ustawień i menu z polskojęzycznego interfejsu programu. Na początek dla celów

Bardziej szczegółowo

b) Dorysuj na warstwie pierwszej (1) ramkę oraz tabelkę (bez wymiarów) na warstwie piątej (5) według podanego poniżej wzoru:

b) Dorysuj na warstwie pierwszej (1) ramkę oraz tabelkę (bez wymiarów) na warstwie piątej (5) według podanego poniżej wzoru: Wymiarowanie i teksty 11 Polecenie: a) Utwórz nowy rysunek z pięcioma warstwami, dla każdej warstwy przyjmij inny, dowolny kolor oraz grubość linii. Następnie narysuj pokazaną na rysunku łamaną na warstwie

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

Stanisław Skotnicki. Modelowanie geometryczne

Stanisław Skotnicki. Modelowanie geometryczne Stanisław Skotnicki Modelowanie geometryczne Warszawa 2012 MODELOWANIE GEOMETRYCZNE Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Kierunek studiów Edukacja techniczno informatyczna 02-524

Bardziej szczegółowo

Rys. 1. Rozpoczynamy rysunek pojedynczej części

Rys. 1. Rozpoczynamy rysunek pojedynczej części Inventor cw1 Otwieramy nowy rysunek typu Inventor Part (ipt) pojedyncza część. Wykonujemy to następującym algorytmem, rys. 1: 1. Na wstędze Rozpocznij klikamy nowy 2. W oknie dialogowym Nowy plik klikamy

Bardziej szczegółowo

Przykład montażu w CATIA v5

Przykład montażu w CATIA v5 Przykład montażu w CATIA v5 Za przykład posłuży proste połączenie wałka i tulejki za pomocą wpustu. Pierwszym etapem jest konstrukcja modeli 3D. Zacznijmy od stworzenia modelu wałka. Model 3D wałka Modelowanie

Bardziej szczegółowo

W tym ćwiczeniu zostanie wykonany prosty profil cienkościenny, jak na powyŝszym rysunku.

W tym ćwiczeniu zostanie wykonany prosty profil cienkościenny, jak na powyŝszym rysunku. ĆWICZENIE 1 - Podstawy modelowania 3D Rozdział zawiera podstawowe informacje i przykłady dotyczące tworzenia trójwymiarowych modeli w programie SolidWorks. Ćwiczenia zawarte w tym rozdziale są podstawą

Bardziej szczegółowo

Tworzenie powierzchni na bazie przekrojów charakterystycznych SIEMENS NX Bridge Surface

Tworzenie powierzchni na bazie przekrojów charakterystycznych SIEMENS NX Bridge Surface charakterystycznych SIEMENS NX Bridge Surface Narzędzie przeznaczone do wykonywania przejść powierzchniowych między dwoma krawędziami geometrii powierzchniowej lub bryłowej utworzonej wcześniej. Funkcje

Bardziej szczegółowo

Tworzenie dokumentacji 2D

Tworzenie dokumentacji 2D Tworzenie dokumentacji 2D Tworzenie dokumentacji technicznej 2D dotyczy określonej części (detalu), uprzednio wykonanej w przestrzeni trójwymiarowej. Tworzenie rysunku 2D rozpoczynamy wybierając z menu

Bardziej szczegółowo

Ćwiczenie Tworzenie szkicu 3D z linii i splajnów. Rama fotela

Ćwiczenie Tworzenie szkicu 3D z linii i splajnów. Rama fotela Ćwiczenie 0.. Tworzenie szkicu 3D z linii i splajnów. Rama fotela Szkice 3D może być tworzony z zastosowaniem narzędzia do precyzyjnego wprowadzania współrzędnych. Tak utworzony szkic może być dalej modyfikowany

Bardziej szczegółowo

Kolektor. Zagadnienia. Wyciągnięcia po profilach, Lustro, Szyk. Wykonajmy model kolektora jak na rys. 1.

Kolektor. Zagadnienia. Wyciągnięcia po profilach, Lustro, Szyk. Wykonajmy model kolektora jak na rys. 1. Kolektor Zagadnienia. Wyciągnięcia po profilach, Lustro, Szyk Wykonajmy model kolektora jak na rys. 1. Rysunek 1 Składa się on z grubszej rury, o zmiennym przekroju, leŝącej w płaszczyźnie symetrii kolektora

Bardziej szczegółowo

Wstęp Pierwsze kroki Pierwszy rysunek Podstawowe obiekty Współrzędne punktów Oglądanie rysunku...

