I PRACOWNIA FIZYCZNA, UMK TORUŃ

Wielkość: px
Rozpocząć pokaz od strony:

Download "I PRACOWNIA FIZYCZNA, UMK TORUŃ"

Transkrypt

1 I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska Rys.1. Fotografia aparatury pomiarowej. I. Cel ćwiczenia: wyznaczenie współczynnika załamania światła, zapoznanie się z zagadnieniami propagacji promieni świetlnych w pryzmacie. II. Zagadnienia do przygotowania: przedstawić prawo Snella, opisać zjawisko całkowitego wewnętrznego odbicia, wyjaśnić na czym polega zjawisko dyspersji i opisać załamanie światła białego na granicy dwóch ośrodków o różnym współczynniku załamania (np. powietrze i szkło), opisać bieg promienia świetlnego w pryzmacie w przypadku światła monochromatycznego, studenci WFAiIS - odpowiedzieć na pytania: Strona 1 z 7

2 a) jaki musi być kąt łamiący φ pryzmatu równoramiennego (rys.2.), aby doszło do całkowitego wewnętrznego odbicia promienia propagującego się w pryzmacie równolegle do jego podstawy? b) jaki jest wówczas kąt α 1 padania wiązki na pryzmat? c) jeśli α 1 ulegnie zmniejszeniu, to jak będzie się propagować wiązka w pryzmacie? (zadanie rozwiązać dla przykładu pryzmatu wykonanego ze szkła o współczynniku załamania n=1,5, w przypadku gdy pryzmat jest umieszczony w powietrzu), III. Rys.2. Ilustracja do zadania na kąt łamiący pryzmatu. opisać bieg promieni świetlnych w pryzmacie w przypadku, gdy na pryzmat pada skolimowana wiązka światła białego (przedstawić bieg promienia czerwonego i niebieskiego), wyprowadzić wzór na współczynnik załamania szkła n, z którego wykonano pryzmat, tzn. wzór:, (1) gdzie jest kątem łamiącym pryzmatu, a δ min jest kątem najmniejszego odchylenia wiązki przez pryzmat, opisać rodzaje i zastosowania pryzmatów. Przyrządy pomiarowe. Pomiar kąta łamiącego pryzmatu oraz kąta najmniejszego odchylenia wykonuje się za pomocą goniometru (rys.1.) zbudowanego z kolimatora (K), lunety (L), tarczy kołowej (T) ze skalą, stolika (S) umieszczonego nad tarczą kołową (rys.3.). Strona 2 z 7

3 Rys.3. Schemat goniometru. Oznaczenia: K-kolimator, L-luneta, N - połączony z lunetą suwak z noniuszem, T -tarcza kołowa ze skalą kątową, S-stolik. Przed kolimatorem umieszczona jest lampa sodowa, która emituje światło o żółtej barwie (w widmie emisji sodu występują linie odpowiadające długości fali 589,6 nm i 589 nm, znane jako żółty dublet sodu ). Kolimator zaopatrzony jest w szczelinę, która nadaje światłu wchodzącemu do kolimatora kształt pionowego prążka. Kolimator zbudowany jest z metalowego tubusu, wewnątrz którego znajdują się soczewki. Soczewki rozmieszczone są tak, że przekształcają rozbieżną wiązkę światła wychodzącą ze szczeliny w wiązkę równoległą. Do obserwacji szczeliny używa się lunety ze znacznikiem (pionowa kreska). Lunetę można obracać wokół osi obrotu pokrywającej się ze środkiem tarczy kołowej. Tarcza kołowa posiada na obwodzie podziałkę kątową (tzw. limbus). Po tarczy przesuwa się suwak z noniuszem połączonym na stałe z lunetą. Nad tarczą umieszczony jest obrotowy stolik, na którym umieszcza się badane pryzmaty. IV. Wykonanie ćwiczenia 1. Wyregulować goniometr. a. Skierować lunetę na odległy przedmiot i ustawić okular na ostry obraz tego obiektu poprzez wsuwanie okularu (część lunety najbliżej oka) głębiej do tubusu lub jego wysuwanie. Upewnić się, że znacznik jest skierowany pionowo. b. Ustawić źródło światła przed kolimatorem i ustawić szczelinę kolimatora na szerokość 0,5mm (Uwaga! Jeśli szczelina nie zawiera pokrętła, to jej szerokość została już odpowiednio wyregulowana i nie potrzeba wykonywać tej czynności). c. Obrócić lunetę tak, aby móc przez nią obserwować obraz szczeliny kolimatora. d. Wyregulować kolimator tak, aby uzyskać w lunecie ostry obraz szczeliny. Wykonuje się tę czynność poprzez wsuwanie do tubusu kolimatora jego części znajdującej się bezpośrednio za źródłem światła lub jej wysuwanie. Szczelina Strona 3 z 7

