Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji"

Transkrypt

1 Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji Marek A. Kowalski Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych

2 Paradygmat

3 Główny przedmiot wykładu: <

4 = dy.

5

6 ( * ) * *

7

8 -

9

10

11 W badaniach istotną rolę odgrywają średnice aproksymacyjne (liniowe średnice Kołmogorowa A, średnice Gelfanda C, średnice Kołmogorowa d)..

12 T, T.

13

14 ρ ρ ρ ρ

15

16 Ciekawostka: a,τ>0 n ε loglog 1/ε lim ε 0 + log 1/ε = 1. n ε log 1/ε loglog 1/ε

17 Cel: na podstawie,, Błąd algorytmu φ: e φ, γ, δ = sup y N f, f J(a,τ,1) Promień informacji: r γ, δ = inf φ e φ, γ, δ. f φ( y).

18 Algorytm optymalny dla γ = δ = 0:

19 ,

20 , Jeżeli to.

21 Informacja całkowa:. Jeśli γ = δ = 0, to algorytm optymalny jest dany równaniem.

22 Jeśli c = aτ 2, to dla nieujemnych, dostatecznie małych wartości γ, δ mamy. Jeśli to B B a.

23 ,.

24 ,,,.

25 Czołowe funkcje kuliste można też wykorzystać do wielokanałowej transmisji cyfrowej charakteryzującej się nadzwyczajną odpornością na zakłócenia. Ilustracją niech będzie krótki pokaz.

26 Band-limited HD transmission through low quality media (Bob Johnson, Marek Kowalski, Kris Sikorski)

27

28 Wybrane pozycje książkowe dotyczące analitycznej złożoności obliczeniowej: Traub, J. F., Iterative Methods for the Solution of Equations, Prentice Hall, Reissued Chelsea Publishing Company, 1982; Russian translation MIR, 1985; Reissued American Mathematical Society, 1998 Traub, J. F., and Woźniakowski, H., A General Theory of Optimal Algorithms, Academic Press, New York, 1980 Traub, J. F., Woźniakowski, H., and Wasilkowski, G. W., Information, Uncertainty, Complexity, Addison- Wesley, New York, 1983 Novak, E., Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Nots in Mathematics, vol. 1349, Springer-Verlag, New York, 1988 Traub, J. F., Woźniakowski, H., and Wasilkowski, G. W., Information-Based Complexity. Academic Press, New York, 1988 Werschulz, A. G., The Computational Complexity of Differential and Integral Equations: An Information- Based Approach, Oxford University Press, New York, 1991 Kowalski, M., Sikorski, K., and Stenger, F., Selected Topics in Approximation and Computation, Oxford University Press, Oxford, UK, 1995 Plaskota, L., Noisy Information and Computational Complexity, Cambridge University Press, Cambridge, UK, 1996 Traub, J. F., and Werschulz, A. G., Complexity and Information, Oxford University Press, Oxford, UK, 1998 Ritter, K., Average-Case Analysis of Numerical Problems, Springer-Verlag, New York, 2000 Sikorski, K., Optimal Solution of Nonlinear Equations, Oxford University Press, Oxford, UK, 2001.

29 Wybrane artykuły dotyczące tematyki wykładu: Kowalski M., Wershulz A., Woźniakowski H., Is Gauss quadrature optimal for analytic functions?, Num. Math. 47 (1985) Kowalski M., Optimal complexity recovery of band- and energy-limited signals, J. Complexity 2 (1986) Kowalski M., Sielski W., Approximation of smooth periodic functions in several variables, J. Complexity 4 (1988) Kowalski M., Stenger F., Optimal complexity recovery of band- and energy-limited signals. II, J. Complexity 5 (1989) Ikebe Y., Kowalski M., Stenger F., Rational approximation of the step, filter and impulse functions, Lecture Notes in Pure and Applied Mathematics 124 (1990) Kacewicz B. Z., Kowalski M., Recovering signals from inaccurate data, Proc SPIE 1610 (1992) Kacewicz B. Z., Kowalski M., Approximating linear functionals on unitary spaces in the presence of bounded data errors with application to signal recovery, Int. J. Adaptive Control and Signal Processing 9 (1995) Kacewicz B. Z., Kowalski M., Recovering linear operators from inaccurate data, J. Complexity 11 (1995) Dąbrowska D., Kowalski M., Approximating band- and energy-limited signals in the presence of jitter, J. Complexity 14 (1998)