Wstęp Pierwsze kroki Pierwszy rysunek Podstawowe obiekty Współrzędne punktów Oglądanie rysunku... Wstęp... 5 Pierwsze kroki... 7 Pierwszy rysunek... 15 Podstawowe obiekty... 23 Współrzędne punktów... 49 Oglądanie rysunku... 69 Punkty charakterystyczne... 83 System pomocy... 95 Modyfikacje obiektów...

Bardziej szczegółowo

Spis wybranych poleceń programu kompas-3d

Spis wybranych poleceń programu kompas-3d Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-212-97-52 Spis wybranych poleceń programu kompas-3d www.kompas-3d.pl Widok OdświeŜenie ekranu

Bardziej szczegółowo

Ćwiczenie 3. I. Wymiarowanie

Ćwiczenie 3. I. Wymiarowanie Ćwiczenie 3 I. Wymiarowanie AutoCAD oferuje duże możliwości wymiarowania rysunków, poniżej zostaną przedstawione podstawowe sposoby wymiarowania rysunku za pomocą różnych narzędzi. 1. WYMIAROWANIE LINIOWE

Bardziej szczegółowo

Ćwiczenie 3: Rysowanie obiektów w programie AutoCAD 2010

Ćwiczenie 3: Rysowanie obiektów w programie AutoCAD 2010 Ćwiczenie 3: Rysowanie obiektów w programie AutoCAD 2010 1 Przeznaczone dla: nowych użytkowników programu AutoCAD Wymagania wstępne: brak Czas wymagany do wykonania: 15 minut W tym ćwiczeniu Lekcje zawarte

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Ćwiczenie 1 - Modelowanie bryłowe z wykorzystaniem obiektów podstawowych i podstawowych technik modyfikacyjnych

Ćwiczenie 1 - Modelowanie bryłowe z wykorzystaniem obiektów podstawowych i podstawowych technik modyfikacyjnych AutoCAD PL Ćwiczenie nr 6 1 Celem ćwiczenia jest doskonalenie technik modelowania i modyfikacji obiektów 3D o różnej geometrii modele bryłowe. Ćwiczenie 1 - Modelowanie bryłowe z wykorzystaniem obiektów

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

AUTOCAD teoria i zadania z podstaw rysowania Rysowanie linii, prostej, półprostej, punktu, trasy, polilinii. Zadania geodezyjne.

AUTOCAD teoria i zadania z podstaw rysowania Rysowanie linii, prostej, półprostej, punktu, trasy, polilinii. Zadania geodezyjne. AUTOCAD teoria i zadania z podstaw rysowania Rysowanie linii, prostej, półprostej, punktu, trasy, polilinii. Zadania geodezyjne. RYSOWANIE 2D Polecenie LINIA Polecenie LINIA tworzy linię, której punkty

Bardziej szczegółowo

Ćwiczenie nr 2 - Rysowanie precyzyjne

Ćwiczenie nr 2 - Rysowanie precyzyjne Ćwiczenie nr 2 - Rysowanie precyzyjne Materiały do kursu Skrypt CAD AutoCAD 2D strony: 37-46. Wprowadzenie Projektowanie wymaga budowania modelu geometrycznego zgodnie z określonymi wymiarami, a to narzuca

Bardziej szczegółowo

Temat: Modelowanie 3D rdzenia wirnika silnika skokowego

Temat: Modelowanie 3D rdzenia wirnika silnika skokowego Techniki CAD w pracy inŝyniera Aplikacja programu Autodesk Inventor 2010. Studium stacjonarne i niestacjonarne. Kierunek: Elektrotechnika Temat: Modelowanie 3D rdzenia wirnika silnika skokowego Opracował:

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych. Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice

AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych. Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice Streszczenie: W artykule opisano funkcje wspomagające

Bardziej szczegółowo

Scenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r.

Scenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r. 1. Informacje wstępne: Data: 7 maja 013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka..

