Jeśli teraz nasz związek, chlorek glinu, ulegnie dysocjacji elektrolitycznej, rozpadnie się na jony według równania:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jeśli teraz nasz związek, chlorek glinu, ulegnie dysocjacji elektrolitycznej, rozpadnie się na jony według równania:"

Transkrypt

1 Wiązania chemiczne powstają między atomami wówczas, gdy dwa atomy zbliżą się do siebie na tak bliska odległość, że orbital jednego z nich znajdzie się w obrębie orbitala drugiego atomu. Jeśli na każdym z tych dwu orbitali znajdował się jeden elektron, to w wyniku takiego nałożenia się orbitali powstanie wiązanie chemiczne kowalentne. Oznacza to, że te dwa elektrony (każdy pochodzący z innego atomu) okrążają teraz jednocześnie jądra obu atomów. Schematycznie można to przedstawić tak: Atom zielony z jednym elektronem walencyjnym na orbitalu zbliża się do atomu czerwonego i w pewnym momencie orbitale obu atomów zajmują to samo miejsce w przestrzeni (orbitale pokryły się, rysunek prawy, górny). W takiej sytuacji oba elektrony, pochodzące z orbitali atomu zielonego i czerwonego mogą poruszać się wokół obu jader atomowych, tworząc tym sposobem wiązanie chemiczne, kowalentne, łączące atomy zielony i czerwony. W symbolicznym zapisie cząsteczki takie wiązanie wyrażamy za pomocą kreski: A B; często mówimy, że taka kreska wyraża dwa elektrony, co u wielu osób podświadomie wywołuje wrażenie, że elektrony wiążące, tworzące wiązanie chemiczne, znajdują się zawsze pomiędzy jądrami wiązanych atomów. W rzeczywistości nałożenie się na siebie dwu orbitali atomowych i stworzenie w ten sposób orbitala wiążącego, cząsteczkowego, powoduje, że każdy z dwóch elektronów tworzących to wiązanie może znajdować się w dowolnej chwili w dowolnym miejscu w obrębie tego orbitala wiążącego i w dowolnym położeniu w stosunku do drugiego elektronu tworzącego wiązanie. Elektrony wiązania są w ciągłym ruch i ich położenie wobec jąder atomów, które wiążą i wobec siebie jest zmienne w czasie. Dlaczego powstał taki nowy orbital i dlaczego taka sytuacja (wiązanie chemiczne) jest trwała? Czemu wiązanie nie rozpadnie się znów na dwa nie związane atomy? Trzeba koniecznie pamiętać, że w przyrodzie obowiązuje podstawowe prawo, które mówi, że każdy układ materialny dąży do osiągnięcia jak najniższej energii, możliwej w danych warunkach. W fizyce dnia codziennego poznajemy doskonale tę regułę, gdy przedmiot trzymany na pewnej wysokości nad podłogą wysunie nam się z rąk i upadnie na podłogę. Energia potencjalna tego przedmioty na poziomie podłogi jest mniejsza niż na wysokości, na której trzymaliśmy go w rękach. Jak długo trzymaliśmy go w ręce, nie miał możliwości obniżyć swej energii, ale tylko jak taka możliwość się pojawiła (zwolniliśmy chwyt) natychmiast z tej szansy skorzystał i spadł. W przypadku wiązań chemicznych okazuje się, że energia elektronów tworzących wiązanie jest mniejsza niż suma energii tych elektronów przed utworzeniem wiązania (sumaryczna energia dwu atomów przedstawionych na rysunku pierwszym po lewej jest większa niż energia układu przedstawionego na rysunku trzecim, dolnym). Jak zapewne już wiesz pierwiastki gazowe, takie jak tlen, azot, chlor występują nie w postaci jednoatomowej O, N, Cl a w postaci cząsteczek dwuatomowych O 2, N 2, Cl 2. Jest to właśnie spowodowane tą regułą, taka dwuatomowa cząsteczka pierwiastka ma mniejszą energię niż dwa niezależne, nie związane atomy 2O, 2N czy 2Cl. Podobnie jest w przypadku innych pierwiastków. Występowanie czystych, niezwiązanych pierwiastków w przyrodzie jest stosunkowo rzadkie (Hg, Au ), przeważająca większość występuje w postaci związków chemicznych lub cząsteczek wieloatomowych, np. węgiel w postaci diamentu czy siarka S 8.