30 Kowalski M., Sensitivity of best recovery in the Sobolev spaces for perturbed sampling, Numerical Algorithms 23 (2000) Kowalski M., Odtwarzanie wielowymiarowych sygnałów analogowych o ograniczonym paśmie i ograniczonej energii, ISBN , Wydawnictwo UKSW (2001) Kowalski M., Obliczanie i reprezentacja czołowych funkcji kulistych, Rocznik Naukowy Wydziału Zarządzania w Ciechanowie, zeszyt 1-2, tom II (2008)

31 Dziękuję za uwagę!

Jednostajna słaba podatność zadań wielowymiarowych

Jednostajna słaba podatność zadań wielowymiarowych Jednostajna słaba podatność zadań wielowymiarowych (Uniform Weak Tractability of Multivariate Problems) Autoreferat rozprawy doktorskiej Paweł Siedlecki Wydział Matematyki, Informatyki i Mechaniki Uniwersytet

Bardziej szczegółowo

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r. Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia

Bardziej szczegółowo

Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016

Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr IV - letni (I rok) Prowadzący Przedmiot

Bardziej szczegółowo

Semestr 1 suma pkt ECTS dla wszystkich kursów w semestrze: 30

Semestr 1 suma pkt ECTS dla wszystkich kursów w semestrze: 30 1. Zestaw kursów i grup kursów obowiązkowych i wybieralnych w układzie semestralnym Załącznik nr3 Semestr 1 suma pkt dla wszystkich kursów w semestrze: 30 Kursy obowiązkowe suma pkt : 30 Lp Kod kursu pkt

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Analiza sygnałów Nazwa w języku angielskim Signal analysis Kierunek studiów (jeśli dotyczy): Matematyka stosowana

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA STOSOWANA II 2. Kod przedmiotu: Ma2 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie informatyki

Bardziej szczegółowo

O problemie sterowania aproksymacyjnego dla semiliniowych inkluzji różniczkowych w przestrzeniach Hilberta

O problemie sterowania aproksymacyjnego dla semiliniowych inkluzji różniczkowych w przestrzeniach Hilberta O problemie sterowania aproksymacyjnego dla semiliniowych inkluzji różniczkowych w przestrzeniach Hilberta Krzysztof RYKACZEWSKI Uniwersytet Mikołaja Kopernika w Toruniu SNA 2011 Toruń, 10 września 2011

Bardziej szczegółowo

Wykład Ćwiczenia Laborat orium. Zaliczenie na ocenę. egzamin

Wykład Ćwiczenia Laborat orium. Zaliczenie na ocenę. egzamin Wydział Elektroniki PWr KARTA PRZEDMIOTU Nazwa w języku polskim: Metody matematyczne automatyki i robotyki Nazwa w języku angielskim: Mathematical methods of automation and robotics Kierunek studiów: Automatyka

Bardziej szczegółowo

Metody inwersji Bayesowskiej - zaczynamy...

Metody inwersji Bayesowskiej - zaczynamy... Metody inwersji Bayesowskiej - zaczynamy... W. D ebski debski@igf.edu.pl www.igf.edu.pl/ debski/ Plan wykładu Literatura i materiały pomocnicze Wprowadzenie Zagadnienia modelowania Zagadnienia odwrotne

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Piotr FRĄCZAK* SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

Życiorys. Wojciech Paszke. 04/2005 Doktor nauk technicznych w dyscyplinie Informatyka. Promotor: Prof. Krzysztof Ga lkowski

Życiorys. Wojciech Paszke. 04/2005 Doktor nauk technicznych w dyscyplinie Informatyka. Promotor: Prof. Krzysztof Ga lkowski Życiorys Wojciech Paszke Dane Osobowe Data urodzin: 20 luty, 1975 Miejsce urodzin: Zielona Góra Stan Cywilny: Kawaler Obywatelstwo: Polskie Adres domowy pl. Cmentarny 1 67-124 Nowe Miasteczko Polska Telefon:

Bardziej szczegółowo

Prof. dr hab. Henryk Woźniakowski. Słowo Laureata. Magnificencjo, Wysoki Senacie, Szanowny Panie Promotorze, Szanowni i Drodzy Państwo!