4 powinna być ustawiona pionowo. Uwaga! Podczas regulowania kolimatora nie należy zmieniać ustawienia okularu lunety! 2. Ustawić pryzmat na stoliku tak, aby krawędź dwusiecznej kąta łamiącego pryzmatu dzieliła wiązkę światła wychodzącego z kolimatora (rys.4.). Rys.4. Ilustracja wykonania pomiaru kąta łamiącego pryzmatu. 3. Ustawić lunetę na tak, aby zaobserwować w niej wiązkę światła odbitego od jednej ze ścian pryzmatu (rys.4a). Środek obrazu szczeliny musi pokrywać się ze środkiem znacznika. Odczytać na skali położenie lunety 1. Uwaga! Odczytu dokonać z wykorzystaniem noniusza. Określić dokładność przyrządu Δα. Wykonać 5 pomiarów kąta 1. Pomiary powinny być przeprowadzane naprzemiennie przez osoby wykonujące ćwiczenie. 4. Obrócić lunetę tak, aby zaobserwować wiązkę światła odbitą od drugiej ściany pryzmatu (rys.4b). Środek znacznika musi pokrywać się ze środkiem obrazu szczeliny. Odczytać na skali położenie lunety 2. Wykonać 5 pomiarów kąta 2. Pomiary powinny być wykonywane naprzemiennie przez osoby wykonujące doświadczenie. 5. Zmieniając kąt padania wiązki światła na jedną ze ścian pryzmatu znaleźć kąt najmniejszego odchylenia (rys.5a.). Zadanie to wykonuje się obracając stolikiem S, przy jednoczesnym manipulowaniu położeniem lunety tak, aby w lunecie zawsze obserwować obraz szczeliny. Poruszaniu stolika towarzyszy przesuwanie obrazu szczeliny w kierunku osi kolimatora. W pewnym położeniu stolika prążek zatrzymuje się i przy dalszym obrocie stolika w tym samym kierunku zaczyna wracać. Położenie zatrzymania prążka odpowiada minimalnemu kątowi odchylenia wiązki. Odczytać położenie lunety δ 1 odpowiadające pozycji zatrzymania prążka. Wykonać 5 pomiarów kąta δ 1. Pomiary powinny być wykonywane naprzemiennie przez osoby wykonujące doświadczenie. Należy używać noniusza! Strona 4 z 7

5 Rys.5. Ilustracja wykonania pomiaru kąta najmniejszego odchylenia wiązki w pryzmacie. Pogrubiona linia oznacza podstawę pryzmatu, czyli ścianę przeciwległą do kąta łamiącego. 6. Obrócić stolik z pryzmatem tak, aby wiązka światła padała na drugą ścianę pryzmatu (rys.5b.). 7. Zmieniając kąt padania wiązki na drugą powierzchnię łamiącą pryzmatu (drugą ścianę) znaleźć kąt najmniejszego odchylenia. Zadanie wykonuje się podobnie jak w punkcie 5, z tą różnicą, że kąt obrotu stolika (orientacja podstawy pryzmatu) oraz pozycja lunety zmienią się symetrycznie względem osi kolimatora. Wykonać 5 pomiarów kąta δ 2 dla którego prążek zatrzymuje się. Pomiary powinny być wykonywane naprzemiennie przez osoby wykonujące doświadczenie. 8. Podobne pomiary wykonać dla pryzmatów 2 i 3 (tzn. powtórzyć procedurę pomiarową od punktu 2 do 7 dla pryzmatu 2 i 3). Wyniki pomiarów należy zebrać w odpowiednio zaprojektowanej tabeli. Strona 5 z 7