2 Teraz pora na elektroujemność. Jest to indywidualna cecha każdego pierwiastka, wyrażająca pewną skłonność danego pierwiastka do ściągania elektronów wiązania kowalentnego w swoje pobliże i opisywana umowną wartością liczbową. Tu trzeba pamiętać, że elektroujemność danego pierwiastka manifestuje się dopiero w zetknięciu z innym pierwiastkiem, więc zazwyczaj bardziej chodzi o różnice między elektroujemnościami niż o bezwzględne wartości tej cechy. Elektroujemność jest generowana przez dążność atomów do uzyskania oktetu elektronowego (ośmiu elektronów) na ostatniej powłoce. Ta dążność z kolei powiązana jest z omawianą już regułą dążności do uzyskania najniższej z możliwych w danych warunkach energii atomu. Omówmy sprawę elektroujemności na przykładzie wiązania atomu glinu z atomem chloru Al Cl: W górnej części rysunku (patrz niżej) mamy schematycznie przedstawiony atom glinu (Al) i chloru (Cl) wraz z elektronami dwóch ostatnich powłok. Na ostatniej powłoce glin ma trzy elektrony a atom chloru ma ich siedem. Tworząc wiązanie Al Cl jeden z elektronów walencyjnych glinu przechodzi na orbital powłoki walencyjnej chloru i tym sposobem powłoka walencyjna chloru związanego z glinem ma już osiem elektronów (ów pożądany oktet) siedem swoich i ósmy pożyczony od atomu glinu. Ponieważ glin ma do pożyczenia aż trzy takie elektrony walencyjne, powstaje związek AlCl 3 (trzeci rysunek licząc od góry). Pożyczając swoje trzy elektrony walencyjne atom glinu przechodzi w jon Al 3+ (bo traci trzy elektrony z atomu, które do tej pory zobojętniały trzy z trzynastu protonów jądra atomowego), zyskując tym samym ostatnią powłokę obsadzoną ośmioma elektronami, czyli taką najbardziej pożądaną. Co prawda atom glinu stracił tym sposobem aż trzy elektrony, ale jednocześnie zyskał błogi stan oktetu a na tym mu bardziej zależało niż na elektronach walencyjnych. Także każdy z atomów chloru uzyskał oktet elektronowy, czyli wszyscy są zadowoleni. Jak widać, przyroda też czasem woli stracić mniej (elektrony walencyjne) by zyskać więcej (oktet na ostatniej powłoce).

3 Jeśli teraz nasz związek, chlorek glinu, ulegnie dysocjacji elektrolitycznej, rozpadnie się na jony według równania: AlCl 3 > Al Cl gdzie oktety na ostatniej powłoce widać najwyraźniej (rysunek poniżej). Jak więc widzimy, jednym z czynników wpływających na elektroujemność jest liczba elektronów na ostatniej powłoce. Jeśli jest większa niż cztery, atom zazwyczaj dąży do pobrania brakującej do oktetu liczby elektronów, jeśli liczba ta jest mniejsza od 4, łatwiej mu oddać te elektrony i przejść w stan oktetu (oktet na niższej powłoce) poprzez stratę elektronów z powłoki walencyjnej ( mniej stracić by więcej zyskać ). Jednak konkretne zachowanie zawsze zależy od konkretnej sytuacji w jakiej znajdzie się dany atom. Drugim czynnikiem wpływającym na wielkość elektroujemności jest odległość elektronów walencyjnych od jądra atomowego (czyli promień atomu, wielkość atomu). Im ta odległość jest większa, tym siła wiązania ujemnych elektronów walencyjnych przez dodatnie jądro jest słabsza i oderwanie takich elektronów od macierzystego atomu jest łatwiejsze (elektroujemność maleje). Tak więc największa elektroujemność występuje wówczas, gdy atom pierwiastka jest mały i ma dużo elektronów walencyjnych. Pierwiastkiem spełniającym w największym stopniu oba te warunki jest fluor (prawy, górny róg układu okresowego) i jemu umownie przypisano wartość 4 (największą w umownej skali elektroujemności Paulinga). Im promień atomowy większy (przesuwamy się w dół tablicy układu okresowego) tym elektroujemność mniejsza, oraz im mniej elektronów na powłoce walencyjnej, tym elektroujemność również mniejsza (posuwamy się w lewą stronę układu okresowego pierwiastków). Tak więc skrótowo można powiedzieć, że elektroujemność maleje od fluoru po przekątnej układu okresowego (w lewo i w dół). Istnienie elektroujemności (czy raczej różnicy w elektroujemności atomów tworzących wiązanie chemiczne) powoduje, że wiązania między atomami o różnej elektroujemności są spolaryzowane. Co to oznacza? Jak już wiesz, elektrony wiązania krążą wokół obu atomów związanych wiązaniem chemicznym. Jeżeli są to atomy pierwiastków o identycznej elektroujemności (co w praktyce oznacza prawie wyłącznie dwa atomy tego samego pierwiastka np. O 2 czy C C), to dowolne miejsce orbitala wiązania jest odwiedzane przez elektrony wiązania z identyczna częstotliwością. Mówimy wówczas o pełnej symetrii ładunku wiązania, o położeniu środka ciężkości ładunku

