HISTORIA ROZWOJU KOMPUTERÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "HISTORIA ROZWOJU KOMPUTERÓW"

Transkrypt

1 KOMPUTERÓW HISTORIA ROZWOJU Ludzkość wytwarza coraz więcej informacji. Tak wiele, że jej przetwarzanie, czyli pamiętanie, klasyfikowanie, poszukiwanie, obrazowanie i zestawianie jest ponad ludzkie siły. Dlatego tak duże znaczenie osiągnęły "maszyny", które radzą sobie z tym zadaniem lepiej i szybciej od człowieka - komputery. Komputery, czyli maszyny liczące ( z ang. compute - obliczać ) mają więcej lat niż się na ogół przypuszcza. Za przodków komputera uznać bowiem należy wszystkie urządzenia służące do liczenia. Od Starożytności do Średniowiecza

2 W wykopaliskach między Mezopotamią i Indiami odnaleziono ślady stosowanych już w X wieku p.n.e. systematycznych metod znajdowania wyniku najprostszych operacji za pomocą specjalnie przygotowanych i poukładanych kamieni. Początkowo kamienie układano w rzędach na piasku tworząc w ten sposób plansze obliczeniowe, które nazywamy abakami ( lub abakusami ). Później zaczęto nawlekać kamienie na pręty, tworząc liczydła, czyli kompletne i przenośne przyrządy do obliczeń. W obu przypadkach, abakusa i liczydła, stan obliczeń określało rozmieszczenie elementów ruchomych na piasku lub na prętach. Liczydła przeżywały swój renesans w wiekach średnich. Wtedy na przykład ukształtował się japoński soroban w swej obecnej postaci. Jest on jeszcze dzisiaj dość powszechnie stosowanym liczydłem w Japonii. Soroban - jak każde liczydło - ma wady, które zostały naprawione częściowo w kalkulatorze a ostatecznie dopiero w komputerach. Służy on bowiem tylko do odnotowania bieżących wyników obliczeń, gdyż nie ma w nim miejsca ani na pamiętanie wyników pośrednich, ani na pamiętanie kolejno wykonywanych działań. Wiek XVII i XVIII Na początku XVII wieku John Neper opublikował najpierw swoje dzieło o logarytmach a następnie przedstawił system wspomagający wykonywanie mnożenia, zwany pałeczkami Nepera. Genialność tego systemu polegała na sprowadzeniu mnożenia do serii dodawań. Pomysł Nepera wykorzystało wielu konstruktorów urządzeń liczących, jemu współczesnych i żyjących po nim. Za twórcę pierwszej w historii mechanicznej maszyny do liczenia jest uznawany Wilhelm Schickard ( ), który przez długie lata był zupełnie zapomniany. Schickard opisał projekt swojej czterodziałaniowej maszyny, wykorzystując udoskonalone pałeczki Nepera w postaci walców, w liście do Keplera, któremu miała ona pomóc w jego astronomicznych ( dosłownie i w przenośni ) rachunkach. Niestety jedyny zbudowany egzemplarz maszyny spłonął w niewyjaśnionych okolicznościach, a dzisiejsze jej repliki zostały odtworzone dopiero niedawno na podstawie opisu z listu Keplera. W XVII wieku żyli i tworzyli wielcy matematycy Gottfried Wilhelm Leibniz ( ) i Blaise Pascal ( ). Pascal zainteresował się zbudowaniem maszyny liczącej z myślą o dopomożeniu swojemu ojcu, który był poborcą podatkowym. Wyprodukowano około 50 egzemplarzy Pascaliny - maszyny według pomysłu Pascala. Kilka egzemplarzy istnieje w muzeach do dzisiaj; część z nich była przeznaczona do obliczeń w różnych systemach monetarnych, a część - dla różnych miar odległości i powierzchni ( z przeznaczeniem dla geodetów ). Pascal który zbudował maszynę wykonującą tylko dwa działania ( dodawanie i odejmowanie ) przez ponad trzysta lat uchodził niesłusznie za wynalazcę pierwszej mechanicznej maszyny do liczenia. Schickard i Pascal wprowadzili w swoich maszynach mechanizm do przenoszenia cyfr przy dodawaniu i odejmowaniu. Obie maszyny miały także pewne możliwości zapamiętywania niektórych wyników pośrednich. Leibniz odkrył na nowo pochodzący ze starożytnych Chin system dwójkowy ( zwany także binarnym ) do zapisu liczb. Przypisuje się jemu także zbudowanie pierwszej mechanicznej maszyny mnożącej. Chociaż w tym czasie istniała już Pascalina i Leibniz miał możność zapoznania się z nią w Paryżu, projekt swojej "żywej ławy do liczenia" opisał przed pierwszą wizytą w Paryżu. W maszynie tej wprowadził wiele części, które zostały użyte w późniejszych maszynach biurowych. Maszyny Schickarda, Pascala, i Leibniza wymagały od użytkownika

3 manualnej pomocy w wielu czynnościach związanych z kolejnymi krokami obliczeń. Za ich pomocą nie było jeszcze można w pełni automatycznie i w całości wykonać prostego działania na dwóch liczbach. W tym miejscu wypada wspomnieć o udziale naszego rodaka w dziele tworzenia maszyn liczących. Abraham Stern ( ), z zawodu zegarmistrz, wykonał serię maszyn, które poza czterema działaniami podstawowymi, wyciągały także pierwiastki kwadratowe. Jedna z jego maszyn, raz uruchomiona, potrafiła wykonać za pomocą mechanizmu zegarowego wszystkie operacje bez ingerencji człowieka. Maszyny skonstruowane przez Sterna okazały się jednak mało praktyczne ze względu na wyjątkowo delikatną budowę. Charles Babbage ( ) Za najwybitniejszego twórcę maszyn liczących, żyjącego przed erą elektroniczną, uważa się Anglika Charlesa Babbage'a. Swoją pierwszą maszynę nazwaną maszyną różnicową, ( gdyż wykonywała obliczenia metodą różnicową ), konstruował przez ponad 10 lat. Trapiony jednak wieloma kłopotami rodzinnymi i finansowymi oraz nie mogąc do końca porozumieć się ze swoim głównym wykonawcą - konstruktorem Clementem zaprzestał dalszych prac nad nią w 1842 roku. Zmontowaną część maszyny (podobno nadal sprawną) można oglądać w Muzeum Nauk w Londynie. Należy dodać, że w odróżnieniu od maszyn Leibniza i Pascala, po ręcznym ustawieniu początkowego stanu, dalsze działania maszyny różnicowej nie wymagają już żadnej ingerencji użytkownika poza kręceniem korbą. Prace Babbage'a zainspirowały wielu jemu współczesnych, którzy jak na przykład Szwedzi George i Edward Scheutzowie, często z większym powodzeniem ukończyli swoje, może mniej ambitne ale nadal praktyczne konstrukcje maszyn różnicowych. Ale Babbage nie poprzestał na próbie skonstruowania maszyny różnicowej. Marzył o maszynie, która mogłaby rozwiązywać bardziej złożone zadania. Tak narodził się jeszcze w trakcie prac nad maszyną różnicową pomysł zbudowania maszyny analitycznej, którym Babbage żył do śmierci. Było to przedsięwzięcie czysto abstrakcyjne - przewidywane przeszkody techniczne i trudności finansowe nie pozwoliły nawet na rozpoczęcie prac konstrukcyjnych. W projekcie Babbage zawarł jednak wiele pomysłów zrealizowanych dopiero we współczesnych komputerach. Między innymi rozdzielił pamięć ( zwaną magazynem ) od jednostki liczącej ( młyna ), czyli miejsce przechowywania danych od jednostki wykonującej na nich działania. Obie te części maszyny analitycznej miały być sterowane za pomocą dodatkowego urządzenia kontrolnego, które otrzymywało polecenia na kartach perforowanych, udoskonalonych i rozpowszechnionych przez Jacquarda do programowania maszyn tkackich. Można więc uznać maszynę analityczną Babbege'a za pierwszy pomysł kalkulatora sterowanego programem zewnętrznym. Opis działania maszyny analitycznej trafił w ręce Ady ( jej pełne nazwisko: Ada Augusta hrabina Lovelace), znanej w owych czasach z błyskotliwego umysłu. Urzeczona doskonałością projektu uważała, że... " maszyna analityczna tkać będzie wzory algebraiczne, tak jak krosna Jacquarda tkają licie i kwiaty...". Nie czekając na skonstruowanie maszyny ( czego i tak by nie doczekała ), Ada zajęła się sporządzaniem opisów jej używania do rozwiązywania konkretnych zadań obliczeniowych. Opisy te nazwano by dzisiaj programami, dlatego uważa się ją za pierwszą programistkę komputerów. Dla uczczenia zasług Ady na tym polu nazwano jej imieniem jeden z najbardziej uniwersalnych języków programowania.