Bardziej szczegółowo

Tworzenie bloku na przykładzie znaku chropowatości

Tworzenie bloku na przykładzie znaku chropowatości Materiały pomocnicze do programu AutoCAD 2013 Kolor czerwony elementy pomocnicze, których nie rysujemy (narysowane dla przedstawienia wymiarów itp.). Kolor zielony elementy pomocnicze. Tworzenie bloku

Bardziej szczegółowo

Instrukcje do przedmiotu Komputerowe wspomaganie prac inżynierskich. Opracowała: Dr inż. Joanna Bartnicka

Instrukcje do przedmiotu Komputerowe wspomaganie prac inżynierskich. Opracowała: Dr inż. Joanna Bartnicka Instrukcje do przedmiotu Komputerowe wspomaganie prac inżynierskich Opracowała: Dr inż. Joanna Bartnicka Instrukcja I Temat laboratorium: PODSTAWY KOMPUTEROWEGO ZAPISU KONSTRUKCJI Z ZASTOSOWANIEM PROGRAMU

Bardziej szczegółowo

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki. Ćwiczenie laboratoryjne 1

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki. Ćwiczenie laboratoryjne 1 Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 1 Temat: Modelowanie krzywych 2D i 3D przy użyciu programu Autodesk Inventor 2009 Spis treści 1. Wprowadzenie...

Bardziej szczegółowo

AUTOCAD MIERZENIE I PODZIAŁ

AUTOCAD MIERZENIE I PODZIAŁ AUTOCAD MIERZENIE I PODZIAŁ Czasami konieczne jest rozmieszczenie na obiekcie punktów lub bloków, w równych odstępach. Na przykład, moŝe zachodzić konieczność zlokalizowania na obiekcie punktów oddalonych

Bardziej szczegółowo

Projekt połowicznej, prostej endoprotezy stawu biodrowego w programie SOLIDWorks.

Projekt połowicznej, prostej endoprotezy stawu biodrowego w programie SOLIDWorks. 1 Projekt połowicznej, prostej endoprotezy stawu biodrowego w programie SOLIDWorks. Rysunek. Widok projektowanej endoprotezy według normy z wymiarami charakterystycznymi. 2 3 Rysunek. Ilustracje pomocnicze

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

O czym należy pamiętać?

O czym należy pamiętać? O czym należy pamiętać? Podczas pracy na płaszczyźnie możliwe jest wprowadzanie współrzędnych punktów w następujących układach: - układ współrzędnych kartezjańskich: x, y służy do rysowania odcinków o

Bardziej szczegółowo

- biegunowy(kołowy) - kursor wykonuje skok w kierunku tymczasowych linii konstrukcyjnych;

- biegunowy(kołowy) - kursor wykonuje skok w kierunku tymczasowych linii konstrukcyjnych; Ćwiczenie 2 I. Rysowanie precyzyjne Podczas tworzenia rysunków często jest potrzeba wskazania dokładnego punktu na rysunku. Program AutoCad proponuje nam wiele sposobów zwiększenia precyzji rysowania.

Bardziej szczegółowo

Spis wybranych poleceń programu KOMPAS-3D LT

Spis wybranych poleceń programu KOMPAS-3D LT Usługi Informatyczne SZANSA Sp. z o.o. z siedzibą w Bielsku-Białej przy ul. Chryzantemowej 5, 43-300 Bielsko-Biała zarejestrowana w Sądzie Rejonowym w Bielsku-Białej, VIII Wydział Gospodarczy Krajowego

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Parametryzacja i więzy w Design View i Pro/Desktop (podsumowanie)

Parametryzacja i więzy w Design View i Pro/Desktop (podsumowanie) Parametryzacja i więzy w Design View i Pro/Desktop (podsumowanie) PARAMETRYZACJA CZYLI: wprowadzenie zmiennych do modelu geometrycznego, Przypisanie zmiennych (parametrów) liczbowym wymiarom daje możliwość

Bardziej szczegółowo

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Problem I. Model UD Dana jest bryła, której rzut izometryczny przedstawiono na rysunku 1. (W celu zwiększenia poglądowości na rysunku 2. przedstawiono

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

PRZEKROJE RYSUNKOWE CZ.1 PRZEKROJE PROSTE. Opracował : Robert Urbanik Zespół Szkół Mechanicznych w Opolu

PRZEKROJE RYSUNKOWE CZ.1 PRZEKROJE PROSTE. Opracował : Robert Urbanik Zespół Szkół Mechanicznych w Opolu PRZEKROJE RYSUNKOWE CZ.1 PRZEKROJE PROSTE Opracował : Robert Urbanik Zespół Szkół Mechanicznych w Opolu IDEA PRZEKROJU stosujemy, aby odzwierciedlić wewnętrzne, niewidoczne z zewnątrz, kształty przedmiotu.