4 wiązania dokładnie pośrodku odcinka łączącego jądra atomowe. Schematycznie pokazują to dwa pierwsze rysunki poniżej, gdzie tą symetrię obrazuje jednostajnie szara przestrzeń orbitala wiążącego. Na rysunku oba związane atomy oznaczono tym samym kolorem, dla podkreślenia identyczności wartości elektroujemności. Dwa schematy poniżej obrazują sytuację, gdy atom czerwony jest bardziej elektroujemny niż zielony. Wówczas elektrony wiązania przebywają w okolicy czerwonego wyraźnie częściej niż w okolicy zielonego, co w konsekwencji prowadzi do takiego zachowania się tego układu, jakby w okolicach czerwonego był umieszczony ładunek elektryczny ujemny a w okolicach zielonego identyczny co do wielkości ładunek dodatni (symbolicznie zapisujemy to jako δ i δ+). Mamy więc na dwóch krańcach wiązania dwa różne ładunki (różne co do znaku), co kojarzy nam się z biegunami magnetycznymi Ziemi (północnym i południowym) i stąd nazwa wiązanie spolaryzowane czyli posiadające bieguny (polaris po łacinie znaczy biegun). Niekiedy mówi się, że gęstość ładunku wiązania jest większa w pobliżu atomu bardziej elektroujemnego pierwiastka (na schemacie obrazuje to ciemniejszy kolor orbitala wiążącego), lub że środek ciężkości ładunku wiązania przesunięty jest w stronę atomu bardziej elektroujemnego. Jeżeli różnica elektroujemności między pierwiastkami jest szczególnie duża (jako wartość graniczna najczęściej przyjmuje się różnicę wynoszącą 1,7, np. dla NaCl wynosi ona 1,8) wiązanie kowalencyjne spolaryzowane zamienia się w wiązanie jonowe. Różnica między tymi wiązaniami polega na tym, że w wiązaniu jonowym siłą spajającą dwa atomy nie jest już wspólny orbital cząsteczkowy a wyłącznie siły przyciągania elektrostatycznego. Tak duża różnica elektroujemności powoduje, że pożyczony elektron zostaje przesunięty wyłącznie na orbital pierwiastka bardziej elektroujemnego i już więcej nie obiega obu atomów. Zostaje nie tyle pożyczony, co ukradziony. Wówczas atom złodziej staje się jonem ujemnym (anionem), bo ma więcej ujemnych elektronów, niż dodatnich protonów w jądrze atomowym, zaś atom mniej elektroujemny (czasem wręcz nazywany elektrododatnim), ten okradziony, zostaje jonem dodatnim (kationem), ma bowiem wokół siebie mniej elektronów niż dodatnich protonów w jądrze (ostatni rysunek u góry). Takie wiązanie wyłącznie siłami elektrostatycznymi jest bardzo słabe i łatwo oddzielić takie dwa atomy od siebie najlepszym przykładem tej słabości jest dysocjacja elektrolityczna (rozpad na jony już pod wpływem wody). Jeszcze jednym z typów wiązań (choć spotykanym niezbyt często) są wiązania donorowoakceptorowe, zwane też koordynacyjnymi lub kompleksowymi. W ich wypadku wiązanie jest typu

5 chemicznego (wspólny orbital cząsteczkowy, wiążący) ale para elektronów tworzących wiązanie pochodzi wyłącznie od jednego atomu (donor) zaś drugi atom udostępnia swój pusty orbital (akceptor). Przykładem może być jedno z wiązań tlenu i siarki w kwasie siarkowym(vi) H 2 SO 4. Tak zwana wolna para elektronów atomu siarki przechodzi w wspólne użytkowanie z atomem tlenu (który dysponuje wolnym orbitalem), tworząc tym sposobem wiązanie, oznaczane za pomocą strzałki od donora do akceptora. Schemat górny obrazuje powstawanie wiązania koordynacyjnego i symboliczny zapis takiego wiązania (strzałka), kropkowy schemat poniżej przedstawia układ elektronów w wiązaniach w cząsteczce kwasu siarkowego(vi) H 2 SO 4, a najniżej znajduje się zapis symboliczny cząsteczki kwasu siarkowego(vi) z uwzględnieniem wszystkich elektronów z powłok walencyjnych (często kreski symbolizujące wolne pary elektronowe, nie biorące bezpośredniego udziału w wiązaniach, opuszcza się). Bliższym prawdy będzie schemat poniżej, bowiem wiązania H O są wiązaniami jonowymi, dzięki czemu kwas siarkowy (VI) jest silnym kwasem, dysocjującym po rozpuszczeniu w wodzie w 100%.