Prof. dr hab. Henryk Woźniakowski. Słowo Laureata. Magnificencjo, Wysoki Senacie, Szanowny Panie Promotorze, Szanowni i Drodzy Państwo! Prof. dr hab. Henryk Woźniakowski Słowo Laureata Magnificencjo, Wysoki Senacie, Szanowny Panie Promotorze, Szanowni i Drodzy Państwo! Chciałbym zacząć swoje wystąpienie od słów serdecznego podziękowania

Bardziej szczegółowo

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania

Bardziej szczegółowo

Uniwersytet Rzeszowski

Uniwersytet Rzeszowski Seminarium z Równań Różniczkowych 21 marca 2017 r., godz. 12:15, sala 270 (B2): mgr Grzegorz Głowa, mgr Jarosław Napora, wykorzystaniem języka R, cz.2 Analizy statystyczne z 7 marca 2017 r., godz. 12:15,

Bardziej szczegółowo

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2015/16 semestr letni

Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2015/16 semestr letni Studia licencjackie I ROK: Analiza Matematyczna 2 wykład prof. dr hab. Marek Jarnicki poniedziałki 8-10 0004 Analiza Matematyczna 2 ćw gr 1 dr Katarzyna Grygiel czwartki 8 10 0086 Analiza Matematyczna

Bardziej szczegółowo

KARTA KURSU. Podstawy modelowania i symulacji

KARTA KURSU. Podstawy modelowania i symulacji KARTA KURSU Nazwa Nazwa w j. ang. Podstawy modelowania i symulacji Foundations of modeling and simulation Kod Punktacja ECTS* 3 Koordynator prof. dr hab. Władimir Mitiuszew Zespół dydaktyczny: prof. dr

Bardziej szczegółowo

Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu

Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Przetwarzanie sygnałów z zastosowaniem procesorów sygnałowych Kod przedmiotu 06.5-WE-EP-PSzZPS

Bardziej szczegółowo

SEMINARIA DYPLOMOWE DLA KIERUNKU

SEMINARIA DYPLOMOWE DLA KIERUNKU SEMINARIA DYPLOMOWE DLA KIERUNKU M A T E M A T Y K A UWAGA: Wybieramy dwa seminaria dyplomowe (w planie semestru II na studiach drugiego stopnia znajduje się seminarium 1A oraz seminarium 1B). Jedno z

Bardziej szczegółowo

Estymacja parametrów Wybrane zagadnienia implementacji i wykorzystania

Estymacja parametrów Wybrane zagadnienia implementacji i wykorzystania Estymacja parametrów Wybrane zagadnienia implementacji i wykorzystania Wykład w ramach przedmiotu Komputerowe systemy sterowania i wspomagania decyzji Plan wykładu Potrzeba estymacji parametrów Estymacja

Bardziej szczegółowo

Wykład wprowadzający

Wykład wprowadzający Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Wykład wprowadzający dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl

Bardziej szczegółowo

AKADEMIA TECHNICZNO-ROLNICZA IM. JANA I JĘDRZEJA ŚNIADECKICH W BYDGOSZCZY ZESZYTY NAUKOWE NR 11 (2008) nr str

AKADEMIA TECHNICZNO-ROLNICZA IM. JANA I JĘDRZEJA ŚNIADECKICH W BYDGOSZCZY ZESZYTY NAUKOWE NR 11 (2008) nr str AKADEMIA TECHICZO-ROLICZA IM. JAA I JĘDRZEJA ŚIADECKICH W BYDGOSZCZY ZESZYTY AUKOWE R (28) nr str. 65 78 OPIS LIIOWYCH UKŁADÓW I SYSTEMÓW CYFROWYCH ZA POMOCĄ SUMY SPLOTOWEJ A WŁASOŚĆ ZAIKAJĄCEJ PAMIĘCI

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH

Bardziej szczegółowo

Optymalizacja parametryczna regulatora niecałkowitego rzędu typu PD a

Optymalizacja parametryczna regulatora niecałkowitego rzędu typu PD a Pomiary Automatyka Robotyka, R. 19, Nr 4/2015, 5 14, DOI: 10.14313/PAR_218/5 Optymalizacja parametryczna regulatora niecałkowitego rzędu typu PD a Marta Zagórowska AGH Akademia Górniczo-Hutnicza im. Stanisława

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim PODSTAWY TEORII INFORMACJI Nazwa w języku angielskim Introduction to Information Theory Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Teoria sygnałów. Signal Theory. Electrical Engineering 1 st degree (1st degree / 2nd degree) General (general / practical)

Teoria sygnałów. Signal Theory. Electrical Engineering 1 st degree (1st degree / 2nd degree) General (general / practical) MODULE DESCRIPTION Module code Module name Teoria sygnałów Module name in English Signal Theory Valid from academic year 01/013 MODULE PLACEMENT IN THE SYLLABUS Subject Level of education Studies profile

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

O testach wielowymiarowej normalności opartych na statystyce Shapiro-Wilka

O testach wielowymiarowej normalności opartych na statystyce Shapiro-Wilka O testach wielowymiarowej normalności opartych na statystyce Shapiro-Wilka Katedra Zastosowań Matematyki i Informatyki Uniwersytet Przyrodniczy w Lublinie Wisła 2012, 7.12.2012 Plan prezentacji 1 Wprowadzenie