6 Tabela 1. Wyniki pomiarów kątów odbicia oraz najmniejszego odchylenia wiązki światła w pryzmacie. L.p (I) Pryzmat I Pryzmat II Pryzmat III (I) δ 1 (I) δ 2 (II) δ 1 (II) δ 2 (III) δ 1 2 (I) 1 (II) 2 (II) V. Opracowanie wyników pomiarów. 1. Obliczyć wartości średnie kątów:,,,. 1 (III) 2 (III) δ 2 (III) 2. Obliczyć średnie odchylenia standardowe wartości średnich wyznaczonych kątów:,,,. Studenci WFAiIS wyznaczyć maksymalne niepewności pomiarowe:,,,. Pozostali studenci porównać wyliczone średnie odchylenia standardowe z dokładnością przyrządu pomiarowego i przyjąć jako niepewność pomiarową poszczególnych średnich (,,, ) większą z tych dwóch wartości. 3. Obliczyć wartość średnią kąta łamiącego pryzmatu:. 4. Metodą różniczki zupełnej obliczyć niepewność wyznaczenia wartości : 5. Obliczyć wartość średnią kąta najmniejszego odchylenia wiązki światła w pryzmacie:. 6. Metodą różniczki zupełnej obliczyć niepewność wyznaczenia wartości : 7. Obliczyć wartość średnią współczynnika załamania szkła, z którego wykonano pryzmaty:. 8. Metodą różniczki zupełnej obliczyć niepewność wyznaczenia wartości średniej współczynnika załamania:... Strona 6 z 7

7 ,. UWAGA!!! NIEPEWNOŚCI POMIARÓW KĄTÓW I NALEŻY WYRAZIĆ W MIERZE ŁUKOWEJ (W RADIANACH) I W TAKIEJ POSTACI PODSTAWIAĆ DO WZORU NA NIEPEWNOŚĆ POMIAROWĄ Δn. VI. Wnioski. Ocenić wiarygodność uzyskanych wyników pomiarów: czy uzyskane wartości średnie są zbliżone do danych literaturowych zawierających współczynniki załamania szkła (dla odpowiedniej długości fali!), czy niepewności pomiarowe są rozsądne (zbyt duże/zbyt małe co może być przyczyną). Studenci WFAiIS - skomentować wyniki uzyskane podczas badania pryzmatu o kącie łamiącym wynoszącym 90. VII. Literatura. J. Nowak, M. Zając, Optyka, kurs elementarny, F. Ratajczyk, Instrumenty optyczne, R. Resnick, D. Halliday, Fizyka, R. Resnick, D. Haliday, J. Walker, Podstawy fizyki, T. Dryński, Ćwiczenia laboratoryjne z fizyki, H. Szydłowski, Pracownia fizyczna, A. Zawadzki, H. Hofmokl, Laboratorium fizyczne. Strona 7 z 7

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA. Cel ćwiczenia

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Ć W I C Z E N I E N R O-1

Ć W I C Z E N I E N R O-1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O- WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ SPEKTROMETRU

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru

9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru II Pracownia Fizyczna 9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampa spektralna rtęciowa z zasilaczem 3. Pryzmaty szklane,

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa im. Prezydenta Stanisława Wojciechowskiego w Kaliszu

Państwowa Wyższa Szkoła Zawodowa im. Prezydenta Stanisława Wojciechowskiego w Kaliszu Państwowa Wyższa Szkoła Zawodowa im. Prezydenta Stanisława Wojciechowskiego w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 10 Wyznaczanie współczynnika załamania światła metodą najmniejszego odchylenia