6 Regułą ułatwiająca pisanie poprawnych wzorów strukturalnych (kreskowych) jest reguła mówiąca, że każdy atom w związku powinno otaczać osiem elektronów (wodór dwa), bądź to z powłoki walencyjnej, bądź powłoki poniżej walencyjnej. Pisanie wzoru kwasu siarkowego (VI) w postaci: jest nieprawidłowe, bowiem wówczas wkoło atomu siarki mamy aż 12 elektronów (każda kreska to 2 elektrony), co jest niezgodne z powyższa formułą.

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością.

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością. 105 Elektronowa teoria wiązania chemicznego Cząsteczki powstają w wyniku połączenia się dwóch lub więcej atomów. Już w początkowym okresie rozwoju chemii podejmowano wysiłki zmierzające do wyjaśnienia

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę

Bardziej szczegółowo

Wewnętrzna budowa materii - zadania

Wewnętrzna budowa materii - zadania Poniższe zadania rozwiąż na podstawie układu okresowego. Zadanie 1 Oceń poprawność poniższych zdań, wpisując P, gdy zdanie jest prawdziwe oraz F kiedy ono jest fałszywe. Stwierdzenie Atom potasu posiada

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek Monika Gałkiewicz Zad. 1 () Podaj wzory dwóch dowolnych kationów i dwóch dowolnych anionów posiadających

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 1.1. Struktura elektronowa atomów Rozkład elektronów na pierwszych czterech powłokach elektronowych 1. powłoka 2. powłoka 3. powłoka

Bardziej szczegółowo

Wykład przygotowany w oparciu o podręczniki:

Wykład przygotowany w oparciu o podręczniki: Slajd 1 Wykład przygotowany w oparciu o podręczniki: Organic Chemistry 4 th Edition Paula Yurkanis Bruice Slajd 2 Struktura elektronowa wiązanie chemiczne Kwasy i zasady Slajd 3 Chemia organiczna Związki

Bardziej szczegółowo

Wykład 5: Cząsteczki dwuatomowe

Wykład 5: Cząsteczki dwuatomowe Wykład 5: Cząsteczki dwuatomowe Wiązania jonowe i kowalencyjne Ograniczenia teorii Lewisa Orbitale cząsteczkowe Kombinacja liniowa orbitali atomowych Orbitale dwucentrowe Schematy nakładania orbitali Diagramy

Bardziej szczegółowo

Budowa atomu. Wiązania chemiczne

Budowa atomu. Wiązania chemiczne strona /6 Budowa atomu. Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu; jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Wewnętrzna budowa materii

Wewnętrzna budowa materii Atom i układ okresowy Wewnętrzna budowa materii Atom jest zbudowany z jądra atomowego oraz krążących wokół niego elektronów. Na jądro atomowe składają się protony oraz neutrony, zwane wspólnie nukleonami.

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany PYTANIA EGZAMINACYJNE Z CHEMII OGÓLNEJ I Podstawowe pojęcia chemiczne 1) Pierwiastkiem nazywamy : a zbiór atomów o tej samej liczbie masowej b + zbiór atomów o tej samej liczbie atomowej c zbiór atomów

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu

Bardziej szczegółowo

Anna Grych Test z budowy atomu i wiązań chemicznych

Anna Grych Test z budowy atomu i wiązań chemicznych Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego TEMAT I WYBRANE WŁAŚCIWOŚCI ZWIĄZKÓW NIEORGANICZNYCH. STOPNIE UTLENIENIA. WIĄZANIA CHEMICZNE. WZORY SUMARYCZNE I STRUKTURALNE. TYPY REAKCJI CHEMICZNYCH. ILOŚCIOWA INTERPRETACJA WZORÓW I RÓWNAŃ CHEMICZNYCH

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

b) Pierwiastek E tworzy tlenek o wzorze EO 2 i wodorek typu EH 4, a elektrony w jego atomie rozmieszczone są na dwóch powłokach elektronowych

b) Pierwiastek E tworzy tlenek o wzorze EO 2 i wodorek typu EH 4, a elektrony w jego atomie rozmieszczone są na dwóch powłokach elektronowych 1. Ustal jakich trzech różnych pierwiastków dotyczą podane informacje. Zapisz ich symbole a) W przestrzeni wokółjądrowej dwuujemnego jonu tego pierwiastka znajduje się 18 e. b) Pierwiastek E tworzy tlenek

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych

Bardziej szczegółowo

Wrocław dn. 23 listopada 2005 roku

Wrocław dn. 23 listopada 2005 roku Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 23 listopada 2005 roku Temat lekcji: Elektroujemność. + kartkówka z układu okresowego Cel ogólny lekcji:

Bardziej szczegółowo

Temat 1: Budowa atomu zadania

Temat 1: Budowa atomu zadania Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.