Bardziej szczegółowo

Instytut W5/I-7 Zestawienie Kart przedmiotów Wrocław, 2012-11-17

Instytut W5/I-7 Zestawienie Kart przedmiotów Wrocław, 2012-11-17 ARR021302 Obwody elektryczne Electric circuits ELR021306 energii Renewable Energy Sources ELR021312 Fotowoltaika stosowana Applied photovoltaics ELR021315 Ogniwa fotowoltaiczne Photovoltaic Cells.. Odnawialne

Bardziej szczegółowo

Planowanie przejazdu przez zbiór punktów. zadania zrobotyzowanej inspekcji

Planowanie przejazdu przez zbiór punktów. zadania zrobotyzowanej inspekcji dla zadania zrobotyzowanej inspekcji Katedra Sterowania i Inżynierii Systemów, Politechnika Poznańska 3 lipca 2014 Plan prezentacji 1 Wprowadzenie 2 3 4 Postawienie problemu Założenia: Rozpatrujemy kinematykę

Bardziej szczegółowo

Mikroekonomia B.0. Mikołaj Czajkowski

Mikroekonomia B.0. Mikołaj Czajkowski Mikroekonomia B.0 Mikołaj Czajkowski Materiały i informacje hasło Mikroekonomia Wykłady: środa 15:00-16:35 aula A, dr hab. Mikołaj Czajkowski, prof. UW poniedziałek 09:45-11:20 aula A, dr hab. Ewa Aksman

Bardziej szczegółowo

Przedmiot Prowadzący Termin I (data/godz/miejsce) Analiza matematyczna I. Prof. T. Inglot Dr W. Wawrzyniak- Kosz. Prof. Z. Kowalski Dr G.

Przedmiot Prowadzący Termin I (data/godz/miejsce) Analiza matematyczna I. Prof. T. Inglot Dr W. Wawrzyniak- Kosz. Prof. Z. Kowalski Dr G. kierunek: INFORMATYKA WYDZIAŁ INFORMATYKI i ZARZĄDZANIA Instytut Informatyki Harmonogram egzaminów na studiach stacjonarnych L.p Rok / 1 I r. Analiza matematyczna I T. Inglot W. Wawrzyniak- Kosz 29.01.2013

Bardziej szczegółowo

SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka

SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Matematyka dyskretna (IiE+MAT) Prowadzący: prof. dr hab. Mieczysław Borowiecki Teoria grafów, hipergrafów

Bardziej szczegółowo

PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION

PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION STANISŁAW KRENICH PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION S t r e s z c z e n i e A b s t r a c t W artykule przedstawiono

Bardziej szczegółowo

[3] Hałgas S., An algorithm for fault location and parameter identification of analog circuits

[3] Hałgas S., An algorithm for fault location and parameter identification of analog circuits Bibliografia [1] Hałgas S., Algorytm lokalizacji uszkodzeń w nieliniowych układach elektronicznych, Materiały XVI Seminarium z Podstaw Elektrotechniki i Teorii Obwodów, SPETO 93, 247-253, 1993. [2] Hałgas

Bardziej szczegółowo

ZAGADNIENIA SPECJALNOŚCIOWE

ZAGADNIENIA SPECJALNOŚCIOWE (ARK) Komputerowe sieci sterowania 1.Zaawansowane metody wyznaczania parametrów regulatorów 2.Mechanizmy innowacyjne. 3.Sieci neuronowe w modelowaniu obiektów dynamicznych. 4.Zasady projektowania i zastosowania

Bardziej szczegółowo

LOKALNA APROKSYMACJA POCHODNYCH Z UŻYCIEM NIEREGULARNIE ROZMIESZCZONYCH WĘZŁÓW LOCAL APPROXIMATION OF DERIVATIVES USING SCATTERED NODES

LOKALNA APROKSYMACJA POCHODNYCH Z UŻYCIEM NIEREGULARNIE ROZMIESZCZONYCH WĘZŁÓW LOCAL APPROXIMATION OF DERIVATIVES USING SCATTERED NODES ARTUR KROWIAK LOKALNA APROKSYMACJA POCHODNYCH Z UŻYCIEM NIEREGULARNIE ROZMIESZCZONYCH WĘZŁÓW LOCAL APPROXIMATION OF DERIVATIVES USING SCATTERED NODES S t r e s z c z e n i e A b s t r a c t W artykule

Bardziej szczegółowo

2.4 Plan studiów na kierunku Technologie energetyki odnawialnej I-go stopnia

2.4 Plan studiów na kierunku Technologie energetyki odnawialnej I-go stopnia .4 Plan studiów na kierunku Technologie energetyki odnawialnej I-go stopnia PLAN STUDIÓW STACJONARNYCH I-go STOPNIA (inżynierskich) NA WYDZIALE ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI na kierunku Technologie