4 Przełom XIX i XX wieku Koniec XIX wieku był początkiem rozwoju urządzeń mechanograficznych, których głównym przeznaczeniem było usprawnienie rachunków statystycznych, księgowych i biurowych. Zaczęło się w Stanach Zjednoczonych od Hermana Holleritha, który postanowił zautomatyzować prace statystyczne związane ze spisem ludności przeprowadzanym wtedy w Stanach co dziesięć lat. Hollerith sięgnął po elektryczność, jako źródło impulsów i energii, rozwinął postać karty perforowanej, na której zapisywano dane i zbudował elektryczny czytnik - sorter kart. Olbrzymim sukcesem Holleritha okazał się spis 1890 roku, którego wyniki zostały całkowicie opracowane za pomocą jego urządzeń na podstawie danych zebranych na jego kartach. W następnych latach Hollerith dostarczał lub wypożyczał swoje urządzenia do przeprowadzenia spisów w wielu krajach, w tym także w Europie, między innymi w Rosji. Na przełomie XIX i XX wieku powstało wiele firm, które początkowo oferowały maszyny sterowane kartami perforowanymi i z latami zyskiwały na swojej potędze a wiele z nich przetrwało do dzisiaj, jak na przykład IBM, Bull, Remington - Rand, Burroughs, a także NCR ( kasy ), i Bell ( telefony ). Udoskonalona i znormalizowana karta perforowana przez wiele dziesięcioleci była uniwersalnym nośnikiem informacji, a pierwsze maszyny mechaniczne do przetwarzania danych zapoczątkowały stale rosnący popyt na przetwarzanie informacji. Wniosło to także zmiany w stosunkach międzyludzkich, a w szczególności między państwem ( posiadaczem maszyn do obróbki informacji ) i obywatelem. Początek XX wieku Wśród modeli obliczeń powstałych w pierwszej połowie XX wieku największą popularność zdobyły maszyny Turinga. W swojej fundamentalnej pracy z 1936 roku, Alan Turing bardzo przystępnie opisał tok mylenia prowadzący od obliczeń wykonywanych ręcznie do obliczeń wykonywanych przez bardzo prostą maszynę. Oto jej opis. Obliczenia ręczne są najczęściej wykonywane na pokratkowanej kartce papieru, której pojedyncze kratki są wypełnione cyframi i symbolami działań. Dysponujemy tylko skończoną liczbą znaków ( cyfr, np. 0 oraz 1 i symboli działań ), które mogą być wpisywane w kratki. To, co robimy w ustalonej chwili, zależy od znaków, które obserwujemy i od działania, jakie podjęliśmy. Można przyjąć, że liczba kratek obserwowanych w danej chwili jest ograniczona. Przejrzenie za większej ich liczby sprowadza się do wykonania ciągu obserwacji. Możemy także założyć, że liczba wszystkich stanów, w jakich może znaleźć się nasz umysł wykonujący obliczenia, chociaż duża jest skończona. Turing doszedł do koncepcji swojej maszyny wprowadzając pewne uproszczenia i uściślenia w działaniach na kartce i nad nią. Po pierwsze, zapis obliczeń na kartce papieru ( a dokładniej na dwuwymiarowym układzie kratek ) można sprowadzić do zapisu na jednowymiarowej pokratkowanej kartce, czyli na tamie podzielonej na kratki. Wystarczy w tym celu treść obliczeń wypełniających kartkę zapisać wierszami. Traci się przy tym czytelność, ale zyskuje redukcję wymiaru kartki. Po drugie, umysł wykonujący obliczenia można zastąpić przez obiekt bardziej fizyczny zwany głowicą, która znajduje się nad tamą, może się poruszać w obie strony tamy, a w danej chwili widzi jedynie symbol umieszczony w kratce, nad którą zawisła. Działanie głowicy jest określone przez ustalony zbiór instrukcji, zgodnie z którymi może poruszać się w lewo, w prawo lub stać w miejscu, potrafi rozpoznawać symbole i może zmieniać zawartości kratki, nad którą się znajduje. Wykonanie instrukcji przez maszynę Turniga jest działaniem głowicy,

5 uzależnionym od stanu, w jakim się znajduje i co widzi. Obliczenia wykonywane za pomocą maszyny Turinga zależą od początkowego zapisu symboli na tamie i od przyjętego zestawu dozwolonych instrukcji. Zatem działa ona podobnie jak dzisiejsze komputery - wyniki obliczeń zależą od zapisanych w pamięci komputera danych i od zestawu wykonywanych instrukcji. Zawartoć tamy po zatrzymaniu się maszyny zależy od obu tych czynników. Nieodparcie nasuwa się pytanie o to, co można policzyć za pomocą tak prostych maszyn. Okazuje się, że bardzo wiele. Sam Turing sformułował tezę, iż na maszynie tego typu można zrealizować każdy algorytm. Do dzisiaj nie obalono tej tezy. Zauważa się, że w związku z tym można przyjąć, iż algorytmem jest dowolny opis wykonania obliczeń na maszynie Turinga. Analizując moc swoich maszyn, Turing doszedł jednak do wniosku, że istnieją funkcje, których wartości nie mogą one obliczać. Wspomnieć tutaj należy jeszcze o dwóch innych dziedzinach działalności Turinga ściśle związanych z automatyzacją obliczeń i komputerami. W latach II wojny światowej Turing został włączony do grupy specjalistów zajmujących się w Wielkiej Brytanii deszyfracją kodów Enigmy - maszyny, którą Niemcy używali do kodowania meldunków i rozkazów rozsyłanych swoim jednostkom na wszystkich frontach. W 1941 roku działalność tej grupy przyczyniła się do zredukowania brytyjskich strat na morzach o 50%. Brytyjscy specjaliści korzystali z materiałów ( wśród których był egzemplarz Enigmy oraz maszyna deszyfrująca zwana bombą ) przekazanych im w 1939 roku przez grupę Polaków kierowaną przez Mariana Rejewskiego, zajmujących się od pięciu lat skonstruowaniem maszyny deszyfrującej. Chociaż Brtyjczycy udoskonalili maszynę deszyfrującą otrzymaną od Polaków, pozostawała ona nadal maszyną mechaniczną i jej działanie nie nadążało za ciągle udoskonalanymi i zmienianymi przez Niemców egzemplarzami Enigmy. Ocenia się że w szczytowym okresie II wojny światowej Niemcy używali ponad 70 tysięcy maszyn szyfrujących Enigma. Prace nad maszyną deszyfrującą Enigmę przyczyniły się do powstania pod koniec wojny w Wielkiej Brytanii kalkulatorów elektronicznych. Powstało kilka wersji maszyny o nazwie Coloss, których głównym konstruktorem był T.H. Fowers. Były to już maszyny elektroniczne, w których wykorzystano arytmetykę binarną, sprawdzane były warunki logiczne ( a więc można było projektować obliczenia z rozgałęzieniami ), zawierały rejestry, mogły wykonywać programy ( poprzez uruchomienie tablic rozdzielczych ) i wyprowadzać wyniki na elektryczną maszynę do pisania. Pierwsze komputery Pierwsze komputery zbudowano dopiero w naszym stuleciu, chociaż pomysły, jakie w nich zrealizowano, pojawiły się przynajmniej sto lat wcześniej, już za czasów Babbage'a. Zastosowane w komputerach środki techniczne pojawiły się bowiem dopiero w latach międzywojennych. Za największego inspiratora powstania komputera w jego obecnej postaci uważa się Johna von Neumanna. Ale najpierw trzeba oddać właściwe miejsce twórcom rzeczywiście najwcześniejszych konstrukcji, pretendujących do miana komputera. Pojawienie się większości z nich przyspieszyła II wojna światowa. W 1941 roku Konrad Zuse ukończył w Niemczech prace nad maszyną Z 3, która wykonywała obliczenia na liczbach binarnych zapisanych w reprezentacji, nazywanej dzisiaj zmiennopozycyjną, sterowane programem zewnętrznym podawanym za pomocą perforowanej tamy filmowej. Maszyna Z 3 została całkowicie zniszczona w czasie bombardowania w 1945 roku. Następny model maszyny Zusego, Z 4 przetrwał i działał do końca lat pięćdziesiątych.

6 Maszyny Zusego były kalkulatorami przekaźnikowymi. W tym czasie znane już były prace Claude Shannona dotyczące działań binarnych ( logicznych ) za pomocą układów elektronicznych zgodnie z regułami Boole'a. W roku 1942 zespół specjalistów pod kierunkiem J.W. Mauchly'ego i J.P. Eckerta zaprojektował i zbudował maszynę ENIAC ( ang. Electronic Numerical Integrator And Computer ). Pierwsze obliczania maszyna ta wykonała w listopadzie 1945 roku. Maszyna ENIAC jest uznawana powszechnie za pierwszy kalkulator elektroniczny, chociaż w 1976 roku okazało się, że wczeniej zaczęły pracować w Wielkiej Brytanii maszyny Coloss I i II. Maszyna ENIAC była monstrualną konstrukcją złożoną z 50 szaf o wysokości 3 metrów zawierających około 20 tysięcy lamp. Słabością tej maszyny było: użycie zwykłego systemu dziesiętnego do pamiętania liczb, brak rozdziału między funkcjami liczenia i pamiętania oraz bardzo uciążliwy sposób zewnętrznego programowania. Wady te zostały usunięte dopiero w projekcie EDVAC. John von Neumann ( ) John von Neumann, z pochodzenia Węgier, był w swoich czasach jednym z najwybitniejszych matematyków. W 1946 roku zainspirował on prace w projekcie EDVAC ( ang. Electronic Discrete Variable Automatic Computer ), których celem było zbudowanie komputera bez wad poprzednich konstrukcji. Zaproponowano architekturę, zwaną odtąd von neumannowską, według której buduje się komputery do dzisiaj. W komputerze von Neumanna można wyróżnić przynajmniej następujące elementy: pamięć złożoną z elementów przyjmujących stan 0 lub 1, arytrometr zdolny wykonywać działania arytmetyczne, logiczne i inne, sterowanie, wprowadzanie danych i wyprowadzanie wyników. Program, czyli zbiór instrukcji, według których mają odbywać się obliczenia, jest wpisywany do pamięci. Kolejne rozkazy programu są pobierane przez jednostkę sterującą komputerem w takt centralnego zegara i rozpoznawane zgodnie z mikroprogramem wpisanym w układ elektroniczny. Należy podkrelić, że program jest przechowywany w pamięci komputera i jego działanie może zmieniać zawartość dowolnego obszaru pamięci ( programy mogą się także same modyfikować ). Fizycznie nie ma żadnej różnicy między danymi i programami przechowywanymi w pamięci komputera: są podobnie kodowane jako ciąg zer i jedynek i tak samo zrealizowane technicznie. Można więc powiedzieć, że celem działania komputera von neumannowskiego jest przejście w takt zegara od jednego stanu zawartości pamięci ( danego na początku ) do innego, zawierającego oczekiwany wynik. Można zauważyć podobieństwo tego spojrzenia na komputer von Neumanna do maszyny Turinga. Nie ma w tym nic dziwnego gdyż von Neumann bardzo dobrze znał osiągnięcia Turinga. Postęp w elektronice umożliwił dalszy rozwój komputerów. W latach sześćdziesiątych lampy zastąpiono tranzystorami. Pierwszy tranzystorowy komputer zbudowano w 1956 roku w Massachusettes Institute of Technology. Z kolei układy scalone zastąpiły tranzystory ( układ scalony zawierał w jednej obudowie kilkadziesiąt tranzystorów i innych elementów elektronicznych ). Dalszy postęp produkcji tych układów pozwolił umieszczać w jednej "kostce" dziesiątki tysięcy tranzystorów. Obwody takie nazwano układami wielkiej skali integracji ( VLSI z ang. Very Large Scale of Integration ). Wymyślono termin: " generacja komputerów " i nazwano komputery lampowe mianem pierwszej generacji, tranzystorowe - drugiej, zbudowane z układów scalonych - trzeciej, a w technologii VLSI - czwartej.