Bardziej szczegółowo

Zadanie 1. (1 pkt). Informacja do zada 2. i 3. Zadanie 2. (1 pkt) { Zadania 2., 3. i 4 s dla poziomu rozszerzonego} zania zania Zadanie 3.

Zadanie 1. (1 pkt). Informacja do zada 2. i 3. Zadanie 2. (1 pkt) { Zadania 2., 3. i 4 s dla poziomu rozszerzonego} zania zania Zadanie 3. 2. ELEKTRONY W ATOMACH I CZĄSTECZKACH. A1 - POZIOM PODSTAWOWY. Zadanie 1. (1 pkt). Konfigurację elektronową 1s 2 2s 2 2p 6 3s 2 3p 6 mają atomy i jony: A. Mg 2+, Cl -, K +, B. Ar, S 2-, K +, C. Ar, Na

Bardziej szczegółowo

Spis treści. Metoda VSEPR. Reguły określania struktury cząsteczek. Ustalanie struktury przestrzennej

Spis treści. Metoda VSEPR. Reguły określania struktury cząsteczek. Ustalanie struktury przestrzennej Spis treści 1 Metoda VSEPR 2 Reguły określania struktury cząsteczek 3 Ustalanie struktury przestrzennej 4 Typy geometrii cząsteczek przykłady 41 Przykład 1 określanie struktury BCl 3 42 Przykład 2 określanie

Bardziej szczegółowo

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych

Bardziej szczegółowo

1. Budowa atomu. Układ okresowy pierwiastków chemicznych

1. Budowa atomu. Układ okresowy pierwiastków chemicznych Wymagania programowe na poszczególne oceny przygotowane na podstawie treści zawartych w podstawie programowej (załącznik nr 1 do rozporządzenia, Dz.U. z 2018 r., poz. 467), programie nauczania oraz w części

Bardziej szczegółowo

Chemia Grudzień Styczeń

Chemia Grudzień Styczeń Chemia Grudzień Styczeń Klasa VII IV. Łączenie się atomów. Równania reakcji chemicznych 1. Wiązania kowalencyjne 2. Wiązania jonowe 3. Wpływ rodzaju wiązania na właściwości substancji 4. Elektroujemność

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 20161020 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Okres połowiczego rozpadu pewnego radionuklidu wynosi 16 godzin. a) Określ, ile procent atomów tego izotopu rozpadnie

Bardziej szczegółowo

Na rysunku przedstawiono fragment układu okresowego pierwiastków.

Na rysunku przedstawiono fragment układu okresowego pierwiastków. Na rysunku przedstawiono fragment układu okresowego pierwiastków. Zadanie 1 (0 1) W poniższych zdaniach podano informacje o pierwiastkach i ich tlenkach. Które to tlenki? Wybierz je spośród podanych A

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

I II I II III II. I. Wartościowość pierwiastków chemicznych. oznacza się cyfrą rzymską. tlenek żelaza (III) C IV O II 2

I II I II III II. I. Wartościowość pierwiastków chemicznych. oznacza się cyfrą rzymską. tlenek żelaza (III) C IV O II 2 I. Wartościowość pierwiastków chemicznych oznacza się cyfrą rzymską tlenek żelaza (III) C IV II 2 oznacza liczbę wiązań za pomocą, których atomy łączą się ze sobą H wodór jest I wartościowy od atomu wodoru

Bardziej szczegółowo

Dlaczego sacharoza (cukier trzcinowy) topi się w temperaturze 185 C, podczas

Dlaczego sacharoza (cukier trzcinowy) topi się w temperaturze 185 C, podczas 1 Wiązania chemiczne i zjawisko izomerii Dlaczego sacharoza (cukier trzcinowy) topi się w temperaturze 185 C, podczas gdy chlorek sodowy (sól kuchenna) topi się w znacznie wyższej temperaturze, bo w 801

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

O WIĄZANIACH CHEMICZNYCH W SZKOLE PODSTAWOWEJ

O WIĄZANIACH CHEMICZNYCH W SZKOLE PODSTAWOWEJ Aleksandra Mrzigod, Janusz Mrzigod O WIĄZANIACH CHEMICZNYCH W SZKOLE PODSTAWOWEJ Uczeń właśnie poznał budowę atomu i sposób rozmieszczania elektronów na powłokach. Potrafi ustalić liczbę elektronów walencyjnych

Bardziej szczegółowo

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji:

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji: Zadanie 1. [0-3 pkt] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Suma protonów i elektronów anionu X 2- jest równa 34. II. Stosunek masowy

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne

Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne Anna Grych Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne Informacja do zadań -7 75 Dany jest pierwiastek 33 As. Zadanie. ( pkt) Uzupełnij poniższą tabelkę.