Bardziej szczegółowo

Inverse problems - Introduction - Probabilistic approach

Inverse problems - Introduction - Probabilistic approach Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk

Bardziej szczegółowo

[3] Hałgas S., An algorithm for fault location and parameter identification of analog circuits

[3] Hałgas S., An algorithm for fault location and parameter identification of analog circuits Bibliografia [1] Hałgas S., Algorytm lokalizacji uszkodzeń w nieliniowych układach elektronicznych, Materiały XVI Seminarium z Podstaw Elektrotechniki i Teorii Obwodów, SPETO 93, 247-253, 1993. [2] Hałgas

Bardziej szczegółowo

Regulacja adaptacyjna w anemometrze stałotemperaturowym

Regulacja adaptacyjna w anemometrze stałotemperaturowym 3 Prace Instytutu Mechaniki Górotworu PAN Tom 8, nr 1-4, (2006), s. 3-7 Instytut Mechaniki Górotworu PAN Regulacja adaptacyjna w anemometrze stałotemperaturowym PAWEŁ LIGĘZA Instytut Mechaniki Górotworu

Bardziej szczegółowo

Opisy przedmiotów do wyboru. oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki

Opisy przedmiotów do wyboru. oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki Opisy przedmiotów do wyboru wykłady monograficzne w języku angielskim oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Równania różniczkowe zwyczajne i cząstkowe (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot

Bardziej szczegółowo

Wybrana bibliografia

Wybrana bibliografia Z ŻAŁOBNEJ KARTY Studia Gdańskie, t. VI W Gdańsku 11 grudnia 2008 roku zmarł dr hab. Andrzej Borysowicz (ur. 11 lutego 1961 roku w Woroneżu), profesor nadzwyczajny GWSH, znakomity matematyk, znawca następujących

Bardziej szczegółowo

MIARY ZALEŻNOŚCI OPARTE NA KOPULACH

MIARY ZALEŻNOŚCI OPARTE NA KOPULACH Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 246 2015 Współczesne Finanse 3 Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy.

Bardziej szczegółowo

MODELOWANIE I APROKSYMACJA FUNKCJI PRZENOSZENIA MASZYNEK STEROWYCH RAKIETY PRZECIWLOTNICZEJ

MODELOWANIE I APROKSYMACJA FUNKCJI PRZENOSZENIA MASZYNEK STEROWYCH RAKIETY PRZECIWLOTNICZEJ Mgr inż. Witold BUŻANTOWICZ Mgr inż. Jakub MIERNIK Dr hab. inż. Jan PIETRASIEŃSKI, prof. WAT Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.217 MODELOWANIE I APROKSYMACJA FUNKCJI PRZENOSZENIA

Bardziej szczegółowo

Michał Niezabitowski

Michał Niezabitowski Michał Niezabitowski Lista publikacji z dnia 31 października 2015 Książki i monografie 1. Czornik A., Jurgaś P., Niezabitowski M., Estimation of the joint spectral radius, [w:] Advances in Intelligent

Bardziej szczegółowo

Proponowane tematy prac magisterskich (wersja polskojęzyczna): Tytuł: Operacje Kuratowskiego w zakresie skończenie wielu topologii na jednym

Proponowane tematy prac magisterskich (wersja polskojęzyczna): Tytuł: Operacje Kuratowskiego w zakresie skończenie wielu topologii na jednym Proponowane tematy prac magisterskich (wersja polskojęzyczna): Tytuł: Operacje Kuratowskiego w zakresie skończenie wielu topologii na jednym zbiorze. [1] T. Banakh, O. Chervak, T. Martynyuk, M. Pylypovych,

Bardziej szczegółowo

Kierunek: Matematyka w technice

Kierunek: Matematyka w technice Kierunek: Matematyka w technice Wykaz modułów kształcenia z podziałem na semestry Forma zajęć: W wykład C ćwiczenia L laboratorium P projekt S searium E egza Semestr 1 Analiza matematyczna I Algebra liniowa

Bardziej szczegółowo

Zagadnienia egzaminacyjne ELEKTRONIKA. Stacjonarne. II-go stopnia STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ. (AAE) Advanced Applied Electronics

Zagadnienia egzaminacyjne ELEKTRONIKA. Stacjonarne. II-go stopnia STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ. (AAE) Advanced Applied Electronics (AAE) Advanced Applied Electronics Stacjonarne 1. Basic features of 8-bit microcontrollers. Memories in microcontrollers and microcontrollers' peripherals. 2. ARM architecture. Cortex-M, Cortex-R and Cortex-A