7 Postęp w technologii produkcji komputerów odbywał się tak szybko, że zaczęto mówić o rewolucji komputerowej. Wprowadzenie na rynek tanich układów scalonych umożliwiło powstanie mikrokomputerów, w których elementy przetwarzające informacje umieszczono w jednym układzie - mikroprocesorze. Komputer typu PC Pierwsze komputery osobiste ( PC z ang. Personal Computer ) zostały opracowane przez IBM. Ponieważ firma ta nie miała nic przeciwko temu, by inne przedsiębiorstwa skorzystały z jej pomysłu i podążyły jej śladem, wielu producentów sprzedaje dziś własne komputery, które jednak są wciąż budowane według tej samej koncepcji firmy IBM. Ponieważ na rynku pojawiało się coraz więcej produktów, zaczęto pisać programy dla tego typu komputerów. Producenci sprzętu odpowiedzieli na to kolejną falą unowocześnionych komputerów typu IBM - PC. Proces ten rozwijał się na zasadzie lawiny: komputery, nowe komponenty i oprogramowanie są obecnie tworzone przez setki najróżniejszych producentów. Tym sposobem PC stał się najbardziej rozpowszechnionym typem komputera na wiecie. Niemal w tym samym czasie, którym narodził się PC, firma Apple zaczęła budować swój własny typ komputera osobistego, dzieło Steve Woźniaka i Steve Jobsa. System Apple nie był jednak zgodny z IBM - PC ani pod względem sprzętu, ani oprogramowania. Swój sukces zawdzięczał on faktowi, iż po raz pierwszy wykorzystano tam graficzny sposób komunikowania się z użytkownikiem bazujący na obrazkach i oknach - na rok przed rozpowszechnieniem się Windows firmy Microsoft. Komputery Apple od samego początku były systemami kompletnymi. Oznaczało to, że w ich przypadku nie było już konieczne kupowanie dodatkowych komponentów, aby na przykład osiągnąć dźwięk odpowiedniej jakości. W przeciwieństwie do ówczesnych komputerów PC - tów, komputery Apple były znacznie prostsze w obsłudze. Mac, jak chętnie nazywa się komputer firmy Apple, szybko stał się ulubionym narzędziem ludzi z kręgów twórczych. Używali go przede wszystkim architekci, muzycy i projektanci, którym najczęściej potrzebny był właśnie wydajny i łatwy w obsłudze komputer. Tak więc Mac wciąż pozostaje główną alternatywą dla komputerów typu IBM - PC, a fakt, iż w porównaniu z PC -tem jest mniej dostępny na rynku, wynika głównie stąd, że firma Apple nie udostępniła nikomu praw do kopii swojego projektu. Większość producentów skorzystała co prawda z koncepcji peceta firmy IBM, niemniej niektórzy wyłamali się i podążyli własną drogą tworząc komputery osobiste niezgodne ze standardem. Stąd też oprogramowanie stworzone dla typowego komputera PC z reguły nie może być na nich uruchamiane. W zupełnym oderwaniu od standardu IBM - a powstały rozwiązania, które przewyższają pierwowzór czy to pod względem ceny, czy przydatności do gier, czy też obróbki dźwięku czy też grafiki. Niejeden z tego typu systemów był i wciąż jeszcze jest wspaniałym narzędziem, jednakże przeznaczonym wyłącznie dla specjalistów skupiających się na wykonywaniu określonej grupy zadań. KRONIKA 1642 rok - Blaise Pascal skonstruował jedną z pierwszych maszyn matematycznych.

8 1822 rok - Brytyjski matematyk Charles Babbage zaprezentował model maszyny różnicowej, który miał różnice drugiego rzędu i osiem miejsc po przecinku. Zajął się on następnie maszyną o różnicach siódmego rzędu i 290 miejscach po przecinku, poniósł jednak porażkę przy rozwiązywaniu problemu wykonania skomplikowanego napędu zębatego rok - Charles Babbage przedstawił pomysł pierwszej cyfrowej maszyny analitycznej. Nie została ona nigdy zbudowana. Projekt przewidywał jednak istotne składniki nowoczesnego przetwarzania danych rok - W Massachusetts Institute of Technology w Cambridge (USA) grupa naukowców pod kierownictwem inżyniera elektryka Vannevara Busha konstruuje pierwszy - pracujący elektromechanicznie - komputer analogowy rok -Francuz R. Valtat zgłosił do opatentowania maszynę liczącą, której zasada działania oparta była na systemie dwójkowym rok-niemiec Konrad Zuse zbudował elektromechaniczną maszynę liczącą opartą na systemie dwójkowym rok - Alianci zbudowali pierwszą nadającą się do użytku maszynę deszyfrującą rok - Niemiecki inżynier Konrad Zuse zaprezentował swoją cyfrową maszynę liczącą "Zuse Z3".Była to pierwsza sterowana programowo maszyna matematyczna,o wysokich parametrach eksploatacyjnych. "Zuse Z3" posiadała binarny mechanizm liczący z prawie 600 przekaźnikami jako bistabilnymi elementami i pamięcią z około 1400 przekaźnikami rok- Amerykanin John V. Atanasoff ukończył pierwszą sprawną elektroniczną maszynę liczącą w technice lampowej. Atanasoff podjął plan już w roku Był przekonany, że metoda cyfrowa i zastosowanie liczb binarnych będzie najwłaściwsze do budowy maszyn liczących rok - Niemiecki inżynier Henning Schreyer zgłosił do opatentowania pełnoelektroniczną pamięć i urządzenie liczące z lampami jarzeniowymi. Schreyer od 1937 r. wspólnie z Konradem Zuse zajmował się konstruowaniem układu połączeń lampowych do przetwarzania danych. Teraz opracował on ideę budowy pełnoelektronicznej maszyny liczącej. Jednakże w czasie wojny w Niemczech brakowało środków na realizację jego planów rok - Węgiersko-amerykański matematyk i chemik John von Neuman rozpoczął próby z modelem pierwszej maszyny liczącej z pamięcią EDVAC (Electronic Discrete Variable Automatic Computer). W urządzeniu kodowano program, składający się z serii pojedynczych instrukcji. Program zawierał instrukcje warunkowe, które umożliwiały tworzenie pętli. Każda instrukcja programowa mogła być zmieniona przez samą maszynę, jak każdy inny argument operacji. Z takim sposobem

9 działania maszyna zdecydowanie górowała nad wszystkimi dotychczasowymi maszynami matematycznymi. Fizyk Howard Hathavay oddał do użytku na Universytecie Harvarda cyfrową maszynę liczącą. Nazywała się MARK I bądź ASCC - miała potężne wymiary i była pierwszą sterowaną programowo maszyną liczącą USA rok- Na Uniwersytecie Pensylwania uruchomiono pierwszą wielką elektroniczną maszynę liczącą wiata ENIAC (Electronic Numerical Integrator and Computer). Zbudowana została przez Johna Prespera Ecckerta i Johna Williama Mauchly. Do czasu aż wszystkie jej zespoły stały się całkowicie zdolne do użytku, minęły jeszcze dwa lata. Wielka maszyna matematyczna wyposażona była w lampy elektronowe i liczyła 2000 razy szybciej niż komputer z elektromechanicznymi przekaźnikami. ENIAC zajmował powierzchnię zasadniczą 140 m.kw., posiadał przeszło lamp elektronowych, 1500 przekaźników i zużywał 150 kw mocy. Niemiecki inżynier Konrad Zuse zakończył prace nad swoją maszyną liczącą " Zuse Z4". Komputer był rozwinięciem poprzedniego typu Z rok - W Stanach Zjednoczonych zbudowano maszynę liczącą " Mark II " w technice przekaźnikowej. Amerykańska firma IBM buduje komputer SSEC z lampami i przekaźnikami. Jest on sterowany za pomocą tamy dziurkowanej. Umożliwiono ingerencję w program rok - W toku rozwoju elektronicznych maszyn liczących, opartych na dwójkowym systemie liczbowym, znaczenie praktyczne zyskuje ugruntowana już przed ok. stu laty algebra Boole'a. Posługuje się ona wartościami logicznymi "Tak / Nie" lub " 0 / 1". Ten " krok binarny" określa matematyk John W. Tukey jako " bit" ( binarny digit ). Bit staje się jednostką informacji w przetwarzaniu danych. IBM 604 jest pierwszą dużą maszyną liczącą sterowaną tamą perforowaną rok - Na Uniwersytecie Manchester ( Anglia ) pod kierownictwem Maurica V. Wilkesa skonstruowano po trzech latach pierwszy komputer lampowy z programowalną pamięcią EDSAC ( Electronic Delay Storage Automatic Computer ). W tym samym czasie również IBM uruchamia w Nowym Jorku pod kierownictwem Johna Prespera Eckerta układ z programowalną pamięcią - SSEC ( Selective Sequence Electronic Calculator). EDSAC pracuje z 4500 lampami elektronowymi, a SSEC z lampami elektronowymi i przekaźnikami. Nowością w tych komputerach jest to, że tak przebieg programu jak i obróbka danych są zakodowane w pamięci maszyny, program zawiera rozkazy warunkowe, które umożliwiają rozgałęzienia i skoki i wreszcie każdy rozkaz programowy z operacyjną częścią adresową może samodzielnie zmienić. Koncepcję tych komputerów opracował już w 1944 r. matematyk amerykański pochodzenia węgierskiego John von Neamann. Jednakże jego urządzenie EDVAC rozpoczyna pracę dopiero w roku Np. w 1945 r.