Bardziej szczegółowo

Wymagania edukacyjne z chemii Zakres podstawowy

Wymagania edukacyjne z chemii Zakres podstawowy Wymagania edukacyjne z chemii Zakres podstawowy Klasy: 1a, 1b, 1c, 1d, 1e Rok szkolny 2019/2020 Nauczyciel: Aneta Patrzałek 1 Szczegółowe wymagania edukacyjne z chemii na poszczególne stopnie: Wymagania

Bardziej szczegółowo

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1 III Podkarpacki Konkurs Chemiczny 2010/2011 KOPKCh ETAP I 22.10.2010 r. Godz. 10.00-12.00 Zadanie 1 1. Jon Al 3+ zbudowany jest z 14 neutronów oraz z: a) 16 protonów i 13 elektronów b) 10 protonów i 13

Bardziej szczegółowo

1. Budowa atomu. Układ okresowy pierwiastków chemicznych

1. Budowa atomu. Układ okresowy pierwiastków chemicznych Wymagania programowe z chemii na poszczególne oceny IV etap edukacyjny przygotowane na podstawie treści zawartych w podstawie programowej, programie nauczania oraz w części 1. podręcznika dla liceum ogólnokształcącego

Bardziej szczegółowo

Wykład z Chemii Ogólnej

Wykład z Chemii Ogólnej Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.2. BUDOWA CZĄSTECZEK Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu możesz korzystać

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu możesz korzystać

Bardziej szczegółowo

Zadanie 2. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach

Zadanie 2. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach Zadanie 1. (2 pkt) Na podstawie budowy powłok elektronowych chloru, azotu i fosforu oraz położenia pierwiastka w układzie okresowym wyjaśnij, dlaczego istnieje PCl 5 a występowanie NCl 5 jest teoretycznie

Bardziej szczegółowo

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I MATERIAŁY POMOCNICZE 1 GDYBY MATURA 00 BYŁA DZISIAJ OKRĘ GOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY Informacje ARKUSZ EGZAMINACYJNY I 1. Przy każdym zadaniu podano

Bardziej szczegółowo

RJC. Wiązania Chemiczne & Slides 1 to 39

RJC. Wiązania Chemiczne & Slides 1 to 39 Wiązania Chemiczne & Struktura Cząsteczki Teoria Orbitali & ybrydyzacja Slides 1 to 39 Układ okresowy pierwiastków Siły występujące w cząsteczce związku organicznego Atomy w cząsteczce związku organicznego

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej

Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej Temat w podręczniku Substancje i ich przemiany 1. Zasady

Bardziej szczegółowo

Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej

Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej Nauczyciel: Marta Zielonka Temat w podręczniku Substancje i ich przemiany 1. Zasady bezpiecznej pracy

Bardziej szczegółowo

1. Budowa atomu. Układ okresowy pierwiastków chemicznych

1. Budowa atomu. Układ okresowy pierwiastków chemicznych Wymagania programowe na poszczególne oceny przygotowane na podstawie treści zawartych w podstawie programowej (załącznik nr 1 do rozporządzenia, Dz.U. z 2018 r., poz. 467), programie nauczania oraz w części

Bardziej szczegółowo

-wszystkie substancje (pierwiastki lub zw chem) które biorą udział w reakcji chemicznej nazywamy reagentami

-wszystkie substancje (pierwiastki lub zw chem) które biorą udział w reakcji chemicznej nazywamy reagentami Zapis reakcji chemicznej co to są przemiany chemiczne oraz w jaki sposób możemy opisać zachodzące reakcje? wokół nas bezustannie zachodzą rozmaite przemiany przemiany podczas których powstaje nowa substancja,

Bardziej szczegółowo

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych.

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek Geometria cząsteczek decyduje zarówno o ich właściwościach fizycznych jak i chemicznych, np. temperaturze wrzenia,

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład XII

Inżynieria Biomedyczna. Wykład XII Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja

Bardziej szczegółowo

Nazwy pierwiastków: ...

Nazwy pierwiastków: ... Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja)

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja) Ważne pojęcia Stopień utlenienia Utleniacz Reduktor Utlenianie (dezelektronacja) Stopień utlenienia pierwiastka w dowolnym połączeniu chemicznym jest pojęciem umownym i określa ładunek, który istniałby

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

Wymagania edukacyjne z chemii Zakres rozszerzony

Wymagania edukacyjne z chemii Zakres rozszerzony Wymagania edukacyjne z chemii Zakres rozszerzony Klasy: 1c, 1d Rok szkolny 2019/2020 Nauczyciel: Aneta Patrzałek Szczegółowe wymagania edukacyjne z chemii na poszczególne stopnie: Wymagania na każdy stopień