Bardziej szczegółowo

AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016

AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016 AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016 Adam PRUS, Krzysztof PIEŃKOSZ Politechnika Warszawska SZEREGOWANIE ZADAŃ CZĘŚCIOWO PODZIELNYCH NA PROCESORACH RÓWNOLEGŁYCH Streszczenie. W pracy jest rozpatrywany

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu

Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu Wizja maszynowa w robotyce i automatyzacji - opis przedmiotu Informacje ogólne Nazwa przedmiotu Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu 11.9-WE-AiRD-WMwRiA Wydział Kierunek Wydział Informatyki,

Bardziej szczegółowo

ANALIZA DYNAMIKI PROSTEGO OBWODU ELEKTRYCZNEGO NIECAŁKOWITEGO RZĘDU Z MEMRYSTOREM

ANALIZA DYNAMIKI PROSTEGO OBWODU ELEKTRYCZNEGO NIECAŁKOWITEGO RZĘDU Z MEMRYSTOREM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 3 Mikołaj BUSŁOWICZ* ANALIZA DYNAMIKI PROSTEGO OBWODU ELEKTRYCZNEGO NIECAŁKOWITEGO RZĘDU Z MEMRYSTOREM W pracy rozpatrzono

Bardziej szczegółowo

FEEDBACK CONTROL OF ACOUSTIC NOISE AT DESIRED LOCATIONS

FEEDBACK CONTROL OF ACOUSTIC NOISE AT DESIRED LOCATIONS POLITECHNIKA SU^KA ZESZYTY NAUKOWE NM684 Marek PAWELCZYK FEEDBACK CONTROL OF ACOUSTIC NOISE AT DESIRED LOCATIONS SUB Gottingen 7 219 023 859 2006 A 3802 Gliwice 2005 CONTENTS Objective Structure. Contribution

Bardziej szczegółowo

PRACA DYPLOMOWA Magisterska

PRACA DYPLOMOWA Magisterska POLITECHNIKA WARSZAWSKA Wydział Samochodów i Maszyn Roboczych PRACA DYPLOMOWA Magisterska Studia stacjonarne dzienne Semiaktywne tłumienie drgań w wymuszonych kinematycznie układach drgających z uwzględnieniem

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

PRZEDZIAŁOWE METODY CAŁKOWANIA RÓWNAŃ DYNAMIKI KONSTRUKCJI

PRZEDZIAŁOWE METODY CAŁKOWANIA RÓWNAŃ DYNAMIKI KONSTRUKCJI Andrzej POWNUK PRZEDZIAŁOWE METODY CAŁKOWANIA RÓWNAŃ DYNAMIKI KONSTRUKCJI ABSTRACT In this paper the interval methods for validated solution of ordinary differential equation of dynamics of structures

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza wypukła Nazwa w języku angielskim: Convex analysis Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność (jeśli

Bardziej szczegółowo

Związek między pojęciami transpozycji, podobieństwa i symetryzacji oraz równości macierzowe

Związek między pojęciami transpozycji, podobieństwa i symetryzacji oraz równości macierzowe MATEMATYKA STOSOWANA 6, 2005 Tadeusz Kaczorek(Warszawa) Związek między pojęciami transpozycji, podobieństwa i symetryzacji równości macierzowe Streszczenie. Przeanalizowano związki między transpozycją,

Bardziej szczegółowo

Przedmiot Prowadzący Termin I (data/godz/miejsce) Analiza matematyczna I. Prof. R. Lenczewski Doc. J. Górniak. Prof. Z. Kowalski Dr B.

Przedmiot Prowadzący Termin I (data/godz/miejsce) Analiza matematyczna I. Prof. R. Lenczewski Doc. J. Górniak. Prof. Z. Kowalski Dr B. kierunek: INFORMATYKA WYDZIAŁ INFORMATYKI i ZARZĄDZANIA Instytut Informatyki na studiach stacjonarnych L.p Rok / 1. I r. Analiza matematyczna I R. Lenczewski Doc. J. Górniak 4.02.2014 r 2. I r. 3. I r.

Bardziej szczegółowo

ANALIZA TRÓJELEMENTOWEGO OBWODU MEMRYSTOROWEGO NIECAŁKOWITEGO RZĘDU

ANALIZA TRÓJELEMENTOWEGO OBWODU MEMRYSTOROWEGO NIECAŁKOWITEGO RZĘDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 77 Electrical Engineering 4 Mikołaj BUSŁOWICZ* ANALIZA TRÓJELEMENTOWEGO OBWODU MEMRYSTOROWEGO NIECAŁKOWITEGO RZĘDU W pracy rozpatrzono szeregowy

Bardziej szczegółowo

KOMUNIKAT Nr 5 MINISTRA NAUKI i INFORMATYZACJI 1) z dnia 21 października 2005 r.