10 Zuse sformułował ogólny algorytmiczny język formuł, który uwzględniał możliwe warianty programowania pamięci. Pod koniec lat czterdziestych pojawiają się w elektrotechnice drukowane połączenia. Ścieżki przewodzące są drukowane za pomocą lakieru odpornego na kwasy na cienkiej płytce izolatora ( żywica epoksydowa ) z naniesioną warstwą miedziową rok - " Univac I " firmy Eckert and Mauchly Computer Company jest komputerem produkowanym seryjnie. Komputer " Mark III " używa tamy magnetycznej zamiast kart perforowanych rok - Na Uniwersytecie Harwarda w Cambridge ( Massachusetts ) matematyk Howard H. Aiken uruchomił swoją maszynę cyfrową MARK III. Urządzenie to było kontynuacją urządzeń poprzednich MARK I i MARK II, które Aiken budował już od roku W niedługim czasie Aiken buduje pierwszy, wykonany w pełni w technice lampowej maszynę liczącą MARK IV rok - Howard H. Aiken uruchomił w USA lampową maszynę liczącą MARK IV rok - J.W. Backus stworzył język komputerowy FORTRAN ( formula translator ). Umożliwia on dialog pomiędzy użytkownikiem a bankiem danych bez konieczności korzystania z pomocy programisty. FORTRAN jest skomplikowanym językiem komputerowym, który nie tylko przekazuje maszynie polecenia, lecz zawiera w sobie szereg wzorów ułatwiających programowanie rok - W Bell Telephone Laboratory w USA rozpoczęła pracę pierwsza tranzystorowa maszyna licząca " Tradic " skonstruowana przez zespół pod kierownictwem J. H. Felkera. Jest ona znana jako " komputer drugiej generacji ". Wkrótce pojawiły się na rynku tranzystorowe komputery ( " 7090 IBM" i "Gamma 60 Bull ") rok - Niemiecka firma Zuse KG rozpoczęła seryjną produkcję maszyn liczących " Zuse Z 11". W Bell Laboratory wykonano tranzystorowy komputer " Leprechaun". IBM ( International Business Machines Corporation ) zbudował komputer na płycie magnetycznej rok - Opracowano komputerowy język programowania ALGOL ( Algorithmic Language ). Podobnie jak FORTRAN - ALGOL jest językiem problemowo zorientowanym, ale nie bardziej niż te, które są specjalistycznymi językami naukowo-technicznymi. Ma on inną strukturę niż FORTRAN rok - Zostaje opracowany język programowania COBOL ( Common Business Oriented Language ). COBOL używa stosunkowo dużej liczby

11 symboli słownych rok - IBM przedstawia swoją metodę " Tele - processing". Za pomocą tej metody dane, przekazywane poprzez telefon, przetwarzane są bezpośrednio przez komputer. Zwiastuje to technikę o zasięgu krajowym, a nawet światowym. Zasada jest prosta. Każdy komputer współpracuje z tzw. urządzeniami peryferyjnymi. Należą do nich jednostki wprowadzania i wyprowadzania informacji. Jednostkami wprowadzania mogą być np. klawiatura, czytnik kart dziurkowanych czy tam magnetycznych. Jako jednostki wyprowadzania informacji wchodzą w rachubę drukarki, monitory ekranowe, dziurkarki czy magnetofony rok - Maleńkie tranzystory zwiększają prędkość elektronicznego przetwarzania danych ( trzecia generacja komputerów ). American Airlines wprowadza na komputerze międzynarodowy system rezerwacji lotów oparty na zdalnym przetwarzaniu danych rok - Firma IBM buduje szybką drukarkę wierszową " IBM 1403 ", przystosowaną do pracy z komputerem, która pisze 600 wierszy w ciągu minuty. Nowością w tym urządzeniu jest układ czcionek. Są one umieszczone na łańcuchu, będący w stałym obiegu, poprzecznie do kierunku ruchu. Łańcuch porusza się poziomo przed papierem do zadrukowania. Magnesy odbijające przyciskają poszczególne czcionki przez kolorową tamę do powierzchni zadrukowywanej wtedy, gdy czcionka, wybrana przez komputer, znajduje się w odpowiednim położeniu rok - Nowe dziedziny dla zastosowania komputera docierają do wiadomości społecznej: w Berlinie zostaje uruchomiony pierwszy w Europie komputer do kierowania ruchem drogowym, a z okazji wyborów do Bundestagu przed zliczeniem głosów komputer opracowuje prognozy wyników wyborów rok - Wynaleziono nowy typ pamięci dla elektronicznych urządzeń przetwarzania danych. Pamięć składa się z warstwy kryształów granatu grubości 1 µm, z domieszką żelaza, która przez epitaksję naniesiona jest na nienamagnesowany granat. Namagnesowanie określonego miejsca pamięci jest oceniane jako " 1", jego brak jako " 0 " rok - Anglik Norman Kitz zaprezentował " Anita Mark 8 " pierwszą elektroniczną biurkową maszynę matematyczną. Wynalazek Kitza był możliwy dzięki osiągnięciom dokonanym w tym zakresie w USA w 1965 roku rok - Monolityczne układy przełączające zastępują minitranzystory i hybrydowe układy scalone. Zaczyna się czwarta generacja komputera. Podczas gdy komputery drugiej generacji wykonywały na sekundę 1300 dodawań, a trzeciej dodawań, to nowe urządzenia wykonują ponad IBM zbudowało pierwszą elektroniczną maszynę liczącą " System 360 " w

12 technice monolitu, a więc przy zastosowaniu zintegrowanych układów rok - Informatyk Cragon w USA tworzy tzw. LSI- komputer celem zastosowania go w dziedzinie geofizyki. LSI znaczy Large Scale Integration, a więc integracja na dużą skalę. W zintegrowanych połączeniach stopień integracji daje informację odnośnie liczby elementów układu na jednostkę powierzchni. Zazwyczaj jest on podawany w ilości funkcji tranzystorowych na " chip" ( chip - struktura półprzewodnikowa ) rok - Texas Instruments wyprodukował pierwszy kalkulator kieszonkowy wykorzystując do tego pierwszy mikroprocesor. Zasada działania kalkulatora z mikroprocesorem daje się porównać z zasadą działania większych komputerów. Różnice polegają na mniejszych i bardziej ograniczonych możliwościach, mniejszych wymiarach, mniejszej ilości i prostszych urządzeniach peryferyjnych i mniejszych kosztach wytwarzania kalkulatora kieszonkowego. Mieści w sobie, obok mikroprocesora również inne zintegrowane z nim obwody, m.in. pamięć. IBM opracował stacje przetwarzania danych sprzężone z centralą elektronicznego przetwarzania danych, tzw. terminale. Terminale składają się przeważnie z monitora i klawiatury, pozwalają wielu oddalonym od siebie użytkownikom na dostęp do centralnego urządzenia obliczeniowego. W USA powstał pierwszy mikroprocesor na wiecie MCS - 4 ( PMOS ) wyprodukowany przez firmę Intel. Mikroprocesor jest układem scalonym tzn. obejmuje on w sobie funkcje od 5000 do tranzystorów. Spełnia zadanie tzw. jednostki centralnej w komputerach ( CPU - Central Processing Unit ). CPU zajmuje się centralnym sterowaniem przebiegu i koordynacją całego systemu komputera, wydając na zewnątrz ( najczęściej ) sekwencyjnie poszczególne rozkazy zapamiętywanego programu. Mikroprocesor taki, będący scaloną jednostką funkcyjną, jest tylko częścią mikrokomputera rok - Amerykański inżynier elektryk Bushnell stworzył pierwszą grę komputerową. Elektroniczne maszyny liczące mogą rozwiązywać problemy logiczne. Gry komputerowe z punktu widzenia stosowanej przy ich tworzeniu logiki i sposobu realizacji zadania, można podzielić na : gry zręcznościowe i strategiczne. Na początku lat siedemdziesiątych upowszechnił się w elektronicznym przetwarzaniu danych międzynarodowy " Multi - User -System". System ten znany również jako system abonencki, odnosi się do systemu operacyjnego urządzeń komputerowych. System operacyjny komputera, to pakiet programów, który kontroluje i steruje przebiegiem programów użytkowych rok - Wraz z modelem " HP 35" amerykańska firma elektroniczna Hewlett- Packard wypuściła na rynek pierwszy programowany kalkulator kieszonkowy. Do kalkulatora dołączono ponad 100 stronicowy, podręcznik obsługi. Obok objaśnienia sposobu działania skomentowano liczne funkcje matematyczno - naukowe, które zostały trwale zaprogramowane w