Bardziej szczegółowo

26 Okresowy układ pierwiastków

26 Okresowy układ pierwiastków 26 Okresowy układ pierwiastków Przyjmując procedurę Hartree ego otrzymujemy poziomy numerowane, jak w atomie wodoru, liczbami kwantowymi (n, l, m) z tym, że degeneracja ze względu na l na ogół już nie

Bardziej szczegółowo

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u]

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u] 1. Masa cząsteczkowa tlenku dwuwartościowego metalu wynosi 56 [u]. Masa atomowa tlenu wynosi 16 [u]. Ustal jaki to metal i podaj jego nazwę. Napisz wzór sumaryczny tego tlenku. 2. Ile razy masa atomowa

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW. Eliminacje szkolne I stopień

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW. Eliminacje szkolne I stopień POUFNE Pieczątka szkoły 9 listopada 2015 r. Imię Czas pracy 60 minut Nazwisko KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2015/2016 Eliminacje szkolne I stopień Informacje: 1. Przeczytaj uważnie

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany NaCoBeZU z chemii dla klasy 1 I. Substancje i ich przemiany 1. Pracownia chemiczna podstawowe szkło i sprzęt laboratoryjny. Przepisy BHP i regulamin pracowni chemicznej zaliczam chemię do nauk przyrodniczych

Bardziej szczegółowo

Wymagania przedmiotowe do podstawy programowej - chemia klasa 7

Wymagania przedmiotowe do podstawy programowej - chemia klasa 7 Wymagania przedmiotowe do podstawy programowej - chemia klasa 7 I. Substancje i ich właściwości opisuje cechy mieszanin jednorodnych i niejednorodnych, klasyfikuje pierwiastki na metale i niemetale, posługuje

Bardziej szczegółowo

Związki chemiczne, wiązania chemiczne, reakcje

Związki chemiczne, wiązania chemiczne, reakcje Związki chemiczne, wiązania chemiczne, reakcje Literatura: L. Jones, P. Atkins Chemia ogólna. Cząsteczki, materia, reakcje. Lesław Huppenthal, Alicja Kościelecka, Zbigniew Wojtczak Chemia ogólna i analityczna

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny chemia kl. I

Wymagania programowe na poszczególne oceny chemia kl. I I. Substancje i ich przemiany Wymagania programowe na poszczególne oceny chemia kl. I Ocena dopuszczająca [1] zalicza chemię do nauk przyrodniczych stosuje zasady bezpieczeństwa obowiązujące w pracowni

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

CHEMIA WARTA POZNANIA

CHEMIA WARTA POZNANIA Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Wydział Chemii UAM Poznań 2011 Część I Atom jest najmniejszą częścią pierwiastka chemicznego, która zachowuje jego właściwości chemiczne

Bardziej szczegółowo

Związki chemiczne, wiązania chemiczne, reakcje

Związki chemiczne, wiązania chemiczne, reakcje Związki chemiczne, wiązania chemiczne, reakcje Literatura: L. Jones, P. Atkins Chemia ogólna. Cząsteczki, materia, reakcje. Lesław Huppenthal, Alicja Kościelecka, Zbigniew Wojtczak Chemia ogólna i analityczna

Bardziej szczegółowo

Układ okresowy pierwiastków

Układ okresowy pierwiastków strona 1/8 Układ okresowy pierwiastków Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Teoria atomistyczno-cząsteczkowa, nieciągłość budowy materii. Układ okresowy pierwiastków

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany NaCoBeZU z chemii dla klasy 7 I. Substancje i ich przemiany 1. Zasady bezpiecznej pracy na lekcjach chemii zaliczam chemię do nauk przyrodniczych stosuję zasady bezpieczeństwa obowiązujące w pracowni chemicznej

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Budowa atomu Wiązania chemiczne

Budowa atomu Wiązania chemiczne strona 1/8 Budowa atomu Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu: jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWO WIELKOPOLSKIE Etap szkolny rok szkolny 2009/2010 Dane dotyczące ucznia (wypełnia Komisja Konkursowa po rozkodowaniu prac) wylosowany numer uczestnika

Bardziej szczegółowo

Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową

Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową Kryształy Atomy w krysztale ułożone są w pewien powtarzający się regularny wzór zwany siecią krystaliczną. Struktura kryształu NaCl Polikryształy

Bardziej szczegółowo

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony Materiał powtórzeniowy do sprawdzianów - konfiguracja elektronowa, elektrony walencyjne, współczesny układ pierwiastków chemicznych, przykładowe zadania z rozwiązaniami. I. Budowa atomu i model atomu wg.

Bardziej szczegółowo

Wybrane zadania z etapów szkolnych Konkursu Chemicznego wraz z rozwiązaniami do samokontroli

Wybrane zadania z etapów szkolnych Konkursu Chemicznego wraz z rozwiązaniami do samokontroli Wybrane zadania z etapów szkolnych Konkursu Chemicznego wraz z rozwiązaniami do samokontroli Zadanie IV [4 punkty] W wysokich temperaturach (1000-1100K) siarczan(vi) magnezu [MgSO 4 ] reaguje z węglem.