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

S P E K T R O S K O P S Z K O L N Y P R Y Z M A T Y C ZN Y 1

S P E K T R O S K O P S Z K O L N Y P R Y Z M A T Y C ZN Y 1 Przeznaczenie S P E K T R O S K O P S Z K O L N Y P R Y Z M A T Y C ZN Y 1 Spektroskop szkolny służy do demonstracji i doświadczeń przy nauczaniu fizyki, zarówno w gimnazjach jak i liceach. Przy pomocy

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS037; KN037; LS037; LN037 Ćwiczenie Nr Wyznaczanie współczynnika załamania

Bardziej szczegółowo

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera. MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 6 Temat: WYZNACZANIE DYSPERSJI OPTYCZNEJ PRYZMATU METODĄ POMIARU KĄTA NAJMNIEJSZEGO ODCHYLENIA Warszawa 009 WYZNACZANIE DYSPERSJI OPTYCZNEJ

Bardziej szczegółowo

Analiza widmowa spektralnych lamp gazowych przy użyciu spektrogoniometru.

Analiza widmowa spektralnych lamp gazowych przy użyciu spektrogoniometru. Analiza widmowa spektralnych lamp gazowych przy użyciu spektrogoniometru. Cel ćwiczenia: Część I. 1. Wyznaczenie współczynnika załamania światła. 2. Wyznaczenie stałej siatki dyfrakcyjnej. Część II. 1.

Bardziej szczegółowo

Wyznaczanie dyspersji optycznej pryzmatu metodą kąta najmniejszego odchylenia.

Wyznaczanie dyspersji optycznej pryzmatu metodą kąta najmniejszego odchylenia. Wydział Fizyki Nazwisko i Imię. Janik Małgorzata. Janeczko Mariusz Poniedziałek 4 00 7 00 kwietnia 007 Ocena z przygotowania Ocena ze sprawozdania Nr zespołu 0 Ocena końcowa Prowadzący: Ryszard Siegoczyński

Bardziej szczegółowo

Pomiar współczynnika załamania światła OG 1

Pomiar współczynnika załamania światła OG 1 I. Cel ćwiczenia: Pomiar współczynnika załamania światła OG 1 1. Zapoznanie się z budową i zasadą działania goniometru. 2. Poznanie metody pomiaru kątów pryzmatu 3. Poznanie metody pomiaru współczynników

Bardziej szczegółowo

POMIARY OPTYCZNE Współczynnik załamania #1. Damian Siedlecki

POMIARY OPTYCZNE Współczynnik załamania #1. Damian Siedlecki POMIARY OPTYCZNE 1 { 6. Współczynnik załamania #1 Damian Siedlecki Przypomnienie: Współczynnik załamania ośrodka opisuje zmianę prędkości fali w ośrodku: n c v = εμ c prędkość światła w próżni; v prędkość

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru

Bardziej szczegółowo

Ć W I C Z E N I E N R O-6

Ć W I C Z E N I E N R O-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

O3. BADANIE WIDM ATOMOWYCH

O3. BADANIE WIDM ATOMOWYCH O3. BADANIE WIDM ATOMOWYCH tekst opracowała: Bożena Janowska-Dmoch Większość źródeł światła emituje promieniowanie elektromagnetyczne złożone z wymieszanych ze sobą fal o wielu częstotliwościach (długościach).

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 8 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ. Wykaz przyrządów Transmisyjne siatki dyfrakcyjne (S) : typ A -0 linii na milimetr oraz typ B ; Laser lub inne źródło światła

Bardziej szczegółowo

ĆWICZENIE 44 BADANIE DYSPERSJI. I. Wprowadzenie teoretyczne.