13 kalkulatorze rok - Technika ECL ( Emitter Coupled Logic ) umożliwiła firmie Motorola wyprodukowanie mikroprocesora typu , który przewyższa wszystkie dotychczasowe układy scalone pod względem prędkości działania. Układy scalone typu bipolarnego zmontowano opierając się na logice RTL bądź DTL. Wkrótce musiały one prawie bez wyjątku ustąpić typowi TTL ( układ tranzystor - tranzystor logiczny ). Układy TTL miały tranzystory z wieloma emiterami, które działały na wspólnej bazie i wspólnym kolektorze. Te tranzystory wielo - emitrowe sterowały tranzystorami przełącznikowymi, które ze swej strony sterowały systemem trzech tranzystorów mocy. Technika ECL ( " układ logiczny o sprzężeniu emiterowym" ) jest nowym wariantem TTL Prawie równocześnie, ale niezależnie od siebie, D.A.B.Miller i S.D. Smith w Wielkiej Brytanii oraz H.M.Gibbs w USA opisali metodę produkcji optycznych tranzystorów, tzw. transphasorów. W swej funkcji odpowiadają one elementom budowy tranzystorów, uruchamiają jednak strumień protonów a nie elektronów. Transphasory są pierwszym krokiem w rozwoju systemu optycznego przekazywania danych i optycznych komputerów. Ich prędkość pracy przewyższa w znaczący sposób elektroniczny system, gdyż protony poruszają się szybciej niż elektrony. Daje to możliwość budowy bardzo szybkich komputerów rok - Brytyjscy inżynierowie wprowadzili na rynek komputer osobisty ( Sinclair ZX - 80). Japońskie firmy Sharp, Casio, Sanyo i Panasonic oraz amerykańskie przedsiębiorstwo Tandy wprowadziły na rynek pierwsze kieszonkowe komputery. Te " podręczne' urządzenia mają w zasadzie wszystkie właciwości dużych komputerów. Jedynie ich pojemność jest ze względu na wielkość pamięci mniejsza oraz pracują one wolniej niż duże komputery. Komputery kieszonkowe mają na stałe zaprogramowane funkcje liczące od działań zakresu podstawowego do różnych kompleksowych funkcji matematycznych. Obok tego są zaprogramowane w bardziej rozwiniętym języku komputerowym. Najczęściej jest to uproszczona wersja rozpowszechnionego języka programowania BASIC, Urządzenia te współpracują z zewnętrzną pamięcią i drukarką. Wyposażone są przeważnie w ekran LCD i wykorzystują monitory telewizyjne. Najnowocześniejsze elementy pamięci mają pojemność bitów. Układy scalone o dużej skali integracji mają bardzo szerokie zastosowanie: ROM ( read only memory) mają dane zapisane przez producenta. Można je tylko odczytywać. PROM ( programmable ROM ) pozwalają na zapis pewnych funkcji przez użytkownika. Zawartość zachowana jest na stałe. EPROM ( erasable PROM ) umożliwia kasowanie zawartości promieniami UV i ponowny zapis nowych danych. EAROM ( electrically alterable ROM ) pozwala usunąć zapis przy wykorzystaniu do tego celu sygnałów elektrycznych. Obok układów ROM istnieją także RAM ( random access mmemory - pamięć o dostępie swobodnym ) pozwalające na wielokrotne

14 zapisywanie i odczytywanie informacji. Pamięci typu ROM po wyłączeniu zasilania nie tracą zapisanych informacji, w pamięciach RAM ulegają one zniszczeniu rok - Firma Apple zaprezentowała komputer biurowy Lisa wyposażony w myszkę, która częściowo zastępuje klawiaturę. Jako peryferyjne pamięci dyskowe komputerów osobistych upowszechniły się w dużym stopniu dyskietki ( ang. floppy disks ). Dyskietka składa się z giętkiego krążka plastikowego pokrytego nośnikiem magnetycznym i plastikowej mocnej osłonki ( koperty ) z zamontowaną na ściance wewnętrznej częścią samoczyszczącą lub też poprawiającą moment obrotowy dysku rok - W połowie lat osiemdziesiątych duża część biur przestawiła się na pracę z wykorzystaniem sprzętu elektronicznego. Na ogół dla podstawowego wyposażenia normalnego biura w urzędzie, biura pocztowego czy sekretariatu, nie były to już żadne maszyny do pisania z pamięcią, lecz komputer biurowy rok - W ramach programu węzłowego Niemieckiej Wspólnoty Badawczej niemieccy naukowcy zajmowali się skonstruowaniem optyelektronicznego komputera. Tego rodzaju systemy mogą zastąpić dotychczasową technikę komputerową. Podstawowym materiałem dzisiejszej elektroniki jest krzem. Jego elektryczne właściwości pozwalają na produkcję elementów układu, w którym można przełączać między stanem przewodzącym i nieprzewodzącym. Z takich łączników buduje się logiczny układ połączeń. Optoelektronika wykorzystuje łączniki świetlne, które jako nośniki informacji nie wykorzystują przepływu elektronów, lecz przepływ fotonów rok - Na Uniwersytecie Cambridge w Wielkiej Brytanii powstał tranzystor, do którego budowy zastosowano poliacetylen, który umożliwia zmniejszenie wymiarów obwodu scalonego o 99 %. Firma IBM przygotowuje eksperymentalny tranzystor, mniejszy od wszystkich dotychczasowych. Międzynarodowy tytuł arcymistrzowski zdobył pierwszy w wiecie komputer " Deep Thought " ( Głęboka myśl ) symulujący grę w szachy. Miniona dekada charakteryzuje się nieustannym udoskonalaniem programów komputerowych do gier strategicznych, w tym do gry w szachy rok - Amerykańska firma AT&T Bell Laboratories przygotowuje pierwszy na wiecie cyfrowy procesor optyczny. W środku każdego komputera znajduje się ten maleńki dyrygent - procesor - który koordynuje pracę zespołów komputera. Mikroprocesor jest o wiele mniejszą i bardziej niezależną odmianą centralnego systemu sterującego, gdyż powierza mu się kierowanie różnymi, skomplikowanymi urządzeniami elektronicznymi rok - Amerykańska firma Texas Imnstruments zaprezentowała urządzenie, dzięki któremu można przedstawić grafikę komputerową w

15 trzech wymiarach. Najważniejszą częścią przyrządu jest wirująca skona płyta szklana, która w następstwie efektu stereoskopowego postrzegana jest jako pełen cylinder szklany. Pierwsze komputery ważyły tony, miały znacznie mniejszą pamięć niż nowoczesne mikrokomputery oraz zużywały milion razy więcej energii.

Historia informatyki

Historia informatyki Spis treści 1 CZYM JEST INFORMATYKA... - 2-1.1 DEFINICJE INFORMATYKI...- 2-1.2 POJĘCIA ZWIĄZANE Z INFORMATYKĄ...- 2-2 ELEMENTY HISTORII INFORMATYKI... - 2-2.1 OD STAROŻYTNOŚCI DO ŚREDNIOWIECZA...- 2-2.2

Bardziej szczegółowo

Historia komputerów. Szkoła Podstawowa nr 8 im. Jana Wyżykowskiego w Lubinie

Historia komputerów. Szkoła Podstawowa nr 8 im. Jana Wyżykowskiego w Lubinie Historia komputerów Informatyka - dziedzina nauki, która zajmuje się przetwarzaniem informacji przy pomocy komputerów i odpowiedniego oprogramowania. Historia informatyki: Pierwszymi narzędziami, które

Bardziej szczegółowo

algorytm przepis rozwiązania przedstawionego zadania komputer urządzenie, za pomocą którego wykonywane są algorytmy

algorytm przepis rozwiązania przedstawionego zadania komputer urządzenie, za pomocą którego wykonywane są algorytmy Podstawowe pojęcia związane z informatyką: informatyka dziedzina wiedzy i działalności zajmująca się gromadzeniem, przetwarzaniem i wykorzystywaniem informacji, czyli różnego rodzaju danych o otaczającej

Bardziej szczegółowo

O informatyce i jej historii. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

O informatyce i jej historii. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski O informatyce i jej historii R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Informatyka (1) Informatyka to gałąź wiedzy związana z procesami:! projektowania,

Bardziej szczegółowo

Technika mikroprocesorowa

Technika mikroprocesorowa Technika mikroprocesorowa zajmuje się przetwarzaniem danych w oparciu o cyfrowe programowalne układy scalone. Systemy przetwarzające dane w oparciu o takie układy nazywane są systemami mikroprocesorowymi

Bardziej szczegółowo

Komputery. Komputery. Komputery PC i MAC Laptopy

Komputery. Komputery. Komputery PC i MAC Laptopy Komputery Komputery PC i MAC Laptopy 1 Spis treści: 1. Komputery PC i Mac...3 1.1 Komputer PC...3 1.2 Komputer Mac...3 2. Komputery przenośne...4 2.1 Laptop...4 2.2 Netbook...4 2.3 Tablet...5 3. Historia

Bardziej szczegółowo

Architektura komputerów Historia systemów liczących

Architektura komputerów Historia systemów liczących Historia systemów liczących Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój

Bardziej szczegółowo

2014-10-15. Historia komputera. Architektura komputera Historia komputera. Historia komputera. Historia komputera. Historia komputera

2014-10-15. Historia komputera. Architektura komputera Historia komputera. Historia komputera. Historia komputera. Historia komputera Architektura komputera dr inż. Tomasz Łukaszewski 1 2 500 p.n.e: pierwsze liczydło (abakus) Babilonia. 1614kostkiJohnaNapiera szkockiego matematyka pozwalające dodawać i odejmować 3 4 1621suwak logarytmicznyopracowany