KOMUNIKAT Nr 5 MINISTRA NAUKI i INFORMATYZACJI 1) z dnia 21 października 2005 r. Dz.Urz.MNiI.2005.1.57 KOMUNIKAT Nr 5 MINISTRA NAUKI i INFORMATYZACJI 1) z dnia 21 października 2005 r. w sprawie uzupełnienia wykazu wybranych czasopism wraz z liczbą punktów za umieszczoną w nich publikację

Bardziej szczegółowo

SEMINARIA DYPLOMOWE - studia I stopnia kierunek: informatyka i ekonometria oraz matematyka

SEMINARIA DYPLOMOWE - studia I stopnia kierunek: informatyka i ekonometria oraz matematyka SEMINARIA DYPLOMOWE - studia I stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Teoria równowagi w modelowaniu gospodarki (MAT) Prowadzący: dr inż. Łukasz Balbus Tematyka seminarium

Bardziej szczegółowo

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky ego Marek Kałuszka Michał Krzeszowiec Ogólnopolska Konferencja Naukowa Zagadnienia

Bardziej szczegółowo

KARTA PRZEDMIOTU. definiuje podstawowe potencjały termodynamiczne. wyjaśnia pojęcia równowagi i stabilności faz

KARTA PRZEDMIOTU. definiuje podstawowe potencjały termodynamiczne. wyjaśnia pojęcia równowagi i stabilności faz 1 3 4 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 3 wiedza Symbole efektów kształcenia K_U01 3 umiejętności K_K01 11 kompetencje

Bardziej szczegółowo

MATHEMATICA NA USŁUGACH EKONOMII

MATHEMATICA NA USŁUGACH EKONOMII D I D A C T I C S O F M A T H E M A T I C S No. 7 (11) 2010 MATHEMATICA NA USŁUGACH EKONOMII Abstract. Delay differential equations (DDEs) appeared in economic scientific papers in yearly thirties of the

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: STATYSTYKA W MODELACH NIEZAWODNOŚCI I ANALIZIE PRZEŻYCIA Nazwa w języku angielskim: STATISTICS IN RELIABILITY MODELS AND

Bardziej szczegółowo

WYBUCHY ROZWIA ZAŃ NIELINIOWYCH RÓWNAŃ PARABOLICZNYCH: nieliniowe równanie ciep la, model Keller Segela chemotaksji

WYBUCHY ROZWIA ZAŃ NIELINIOWYCH RÓWNAŃ PARABOLICZNYCH: nieliniowe równanie ciep la, model Keller Segela chemotaksji WYBUCHY ROZWIA ZAŃ NIELINIOWYCH RÓWNAŃ PARABOLICZNYCH: nieliniowe równanie ciep la, model Keller Segela chemotaksji Piotr BILER Instytut Matematyczny, Uniwersytet Wroc lawski, pl. Grunwaldzki 2/4, 50 384

Bardziej szczegółowo

Wykład organizacyjny

Wykład organizacyjny Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania Wykład organizacyjny dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl

Bardziej szczegółowo

Wycena egzotycznego instrumentu pochodnego stopy procentowej

Wycena egzotycznego instrumentu pochodnego stopy procentowej Wycena egzotycznego instrumentu pochodnego stopy procentowej Trigger Swap Andrzej Konieczek BRE Bank 16 maja 2008 Wstęp Trigger Swap charakterystyka instrumentu Model Brace-Gątarek-Musiela Implementacja

Bardziej szczegółowo

Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne.

Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne. SPIS TREŚCI 1 Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne. Spis treści 1 Repetytorium 2 2 Wiadomości wstępne 5 1 Repetytorium 2 1 Repetytorium 1. Rozwia zać

Bardziej szczegółowo

Przykładowa prezentacja

Przykładowa prezentacja Przykładowa prezentacja Teodor Niżyński 1 1 Department of Automatics, Mechatronics and Control Systems Faculty of Electronics Wrocław University of Technology December 5, 2016 1 / 19 T. Niżyński Przykładowa

Bardziej szczegółowo

Zmodyfikowane twierdzenie Kołmogorowa

Zmodyfikowane twierdzenie Kołmogorowa MATEMATYKA STOSOWANA 10, 2009 Jarosław Michalkiewicz (Wrocław) Zmodyfikowane twierdzenie Kołmogorowa Streszczenie. Praca dotyczy modyfikacji twierdzenia Kołmogorowa w celu przedstawienia aproksymacji ciągłej