ĆWICZENIE 44 BADANIE DYSPERSJI. I. Wprowadzenie teoretyczne. ĆWICZENIE 44 BADANIE DYSPERSJI I. Wprowadzenie teoretyczne. Światło białe przechodząc przez ośrodek o współczynniku załamania n> na granicy ośrodka optycznie rzadszego i gęstszego ulega załamaniu. Jeżeli

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

POMIARY OPTYCZNE Pomiary kątów (klinów, pryzmatów) Damian Siedlecki

POMIARY OPTYCZNE Pomiary kątów (klinów, pryzmatów) Damian Siedlecki POMIARY OPTYCZNE 1 { 10. (klinów, pryzmatów) Damian Siedlecki 1) Metoda autokolimacyjna i 2φn a = 2φnf ob φ = a 2nf ob Pomiary płytek płasko-równoległych 2) Metody interferencyjne (prążki równej grubości)

Bardziej szczegółowo

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej metodą pierścieni Newtona

Wyznaczanie długości fali świetlnej metodą pierścieni Newtona Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 26 V 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczanie długości fali świetlnej metodą pierścieni Newtona

Bardziej szczegółowo

4.11 Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego (O10)

4.11 Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego (O10) Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego (O10) 4.11 Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego (O10) Celem ćwiczenia jest poznanie zasady działania spektroskopu

Bardziej szczegółowo

4.11 Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego(o10)

4.11 Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego(o10) Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego(o10) 225 4.11 Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego(o10) Celem ćwiczenia jest poznanie zasady działania spektroskopu

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

Pracownia Fizyczna ćwiczenie PF-10: Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego

Pracownia Fizyczna ćwiczenie PF-10: Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego Pracownia Fizyczna ćwiczenie PF-10: Badanie widm emisyjnych za pomocą spektroskopu pryzmatycznego Instytut Fizyki im. Mariana Smoluchowskiego Uniwersytet Jagielloński 1 Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

TARCZA KOLBEGO V 7-22

TARCZA KOLBEGO V 7-22 TARCZA KOLBEGO V 7-22 Przyrząd służy do zasadniczych pokazów z optyki geometrycznej, dotyczących odbicia i załamania światła. Ma on budowę wskazaną na rys. 1. Rys. 1. Na trójnożnej podstawie (1) jest umocowany

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

Człowiek najlepsza inwestycja

Człowiek najlepsza inwestycja Ćwiczenie: U.11 Tytuł ćwiczenia: Pierścienie Newtona Cel ćwiczenia: 1. Praktyczne zapoznanie się ze zjawiskiem interferencji światła. 2. Zapoznanie się z powstawaniem pierścieni Newtona w świetle przechodzącym

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza

ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza ĆWICZENIE 72A ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE 1. Wykaz przyrządów Spektroskop Lampy spektralne Spektrofotometr SPEKOL Filtry optyczne Suwmiarka Instrukcja wykonawcza 2. Cel ćwiczenia

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 6 Wyznaczanie ogniskowych soczewek ze wzoru soczewkowego i metodą Bessela Kalisz, luty 2005 r. Opracował: Ryszard

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BADANIE MIKROFAL opracowanie: Marcin Dębski, I. Gorczyńska

PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BADANIE MIKROFAL opracowanie: Marcin Dębski, I. Gorczyńska PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BAANIE MIKROFAL opracowanie: Marcin ębski, I. Gorczyńska 1. Przediot zadania: fale elektroagnetyczne. 2. Cel zadania: badanie praw rządzących propagacją fali

Bardziej szczegółowo

Pracownia fizyczna dla szkół

Pracownia fizyczna dla szkół Imię i Nazwisko Widma świecenia pierwiastków opracowanie: Zofia Piłat Cel doświadczenia Celem doświadczenia jest zaobserwowanie widm świecących gazów atomowych i zidentyfikowanie do jakich pierwiastków

Bardziej szczegółowo

Wyznaczanie wartości współczynnika załamania

Wyznaczanie wartości współczynnika załamania Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania

Bardziej szczegółowo

f = -50 cm ma zdolność skupiającą

f = -50 cm ma zdolność skupiającą 19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

Temat: Pomiar współczynnika załamania światła w gazie za pomocą interferometru Michelsona

Temat: Pomiar współczynnika załamania światła w gazie za pomocą interferometru Michelsona Ćwiczenie Nr 450. Temat: Pomiar współczynnika załamania światła w gazie za pomocą interferometru Michelsona 1.iteratura: a) D. Halliday, R. Resnick, J. Walker, Podstawy fizyki 4, PWN, W-wa b) I. W. Sawieliew