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1 i sieci komputerowe Szymon Wilk Superkomputery 1 1. Superkomputery to komputery o bardzo dużej mocy obliczeniowej. Przeznaczone są do symulacji zjawisk fizycznych prowadzonych głównie w instytucjach badawczych:

Bardziej szczegółowo

Pracownia Komputerowa. Wyk ad I Magdalena Posiada a-zezula

Pracownia Komputerowa. Wyk ad I Magdalena Posiada a-zezula Pracownia Komputerowa Wyk ad I Magdalena Posiada a-zezula Kontakt Zak ad Cząstek i Oddzia ywań Fundamentalnych pok 4.20, Pasteura 5. http://www.fuw.edu.pl/~mposiada email: Magdalena.Posiadala@fuw.edu.pl

Bardziej szczegółowo

Wykład pierwszy Rys historyczny rozwoju sprzętu komputerowego

Wykład pierwszy Rys historyczny rozwoju sprzętu komputerowego Wykład pierwszy Rys historyczny rozwoju sprzętu komputerowego ARK: W1 SG 2005 1/7 Ważniejsze daty w historii rozwoju komputerów 1/5? komputery astronomiczne (Stonehenge)? abak (RYS1a, RYS1b) ok. 1400 astrolabium

Bardziej szczegółowo

JAKIE IDEE WPŁYNĘŁY NAJSILNIEJ NA ROZWÓJ I EWOLUCJĘ INFORMATYKI?

JAKIE IDEE WPŁYNĘŁY NAJSILNIEJ NA ROZWÓJ I EWOLUCJĘ INFORMATYKI? JAKIE IDEE WPŁYNĘŁY NAJSILNIEJ NA ROZWÓJ I EWOLUCJĘ INFORMATYKI? Dlaczego dla informatyków ważne są liczby? Dlaczego dla informatyków ważne są liczby? bo w pamięci komputerów cyfrowych wszelkie dane (teksty,

Bardziej szczegółowo

Wprowadzenie do inżynierii przetwarzania informacji

Wprowadzenie do inżynierii przetwarzania informacji Dr inż. Robert Wójcik Wprowadzenie do inżynierii przetwarzania informacji 1. Maszyny i systemy cyfrowe 1.1. Historia komputerów i główne kierunki ich rozwoju 1.2. Reprezentacja informacji w elektronicznych

Bardziej szczegółowo

Cyfrowe układy scalone

Cyfrowe układy scalone Cyfrowe układy scalone Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków

Bardziej szczegółowo

Historia komputera. Lubię to! - podręcznik

Historia komputera. Lubię to! - podręcznik Historia komputera Lubię to! - podręcznik Plan na dziś Definicja komputera Dlaczego powstał komputer? Historia komputerów Przyrządy do liczenia Co to jest komputer? Definicja z https://www.wikipedia.org/

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe

Systemy operacyjne i sieci komputerowe Historia komputerów 1 1. Historia komputeryzacji 1620 suwak logarytmiczny narzędzie ułatwiające dokonywanie prostych obliczeń, logarytmowanie. Był stosowany przez inżynierów jeszcze w XX wieku. Wynalazca,

Bardziej szczegółowo

Cyfrowe układy scalone

Cyfrowe układy scalone Cyfrowe układy scalone Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Cyfrowe układy scalone Układy cyfrowe

Bardziej szczegółowo

Wstęp do architektury komputerów

Wstęp do architektury komputerów Wstęp do architektury komputerów Podręczniki: Willians Stallings: Organizacja i architektura systemu komputerowego, WNT Notatki z wykładu: http://zefir.if.uj.edu.pl/planeta/wyklad_architektura.htm Egzamin:

Bardziej szczegółowo

1. CZYM JEST INFORMATYKA 1

1. CZYM JEST INFORMATYKA 1 1. CZYM JEST INFORMATYKA 1 ELEMENTY HISTORII 1.1. Czym jest informatyka Informatyka jest często kojarzona z komputerami, programowaniem i algorytmami, a w ostatnich latach również z całą sferą działalności

Bardziej szczegółowo

Podstawy informatyki. Podstawowe pojęcia Historia informatyki

Podstawy informatyki. Podstawowe pojęcia Historia informatyki Podstawy informatyki Podstawowe pojęcia Historia informatyki Plan wykładu Historia, budowa i rodzaje komputerów Systemy operacyjne budowa i użytkowanie Oprogramowanie, licencje Przetwarzanie tekstów Arkusze

Bardziej szczegółowo

Jak liczono dawniej? 1

Jak liczono dawniej? 1 Jak liczono dawniej? 1 SPIS TREŚCI PALCE... 3 KAMIENIE... 4 SYSTEM KARBOWY... 5 ABAKUS:... 6 MECHANICZNY KALKULATOR LEONARDA DA VINCI:... 7 TABLICE NAPIERA:... 8 SUWAK LOGARYTMICZNY:... 9 MECHANICZNY KALKULATOR

Bardziej szczegółowo

PRZESŁANKI I PIERWSZE KONCEPCJE AUTOMATYCZNEGO LICZENIA

PRZESŁANKI I PIERWSZE KONCEPCJE AUTOMATYCZNEGO LICZENIA PRZESŁANKI I PIERWSZE KONCEPCJE AUTOMATYCZNEGO LICZENIA Pierwszą maszyną cyfrową, w której operacje wykonywane były za pomocą układów elektronicznych, był ENIAC (Electronic Numerioal Integrator And Computer)

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Jan Kazimirski 1 Opis zajęć Odrobina historii... Elementy techniki cyfrowej Maszynowa reprezentacja danych Budowa i zasady działania współczesnych komputerów Elementy programowania

Bardziej szczegółowo

Jako pierwszych do liczenia używano palców.

Jako pierwszych do liczenia używano palców. Jako pierwszych do liczenia używano palców. Kolejnymi przedmiotami do liczenia były kamienie. Małe, okrągłe kamyki mogły być używane do wyrażania większych liczb niż starcza na to palców, a posiadały one

Bardziej szczegółowo

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury 1976 r. Apple PC Personal Computer 1981 r. pierwszy IBM PC Komputer jest wart tyle, ile wart jest człowiek, który go wykorzystuje... Hardware sprzęt Software oprogramowanie Komputer IBM PC niezależnie

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl

Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Wstęp do Informatyki dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura 1. Brookshear, J. G. (2003). Informatyka w ogólnym zarysie. WNT, Warszawa. 3. Małecki, R. Arendt D. Bryszewski A. Krasiukianis

Bardziej szczegółowo

12:00 1 MAJA 2015, CZWARTEK

12:00 1 MAJA 2015, CZWARTEK Mój wymarzony zawód: 12:00 1 MAJA 2015, CZWARTEK Kacper Bukowski, Uczeń klasy III B Gimnazjum nr 164 z Oddziałami Integracyjnymi i Dwujęzycznymi im. Polskich Olimpijczyków w Warszawie www.kto-to-informatyk.pl

Bardziej szczegółowo

Przeszłość i przyszłość informatyki

Przeszłość i przyszłość informatyki Przeszłość i przyszłość informatyki Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Przeszłość i przyszłość informatyki Autor: prof. dr hab. Maciej M Sysło Redaktor merytoryczny: prof. dr hab. Maciej M Sysło

Bardziej szczegółowo

LEKCJA TEMAT: Zasada działania komputera.

LEKCJA TEMAT: Zasada działania komputera. LEKCJA TEMAT: Zasada działania komputera. 1. Ogólna budowa komputera Rys. Ogólna budowa komputera. 2. Komputer składa się z czterech głównych składników: procesor (jednostka centralna, CPU) steruje działaniem

Bardziej szczegółowo

PRACA ZALICZENIOWA Z WORDA

PRACA ZALICZENIOWA Z WORDA PRACA ZALICZENIOWA Z WORDA Wykonał: mgr Henryk Janeczek Olesno, 2011 Test zaliczeniowy z Worda spis treści Numerowanie, punktory.. 3 Tabela. 4 Tekst wielokolumnowy, grafika... 5 Tekst matematyczny, rysunki,

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Cyfrowe układy scalone

Cyfrowe układy scalone Ryszard J. Barczyński, 2 25 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy cyfrowe stosowane są do przetwarzania informacji zakodowanej

Bardziej szczegółowo

Języki Programowania

Języki Programowania Języki Programowania materiały uzupełniające do wykładów 19 maj, 2006 Wojciech Sobieski Uniwersytet Warmińsko-Mazurski Wydział Nauk Technicznych Katedra Mechaniki i Podstaw Konstrukcji Maszyn 10-957 Olsztyn,

Bardziej szczegółowo

Podstawy Informatyki Organizacja prostego komputera dydaktycznego

Podstawy Informatyki Organizacja prostego komputera dydaktycznego Podstawy Informatyki Organizacja prostego komputera dydaktycznego alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 2 Wprowadzenie Architektura maszyny W Rozkazy maszyny W 3 Rozkazy arytmetyczne

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

Języki Programowania. Generacje języków programowania. Wojciech Sobieski

Języki Programowania. Generacje języków programowania. Wojciech Sobieski Języki Programowania Generacje języków programowania Wojciech Sobieski Olsztyn, 2001-2016 Starożytność liczenie na czarnych i białych kamieniach, liczydła (Soroban, Abacus). Soroban Abacus Leonardo da

Bardziej szczegółowo

Komputery. Historia i budowa.