Bardziej szczegółowo

Komputerowe wspomaganie projektowania. część III

Komputerowe wspomaganie projektowania. część III Komputerowe wspomaganie projektowania część III Studia Podyplomowe Wydział Inżynierii Produkcji SGGW Warszawa, styczeń 2011 Część III Tworzenie dokumentacji projektowej 2D Plan: w systemach CAD 1. Wydajność

Bardziej szczegółowo

Układy współrzędnych GUW, LUW Polecenie LUW

Układy współrzędnych GUW, LUW Polecenie LUW Układy współrzędnych GUW, LUW Polecenie LUW 1 Układy współrzędnych w AutoCAD Rysowanie i opis (2D) współrzędnych kartezjańskich: x, y współrzędnych biegunowych: r

Bardziej szczegółowo

SolidWorks 2017 : projektowanie maszyn i konstrukcji : praktyczne przykłady / Jerzy Domański. Gliwice, cop Spis treści

SolidWorks 2017 : projektowanie maszyn i konstrukcji : praktyczne przykłady / Jerzy Domański. Gliwice, cop Spis treści SolidWorks 2017 : projektowanie maszyn i konstrukcji : praktyczne przykłady / Jerzy Domański. Gliwice, cop. 2017 Spis treści Wprowadzenie 9 Część I. Praca z programem 11 Rozdział 1. Wprowadzenie do programu

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Projekt graficzny z metamorfozą (ćwiczenie dla grup I i II modułowych) Otwórz nowy rysunek. Ustal rozmiar arkusza na A4. Z przybornika wybierz rysowanie elipsy (1). Narysuj okrąg i nadaj mu średnicę 100

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

Modelowanie krawędziowe detalu typu wałek w szkicowniku EdgeCAM 2009R1

Modelowanie krawędziowe detalu typu wałek w szkicowniku EdgeCAM 2009R1 Modelowanie krawędziowe detalu typu wałek w szkicowniku EdgeCAM 2009R1 Rys.1 Widok rysunku wykonawczego wałka 1. Otwórz program Edgecam. 2. Zmieniamy środowisko frezowania (xy) na toczenie (zx) wybierając

Bardziej szczegółowo

Generowanie parametrycznych konstrukcji ramowych w środowisku Autodesk Inventor 2014

Generowanie parametrycznych konstrukcji ramowych w środowisku Autodesk Inventor 2014 Biuletyn techniczny Inventor nr 40 Generowanie parametrycznych konstrukcji ramowych w środowisku Autodesk Inventor 2014 Opracowanie: Tomasz Jędrzejczyk 2013, APLIKOM Sp. z o.o. 94-102 Łódź ul. Nowe Sady

Bardziej szczegółowo

Krzywe stożkowe Lekcja VI: Parabola

Krzywe stożkowe Lekcja VI: Parabola Krzywe stożkowe Lekcja VI: Parabola Wydział Matematyki Politechniki Wrocławskiej Czym jest parabola? Parabola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem β = α (gdzie α

Bardziej szczegółowo

Rysowanie skosów, okien dachowych, otworów w skośnych sufitach

Rysowanie skosów, okien dachowych, otworów w skośnych sufitach Program Intericad T5 Słowa kluczowe skosy, okna dachowe Wersja polska Przygotował: Krzysztof Sendor Rysowanie skosów, okien dachowych, otworów w skośnych sufitach 1. Rysowanie skosów (bez okien dachowych)

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Cykl Frezowanie Gwintów

Cykl Frezowanie Gwintów Cykl Frezowanie Gwintów 1. Definicja narzędzia. Narzędzie do frezowania gwintów definiuje się tak samo jak zwykłe narzędzie typu frez walcowy z tym ze należy wybrać pozycję Frez do gwintów (rys.1). Rys.1

Bardziej szczegółowo

Wykonanie ślimaka ze zmiennym skokiem na tokarce z narzędziami napędzanymi

Wykonanie ślimaka ze zmiennym skokiem na tokarce z narzędziami napędzanymi Wykonanie ślimaka ze zmiennym skokiem na tokarce z narzędziami napędzanymi Pierwszym etapem po wczytaniu bryły do Edgecama jest ustawienie jej do obróbki w odpowiednim środowisku pracy. W naszym przypadku

Bardziej szczegółowo

Temat: Modelowanie 3D cewki uzwojenia stojana silnika skokowego

Temat: Modelowanie 3D cewki uzwojenia stojana silnika skokowego Techniki CAD w pracy inŝyniera Aplikacja programu Autodesk Inventor 2010. Studium stacjonarne i niestacjonarne. Kierunek: Elektrotechnika Temat: Modelowanie 3D cewki uzwojenia stojana silnika skokowego