Bardziej szczegółowo

Ć W I C Z E N I E N R O-4

Ć W I C Z E N I E N R O-4 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Materiałoznawstwo optyczne SZKŁO. (pomiar własnow. NORMY BRANŻOWE Henc T., Pomiary optyczne, WNT Warszawa, 1964

Materiałoznawstwo optyczne SZKŁO. (pomiar własnow. NORMY BRANŻOWE Henc T., Pomiary optyczne, WNT Warszawa, 1964 Materiałoznawstwo optyczne SZKŁO (pomiar własnow asności i jakości szkła) NORMY BRANŻOWE Henc T., Pomiary optyczne, WNT Warszawa, 1964 Badania Opis badań: sprawdzenie wymiarów sprawdzenie współczynnika

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

rys. 1. Rozszczepienie światła białego w pryzmacie

rys. 1. Rozszczepienie światła białego w pryzmacie Badanie widm emisyjnych za pomocą spektroskopu autor: dr Krzysztof Gębura Cel: wyznaczenie krzywej dyspersji spektrometru, stałej Rydberga dla atomu wodoru. Przyrządy: spektroskop pryzmatyczny, rurki widmowe

Bardziej szczegółowo

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 4 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA 1. Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem pierwszej

Bardziej szczegółowo

OPTYKA W INSTRUMENTACH GEODEZYJNYCH

OPTYKA W INSTRUMENTACH GEODEZYJNYCH OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.

Bardziej szczegółowo

Ć W I C Z E N I E N R O-8

Ć W I C Z E N I E N R O-8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-8 BADANIE WIDM OPTYCZNYCH PRZY POMOCY SPEKTROMETRU I. Zagadnienia

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

WYZNACZANIE KĄTA BREWSTERA 72

WYZNACZANIE KĄTA BREWSTERA 72 WYZNACZANIE KĄTA BREWSTERA 72 I. ZAGADNIENIA TEORETYCZNE Polaryzacja światła. Zjawisko polaryzacji światła przy odbiciu od powierzchni dielektrycznej kąt Brewstera. Prawa odbicia i załamania światła na

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS FENIKS - długoalowy program odbudowy, popularyzacji i wsagania izyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i inormatycznych uczniów Pracownia Fizyczna

Bardziej szczegółowo

INSTRUKCJA. Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk

INSTRUKCJA. Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk INSTRUKCJA Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk Analiza gazów analizatorami fizycznymi. Interferometr. Strona 2 1. WSTĘP Sposób badania gazów i

Bardziej szczegółowo

Ć W I C Z E N I E N R O-3

Ć W I C Z E N I E N R O-3 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów

Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów 16 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów Wprowadzenie Mikroskop jest przyrządem optycznym dającym znaczne powiększenia małych przedmiotów

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej.

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. STOLIK OPTYCZNY V 7-19 Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. Na drewnianej podstawie (1) jest umieszczona mała Ŝaróweczka (2) 3,5 V, 0,2 A, którą moŝna

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Centrum Inżynierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczenie 1 y z zastosowaniem przyrządów z noniuszem Szczecin, 2010 Zespół wykonawczy: Dr inż. Paweł Zalewski str.

Bardziej szczegółowo

SPEKTOMETR SZKOLNY V 7-33

SPEKTOMETR SZKOLNY V 7-33 SPEKTOMETR SZKOLNY V 7-33 1. Przeznaczenie przyrządu Spektrometr szkolny ma zastosowanie w klasie III gimnazjum i liceum ogólnokształcącego przy realizacji programu fizyki dział Optyka. Spektrometr ten

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

POMIARY OPTYCZNE Pomiary ogniskowych. Damian Siedlecki

POMIARY OPTYCZNE Pomiary ogniskowych. Damian Siedlecki POMIARY OPTYCZNE 1 { 11. Damian Siedlecki POMIARY OPTYCZNE 1 { 3. Proste przyrządy optyczne Damian Siedlecki POMIARY OPTYCZNE 1 { 4. Oko Damian Siedlecki POMIARY OPTYCZNE 1 { 5. Lunety. Mikroskopy. Inne

Bardziej szczegółowo