Komputery. Historia i budowa. Komputery Historia i budowa. 1. Komputer i informatyka. Komputer maszyna elektroniczna przeznaczona do przetwarzania informacji. 2.1. Historia maszyn liczących - komputera Abacus (pol. liczydło) pierwsze

Bardziej szczegółowo

Opracował: Jan Front

Opracował: Jan Front Opracował: Jan Front Sterownik PLC PLC (Programowalny Sterownik Logiczny) (ang. Programmable Logic Controller) mikroprocesorowe urządzenie sterujące układami automatyki. PLC wykonuje w sposób cykliczny

Bardziej szczegółowo

Podstawy obsługi komputerów. Budowa komputera. Podstawowe pojęcia

Podstawy obsługi komputerów. Budowa komputera. Podstawowe pojęcia Budowa komputera Schemat funkcjonalny i podstawowe parametry Podstawowe pojęcia Pojęcia podstawowe PC personal computer (komputer osobisty) Kompatybilność to cecha systemów komputerowych, która umoŝliwia

Bardziej szczegółowo

urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału ciągłego.

urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału ciągłego. Komputer (z ang. computer od łac. computare obliczać, dawne nazwy używane w Polsce: mózg elektronowy, elektroniczna maszyna cyfrowa, maszyna matematyczna) urządzenie elektroniczne służące do przetwarzania

Bardziej szczegółowo

1. Budowa komputera schemat ogólny.

1. Budowa komputera schemat ogólny. komputer budowa 1. Budowa komputera schemat ogólny. Ogólny schemat budowy komputera - Klawiatura - Mysz - Skaner - Aparat i kamera cyfrowa - Modem - Karta sieciowa Urządzenia wejściowe Pamięć operacyjna

Bardziej szczegółowo

Architektura Systemów Komputerowych. Paweł Pełczyński ppelczynski@swspiz.pl

Architektura Systemów Komputerowych. Paweł Pełczyński ppelczynski@swspiz.pl Architektura Systemów Komputerowych Paweł Pełczyński ppelczynski@swspiz.pl Program przedmiotu Struktura i zasada działania prostego systemu mikroprocesorowego Operacje wykonywane przez mikroprocesor i

Bardziej szczegółowo

Budowa komputera. Lubię to! - podręcznik

Budowa komputera. Lubię to! - podręcznik Budowa komputera Lubię to! - podręcznik Plan na dziś Przypomnienie podstawowych wiadomości z poprzedniej lekcji Założenia teoretyczne komputera Praktyczna realizacja idei Podział elementów: W zależności

Bardziej szczegółowo

Podstawy Informatyki Systemy sterowane przepływem argumentów

Podstawy Informatyki Systemy sterowane przepływem argumentów Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer

Bardziej szczegółowo

Informatyka. Prowadzący: Dr inż. Sławomir Samolej D102 C, tel: 865 1766, email: ssamolej@prz-rzeszow.pl WWW: ssamolej.prz-rzeszow.

Informatyka. Prowadzący: Dr inż. Sławomir Samolej D102 C, tel: 865 1766, email: ssamolej@prz-rzeszow.pl WWW: ssamolej.prz-rzeszow. Informatyka Prowadzący: Dr inż. Sławomir Samolej D102 C, tel: 865 1766, email: ssamolej@prz-rzeszow.pl WWW: ssamolej.prz-rzeszow.pl 1 Program zajęć Wykład: Wprowadzenie Budowa i działanie sprzętu komputerowego

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Elementy historii INFORMATYKI

Elementy historii INFORMATYKI Elementy historii INFORMATYKI Wykład 2. Elementy historii informatyki HISTORIA INFORMATYKI HISTORIA KOMPUTERÓW Wykład 2. Elementy historii informatyki Prehistoria informatyki: PASCAL i LEIBNIZ (1623 1662)

Bardziej szczegółowo

PI 02-01/12. W jednym bajcie można można zakodować 256 różnych znaków.

PI 02-01/12. W jednym bajcie można można zakodować 256 różnych znaków. PI 02-01/12 Jednostkę ilości informacji nazywamy bitem (bit to po angielsku kawałek). Do komunikacji z komputerem używany jest odpowiedni zestaw znaków. Każdy z nich jest odpowiednio kodowany, otrzymuje

Bardziej szczegółowo

Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI

Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1. Obliczenia w arkuszu kalkulacyjnym Rozwiązywanie problemów z wykorzystaniem aplikacji komputerowych obliczenia w arkuszu kalkulacyjnym wykonuje

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne page.1 Technologie Informacyjne Wersja: 4 z drobnymi modyfikacjami! Wojciech Myszka 2013-10-14 20:04:01 +0200 page.2 Cel zajęć Cele zajęć: Uaktualnienie i ujednolicenie wiedzy/terminologii oraz zdobycie

Bardziej szczegółowo

Fascynujący świat komputerów

Fascynujący świat komputerów Barbara Szczepańska INFORMATYKA Barbara Szczepańska Fascynujący świat komputerów Kto wynalazł komputer? Komputery zmieniły ogromnie naszą cywilizację, wpływają bezpośrednio na wiele aspektów naszego życia,

Bardziej szczegółowo

Logiczny model komputera i działanie procesora. Część 1.

Logiczny model komputera i działanie procesora. Część 1. Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.

Bardziej szczegółowo

Architektura komputerów wer. 7

Architektura komputerów wer. 7 Architektura komputerów wer. 7 Wojciech Myszka 2013-10-29 19:47:07 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie i wynik

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Architektura komputerów wer. 3

Architektura komputerów wer. 3 Architektura komputerów wer. 3 Wojciech Myszka, Maciej Panek listopad 2014 r. Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Metalurgia, I rok Krzysztof Wilk Katedra Informatyki Stosowanej i Modelowania wilk@metal.agh.edu.pl tel. 012 617 28 89 Konsultacje: poniedziałek, 11.30-13; B-4, pok. 207 Podstawy Informatyki

Bardziej szczegółowo

Scenariusz lekcji. omówić dokonania w dziedzinie przetwarzania informacji do XIX wieku;

Scenariusz lekcji. omówić dokonania w dziedzinie przetwarzania informacji do XIX wieku; Scenariusz lekcji 1 TEMAT LEKCJI Historia informacji 2 CELE LEKCJI 2.1 Wiadomości Uczeń potrafi: omówić dokonania w dziedzinie przetwarzania informacji do XIX wieku; omówić działanie i zastosowanie pierwszych

Bardziej szczegółowo

Podzespoły Systemu Komputerowego:

Podzespoły Systemu Komputerowego: Podzespoły Systemu Komputerowego: 1) Płyta główna- jest jednym z najważniejszych elementów komputera. To na niej znajduje się gniazdo procesora, układy sterujące, sloty i porty. Bezpośrednio na płycie

Bardziej szczegółowo

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami Rok akademicki 2015/2016, Wykład nr 6 2/21 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2015/2016

Bardziej szczegółowo

dr hab. Joanna Jędrzejowicz Podstawy informatyki i komputeryzacji Gdańska Wyższa Szkoła Humanistyczna

dr hab. Joanna Jędrzejowicz Podstawy informatyki i komputeryzacji Gdańska Wyższa Szkoła Humanistyczna dr hab. Joanna Jędrzejowicz Podstawy informatyki i komputeryzacji Gdańska Wyższa Szkoła Humanistyczna Literatura B. Siemieniecki, W. Lewandowski Internet w szkole, Wyd. A. Marszałek 2001, B. Siemieniecki

Bardziej szczegółowo

Powrót do przeszłości i przyszłości

Powrót do przeszłości i przyszłości Wykład 7 Powrót do przeszłości i przyszłości Krótka (bardzo) historia komputerów: ok. 2600 r. p.n.e. stosowano liczydła zwane abakusami IV w. p.n.e. Euklides w swoim fundamentalnym dziele Elementy podał

Bardziej szczegółowo

Turing i jego maszyny

Turing i jego maszyny Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan

Bardziej szczegółowo

Budowa pierwszych komputerów i ich zastosowanie w matematyce

Budowa pierwszych komputerów i ich zastosowanie w matematyce Budowa pierwszych komputerów i ich zastosowanie w matematyce Aleksander Byglewski Jarosław Rolski Jakub Zbrzezny Krótki kurs historii matematyki Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska

Bardziej szczegółowo

Komputer. Komputer (computer) jest to urządzenie elektroniczne służące do zbierania, przechowywania, przetwarzania i wizualizacji informacji

Komputer. Komputer (computer) jest to urządzenie elektroniczne służące do zbierania, przechowywania, przetwarzania i wizualizacji informacji Komputer Komputer (computer) jest to urządzenie elektroniczne służące do zbierania, przechowywania, przetwarzania i wizualizacji informacji Budowa komputera Drukarka (printer) Monitor ekranowy skaner Jednostka

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

Wymagania edukacyjne z informatyki dla uczniów klas VI SP nr 53 w Krakowie w roku szkolnym 2019/2020

Wymagania edukacyjne z informatyki dla uczniów klas VI SP nr 53 w Krakowie w roku szkolnym 2019/2020 Prowadzący: Elwira Kukiełka Ewa Pawlak-Głuc 1 Opracowano na podstawie: 1. Podstawa programowa(dz.u. z 017r. poz. ) Rozporządzenie Ministra Edukacji Narodowej z dnia 1 lutego 017 r. w sprawie podstawy programowej

Bardziej szczegółowo

Podstawy Informatyki. Podstawy Informatyki. Warunki zaliczenia. Program wykładów. Metalurgia, I rok. Czym jest informatyka? Z czego się uczyć?