Bardziej szczegółowo

Szkolenie nowości w CATIA V5-6R2016

Szkolenie nowości w CATIA V5-6R2016 Szkolenie nowości w CATIA V5-6R2016 Sketcher CATIA V5-6R2016 Sketcher CATIA V5-6R2015 Polygon nowa funkcjonalność; Nowa funkcjonalność pozwalająca na tworzenie wieloboków o liczbie wierzchołków od 3 do

Bardziej szczegółowo

ExpertBooks.pl. Ćwiczenie 6 Modelowanie części w przekroju zespołu. Śruba dociskowa. 42 Rozdział 1. Pierwszy projekt w Autodesk Inventor 2012

ExpertBooks.pl. Ćwiczenie 6 Modelowanie części w przekroju zespołu. Śruba dociskowa. 42 Rozdział 1. Pierwszy projekt w Autodesk Inventor 2012 42 Rozdział 1. Pierwszy projekt w Autodesk Inventor 2012 Ćwiczenie 6 Modelowanie części w przekroju zespołu. Śruba dociskowa W tym ćwiczeniu utworzymy śrubę dociskową. Zastosujemy tutaj technikę pracy

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

, h(x) = sin(2x) w przedziale [ 2π, 2π].

, h(x) = sin(2x) w przedziale [ 2π, 2π]. Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję

Bardziej szczegółowo

2.Toczenie 2 osie pliki płaskie

2.Toczenie 2 osie pliki płaskie 2.Toczenie 2 osie pliki płaskie W dalszej części materiałów omówiono krok po kroku tok postępowania przy programowaniu tokarek 2-osiowych, na plikach krawędziowych przy użyciu programu EdgeCAM. Dodatkowo

Bardziej szczegółowo

RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D

RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska INSTRUKCJA KOMPUTEROWA z Rysunku technicznego i geometrii wykreślnej RYSUNEK TECHNICZNY

Bardziej szczegółowo

Zajęcia nr 1. Wstęp do programu REVIT

Zajęcia nr 1. Wstęp do programu REVIT Zajęcia nr 1 Część 1-30 min 1. Informacja ogólna o przedmiocie, o programie, o wymaganiach. 2. Zasady pracy zespołu projektowego oraz pracy w pracowni. 3. Co to jest CAD, modelowanie parametryczne, BIM?

Bardziej szczegółowo

Ćwiczenie 3. Moduł Part - wprowadzenie

Ćwiczenie 3. Moduł Part - wprowadzenie Ćwiczenie 3. Moduł Part - wprowadzenie 1. Otwórz środowisko Część ISO (ISO Part) i zapoznaj się z nim. Przełącz się w sekwencyjny tryb pracy Narzędzia Model Sekwencyjne 1 lub w PathFinder ze (PF) 2 Przejdź

Bardziej szczegółowo

Przykład 1 wałek MegaCAD 2005 2D przykład 1 Jest to prosty rysunek wałka z wymiarowaniem. Założenia: 1) Rysunek z branży mechanicznej; 2) Opracowanie w odpowiednim systemie warstw i grup; Wykonanie 1)

Bardziej szczegółowo

Ćwiczenie nr 9 - Parametryzacja, tworzenie wariantów

Ćwiczenie nr 9 - Parametryzacja, tworzenie wariantów Ćwiczenie nr 9 - Parametryzacja, tworzenie wariantów Wprowadzenie W programie Inventor istnieje możliwość skojarzenia parametrów tworzonego modelu z danymi zgromadzonymi np. w arkuszu programu Excel. W

Bardziej szczegółowo

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

Animacje edukacyjne. Spis treści Materiały edukacyjne Animacje - Pokaz

Animacje edukacyjne. Spis treści Materiały edukacyjne Animacje - Pokaz Animacje edukacyjne Po wybraniu ze wstążki Rozpocznij pozycji Animacje Pokaz, rys. 1, uzyskujemy dostęp do bardzo rozbudowanej Pomocy Autodesk Inventor. Rys. 2 przedstawia spis treści pierwszego poziomu

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

BRYŁY PODSTAWOWE I OBIEKTY ELEMENTARNE

BRYŁY PODSTAWOWE I OBIEKTY ELEMENTARNE Przemysław KLOC, Krzysztof KUBISTA BRYŁY PODSTAWOWE I OBIEKTY ELEMENTARNE Streszczenie: Niniejszy rozdział dotyczy wykorzystania brył podstawowych i obiektów elementarnych podczas modelowania 3D. Napisany

Bardziej szczegółowo