Bardziej szczegółowo

Instrukcja dla uczestnika. II etap Konkursu. U z u p e ł n i j s w o j e d a n e p r z e d r o z p o c z ę c i e m r o z w i ą z y w a n i a z a d a ń

Instrukcja dla uczestnika. II etap Konkursu. U z u p e ł n i j s w o j e d a n e p r z e d r o z p o c z ę c i e m r o z w i ą z y w a n i a z a d a ń III edycja rok szkolny 2017/2018 Uzupełnia Organizator Konkursu Instrukcja dla uczestnika II etap Konkursu Liczba uzyskanych punktów 1. Sprawdź, czy arkusz konkursowy, który otrzymałeś zawiera 12 stron.

Bardziej szczegółowo

UKŁAD OKRESOWY PIERWIASTKÓW

UKŁAD OKRESOWY PIERWIASTKÓW UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII

Bardziej szczegółowo

Zaliczenie przedmiotu: 17.12.2010 21.01.2011. - ocena pozytywna z ćwiczeń jest warunkiem koniecznym przystąpienia do egzaminu

Zaliczenie przedmiotu: 17.12.2010 21.01.2011. - ocena pozytywna z ćwiczeń jest warunkiem koniecznym przystąpienia do egzaminu 1. J. D. aserio, M.. Roberts EMIA RGANIZNA, PWN Warszawa, 1969 2. R. T.Morrison, R. N. Boyd EMIA RGANIZNA, PWN Warszawa, 1997 3. J. McMurry EMIA RGANIZNA, PWN Warszawa, 2002 4. R. M.Silverstein,. X. Webster,

Bardziej szczegółowo

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery.

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. Dział - Substancje i ich przemiany WYMAGANIA PODSTAWOWE stosuje zasady bezpieczeństwa

Bardziej szczegółowo

Układ okresowy pierwiastków chemicznych, budowa atomu. Na podstawie fragmentu układu okresowego pierwiastków odpowiedz na pytania:

Układ okresowy pierwiastków chemicznych, budowa atomu. Na podstawie fragmentu układu okresowego pierwiastków odpowiedz na pytania: Układ okresowy pierwiastków chemicznych, budowa atomu zestaw I Na podstawie fragmentu układu okresowego pierwiastków odpowiedz na pytania: Zad 1 (0-1pkt)Wskaż nazwę pierwiastka, który leży w drugiej grupie

Bardziej szczegółowo

Wykład z Chemii Ogólnej

Wykład z Chemii Ogólnej Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.3. WIĄZANIA CHEMICZNE i ODDZIAŁYWANIA Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny z chemii w kl.1. I. Substancje i ich przemiany

Wymagania programowe na poszczególne oceny z chemii w kl.1. I. Substancje i ich przemiany Wymagania programowe na poszczególne oceny z chemii w kl.1 I. Substancje i ich przemiany Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] zalicza chemię do nauk przyrodniczych wyjaśnia, dlaczego chemia

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany Wymagania edukacyjne na poszczególne oceny szkolne klasa 7 Niepełnosprawność intelektualna oraz obniżenie wymagań i dostosowanie ich do możliwości ucznia I. Substancje i ich przemiany stosuje zasady bezpieczeństwa

Bardziej szczegółowo

CZ STECZKA. Do opisu wi za chemicznych stosuje si najcz ciej jedn z dwóch metod (teorii): metoda wi za walencyjnych (VB)

CZ STECZKA. Do opisu wi za chemicznych stosuje si najcz ciej jedn z dwóch metod (teorii): metoda wi za walencyjnych (VB) CZ STECZKA Stanislao Cannizzaro (1826-1910) cz stki - elementy mikro wiata, termin obejmuj cy zarówno cz stki elementarne, jak i atomy, jony proste i zło one, cz steczki, rodniki, cz stki koloidowe; cz

Bardziej szczegółowo

Zad: 1 Spośród poniższych jonów wybierz te, które mają identyczną konfigurację elektronową:

Zad: 1 Spośród poniższych jonów wybierz te, które mają identyczną konfigurację elektronową: Zad: 1 Spośród poniższych jonów wybierz te, które mają identyczną konfigurację elektronową: Zad: 2 Zapis 1s 2 2s 2 2p 6 3s 2 3p 2 (K 2 L 8 M 4 ) przedstawia konfigurację elektronową atomu A. argonu. B.

Bardziej szczegółowo

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I...... Imię i nazwisko ucznia ilość pkt.... czas trwania: 90 min Nazwa szkoły... maksymalna ilość punk. 33 Imię

Bardziej szczegółowo