Podstawy Informatyki. Podstawy Informatyki. Warunki zaliczenia. Program wykładów. Metalurgia, I rok. Czym jest informatyka? Z czego się uczyć? Podstawy Informatyki Metalurgia, I rok Krzysztof Wilk Katedra Informatyki Stosowanej i Modelowania wilk@metal.agh.edu.pl tel. 012 617 28 89 Konsultacje: poniedziałek, 11.30-13; B-4, pok. 207 PROGRAM ZAJĘĆ

Bardziej szczegółowo

Podstawy Informatyki Języki programowania

Podstawy Informatyki Języki programowania Podstawy Informatyki Języki programowania alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Języki programowania 2 Przykład Wczytywanie programu do pamięci Podsumowanie 3 Przykład

Bardziej szczegółowo

Komputer i urządzenia z nim współpracujące.

Komputer i urządzenia z nim współpracujące. Komputer i urządzenia z nim współpracujące. Program komputerowy Komputer maszynaelektroniczna przeznaczona do przetwarzania informacji Ogólny schemat działania komputera Podstawowe elementy komputera Większość

Bardziej szczegółowo

Historia komputera. Narzędzia informatyki

Historia komputera. Narzędzia informatyki Historia komputera Narzędzia informatyki 12 października 2015 dr inż. Bartłomiej Prędki Bartlomiej.Predki@cs.put.poznan.pl http://zajecia.predki.com http://ni.predki.com tel. 61 665 2932 pok. 124 CW Konsultacje

Bardziej szczegółowo

Informatyka. Michał Rad

Informatyka. Michał Rad Informatyka Michał Rad 13.10.2016 Co i po co będziemy robić Plan wykładów: Wstęp, historia Systemy liczbowe Co to jest system operacyjny i po co to jest Sprawy związane z tworzeniem i własnością oprogramowania

Bardziej szczegółowo

Wstęp do współczesnej inżynierii EKS i komputery sterowane myślami. Andrzej Materka, listopad 2010

Wstęp do współczesnej inżynierii EKS i komputery sterowane myślami. Andrzej Materka, listopad 2010 Politechnika Łódzka Instytut Elektroniki Wstęp do współczesnej inżynierii EKS i komputery sterowane myślami Andrzej Materka, listopad 2010 Jena Meeting, 12-14 December 2008 1/8 Plan wykładu - rozwój urządzeń

Bardziej szczegółowo

Dydaktyka Informatyki budowa i zasady działania komputera

Dydaktyka Informatyki budowa i zasady działania komputera Dydaktyka Informatyki budowa i zasady działania komputera Instytut Matematyki Uniwersytet Gdański System komputerowy System komputerowy układ współdziałania dwóch składowych: szprzętu komputerowego oraz

Bardziej szczegółowo

Komputer nie myśli. On tylko wykonuje nasze polecenia. Nauczmy się więc wydawać mu rozkazy

Komputer nie myśli. On tylko wykonuje nasze polecenia. Nauczmy się więc wydawać mu rozkazy Programowanie w C++ 1.Czym jest programowanie Pisanie programów to wcale nie czarna magia, tylko bardzo logiczna rozmowa z komputerem. Oczywiście w jednym ze specjalnie stworzonych do tego celu języków.

Bardziej szczegółowo

Budowa komputera KROK PO KROKU! Opis wszystkich części komputera w sposób zrozumiały dla nowatorów

Budowa komputera KROK PO KROKU! Opis wszystkich części komputera w sposób zrozumiały dla nowatorów Budowa komputera KROK PO KROKU! Opis wszystkich części komputera w sposób zrozumiały dla nowatorów Poszczególne podzespoły komputera 1. Monitor 2. Płyta główna 3. Procesor 4. Gniazda kontrolerów dysków

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika: PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej

Bardziej szczegółowo

WOJEWÓDZKI KONKURS INFORMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ETAP SZKOLNY BIAŁYSTOK, 22 LISTOPADA 2017 R.

WOJEWÓDZKI KONKURS INFORMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ETAP SZKOLNY BIAŁYSTOK, 22 LISTOPADA 2017 R. WOJEWÓDZKI KONKURS INFORMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ETAP SZKOLNY BIAŁYSTOK, 22 LISTOPADA 2017 R. INSTRUKCJA DLA UCZESTNIKA KONKURSU: 1. Sprawdź, czy test zawiera 8 stron. Ewentualny

Bardziej szczegółowo

Maszyny liczace - rys historyczny

Maszyny liczace - rys historyczny SWB - Mikroprocesory i mikrokontrolery - wykład 7 asz 1 Maszyny liczace - rys historyczny pierwszy kalendarz - Stonehenge (obecnie Salisbury, Anglia) skonstruowany ok. 2800 r. pne. abacus - pierwsze liczydła

Bardziej szczegółowo

Komputery to w dzisiejszych czasach urządzenie praktycznie nie do zastąpienia, trudno sobie wyobrazić pracę bez tego urządzenia. Niezwykła popularność uzyskały całkiem niedawno. To jak bardzo są przydatne

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Oś czasu Pascal Leibniz de Colmar Babbage 1600 1700 1800 1900 Pinwheel (wiatraczek) - alternatywa dla kół Leibniza

Bardziej szczegółowo

Budowa systemów komputerowych

Budowa systemów komputerowych Budowa systemów komputerowych Krzysztof Patan Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski k.patan@issi.uz.zgora.pl Współczesny system komputerowy System komputerowy składa

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Alan M. TURING. Matematyk u progu współczesnej informatyki

Alan M. TURING. Matematyk u progu współczesnej informatyki Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać

Bardziej szczegółowo

Programowanie sterowników PLC wprowadzenie

Programowanie sterowników PLC wprowadzenie Programowanie sterowników PLC wprowadzenie Zakład Teorii Maszyn i Automatyki Katedra Podstaw Techniki Felin p.110 http://ztmia.ar.lublin.pl/sips waldemar.samociuk@up.lublin,pl Sterowniki programowalne

Bardziej szczegółowo

Urządzenia zewnętrzne

Urządzenia zewnętrzne Urządzenia zewnętrzne SZYNA ADRESOWA SZYNA DANYCH SZYNA STEROWANIA ZEGAR PROCESOR PAMIĘC UKŁADY WE/WY Centralna jednostka przetw arzająca (CPU) DANE PROGRAMY WYNIKI... URZ. ZEWN. MO NITORY, DRUKARKI, CZYTNIKI,...

Bardziej szczegółowo

HISTORIA KOMPUTERÓW Wyciąg z początkowych fragmentów książki W. Ducha Fascynujący świat komputerów (http://www.fizyka.umk.pl/~duch/book-fsk.

HISTORIA KOMPUTERÓW Wyciąg z początkowych fragmentów książki W. Ducha Fascynujący świat komputerów (http://www.fizyka.umk.pl/~duch/book-fsk. HISTORIA KOMPUTERÓW Wyciąg z początkowych fragmentów książki W. Ducha Fascynujący świat komputerów (http://www.fizyka.umk.pl/~duch/book-fsk.html) 0. Uwagi wstępne Komputery zmieniły ogromnie naszą cywilizację,

Bardziej szczegółowo

43 Pamięci półprzewodnikowe w technice mikroprocesorowej - rodzaje, charakterystyka, zastosowania

43 Pamięci półprzewodnikowe w technice mikroprocesorowej - rodzaje, charakterystyka, zastosowania 43 Pamięci półprzewodnikowe w technice mikroprocesorowej - rodzaje, charakterystyka, zastosowania Typy pamięci Ulotność, dynamiczna RAM, statyczna ROM, Miejsce w konstrukcji komputera, pamięć robocza RAM,

Bardziej szczegółowo

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Program, to lista poleceń zapisana w jednym języku programowania zgodnie z obowiązującymi w nim zasadami. Celem programu jest przetwarzanie

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Technologie Informacyjne Wykład 2

Technologie Informacyjne Wykład 2 Technologie Informacyjne Wykład 2 Elementy systemu komputerowego Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 15 października

Bardziej szczegółowo

Budowa Komputera część teoretyczna

Budowa Komputera część teoretyczna Budowa Komputera część teoretyczna Komputer PC (pesonal computer) jest to komputer przeznaczony do użytku osobistego przeznaczony do pracy w domu lub w biurach. Wyróżniamy parę typów komputerów osobistych:

Bardziej szczegółowo

Płyta główna (ang. motherboard) najważniejsza płyta drukowana urządzenia elektronicznego, na której zamontowano najważniejsze elementy urządzenia, umo

Płyta główna (ang. motherboard) najważniejsza płyta drukowana urządzenia elektronicznego, na której zamontowano najważniejsze elementy urządzenia, umo Zestaw komputera: 1)Płyta główna: 2)Monitor 3)Klawiatura i mysz 4)Głośniki 5) Urządzenia peryferyjne: *skaner *drukarka Płyta główna (ang. motherboard) najważniejsza płyta drukowana urządzenia elektronicznego,

Bardziej szczegółowo

Technologia informacyjna. Urządzenia techniki komputerowej

Technologia informacyjna. Urządzenia techniki komputerowej Technologia informacyjna Urządzenia techniki komputerowej System komputerowy = hardware (sprzęt) + software (oprogramowanie) Sprzęt komputerowy (ang. hardware) zasoby o specyficznej strukturze i organizacji

Bardziej szczegółowo

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08

Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08 Pamięci Układy pamięci kontaktują się z otoczeniem poprzez szynę danych, szynę owa i szynę sterującą. Szerokość szyny danych określa liczbę bitów zapamiętywanych do pamięci lub czytanych z pamięci w trakcie

Bardziej szczegółowo

Budowa i zasada działania komputera. dr Artur Bartoszewski

Budowa i zasada działania komputera. dr Artur Bartoszewski Budowa i zasada działania komputera 1 dr Artur Bartoszewski Jednostka arytmetyczno-logiczna 2 Pojęcie systemu mikroprocesorowego Układ cyfrowy: Układy cyfrowe służą do przetwarzania informacji. Do układu

Bardziej szczegółowo