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: PROBABILISTYKA NIEPRZEMIENNA Nazwa w języku angielskim: NONCOMMUTATIVE PROBABILITY Kierunek studiów (jeśli dotyczy): MATEMATYKA

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI i ZARZĄDZANIA. Harmonogram egzaminów na studiach stacjonarnych I stopnia w semestrze zimowym roku akademickiego 2017/2018

WYDZIAŁ INFORMATYKI i ZARZĄDZANIA. Harmonogram egzaminów na studiach stacjonarnych I stopnia w semestrze zimowym roku akademickiego 2017/2018 kierunek: INFORMATYKA WYDZIAŁ INFORMATYKI i ZARZĄDZANIA na studiach stacjonarnych L.p Rok / 1. I r. Analiza matematyczna I Doc. J. Górniak A. Kamińska 26.01.2018r. 2.02.2018 r 2. I r. 3. I r. Algebra z

Bardziej szczegółowo

Opisy przedmiotów do wyboru

Opisy przedmiotów do wyboru Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Algebra i

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

strona 1 / 11 Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje:

strona 1 / 11 Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje: Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje: 1. Autorzy rozdziału: Borys Tadeusz; Strahl Danuta; Walesiak Marek Tytuł rozdziału: Wkład ośrodka wrocławskiego w rozwój teorii

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW Cyfrowe przetwarzanie sygnałów -1-2003 CYFROWE PRZETWARZANIE SYGNAŁÓW tematy wykładowe: ( 28 godz. +2godz. kolokwium, test?) 1. Sygnały i systemy dyskretne (LTI, SLS) 1.1. Systemy LTI ( SLS ) (definicje

Bardziej szczegółowo

POJECIE BYTU I NICOŚCI W TEORII KWANTOWEJ A

POJECIE BYTU I NICOŚCI W TEORII KWANTOWEJ A POJECIE BYTU I NICOŚCI W TEORII KWANTOWEJ A RZECZYWISTOŚĆ Wiesław M. Macek Wydział Matematyczno-Przyrodniczy Uniwersytet Kardynała Stefana Wyszyńskiego Wóycickiego 1/3, 01-938 Warszawa; Centrum Badań Kosmicznych,

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle

Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle AUTOMATYKA 2005 Tom 9 Zeszyt 3 Jerzy Zalewicz* Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle 1. Wstêp Przy analizie zjawisk dynamicznych zwi¹zanych

Bardziej szczegółowo

Field of study: Electronics and Telecommunications Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes

Field of study: Electronics and Telecommunications Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes Faculty of: Computer Science, Electronics and Telecommunications Field of study: Electronics and Telecommunications Study level: First-cycle studies Form and type of study: Full-time studies Annual: 2014/2015

Bardziej szczegółowo

Informatyka kwantowa. Karol Bartkiewicz

Informatyka kwantowa. Karol Bartkiewicz Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational

Bardziej szczegółowo

ZASTOSOWANIE WIELOKROKOWEJ PROCEDURY NUMERYCZNEGO CAŁKOWANIA W OBSERWATORZE PRĘDKOŚCI KĄTOWEJ SILNIKA INDUKCYJNEGO

ZASTOSOWANIE WIELOKROKOWEJ PROCEDURY NUMERYCZNEGO CAŁKOWANIA W OBSERWATORZE PRĘDKOŚCI KĄTOWEJ SILNIKA INDUKCYJNEGO 45 Arkadiusz Gardecki, Krystyna Macek-Kamińska Politechnika Opolska, Opole ZASTOSOWANIE WIELOKROKOWEJ PROCEDURY NUMERYCZNEGO CAŁKOWANIA W OBSERWATORZE PRĘDKOŚCI KĄTOWEJ SILNIKA INDUKCYJNEGO MULTISTEP INTEGRATION

Bardziej szczegółowo

strona 1 / 12 Autor: Walesiak Marek Publikacje:

strona 1 / 12 Autor: Walesiak Marek Publikacje: Autor: Walesiak Marek Publikacje: 1. Autorzy rozdziału: Borys Tadeusz; Strahl Danuta; Walesiak Marek Tytuł rozdziału: Wkład ośrodka wrocławskiego w rozwój teorii i zastosowań metod taksonomicznych, s.

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad

Bardziej szczegółowo

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia stacjonarne 1 sem. PO-W08-INF- - -ST-Ii-WRO-(2015/2016) MAP003055W Algebra z geometrią analityczną A

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek

Bardziej szczegółowo

Badania operacyjne. Michał Kulej. semestr letni, Michał Kulej () Badania operacyjne semestr letni, / 13

Badania operacyjne. Michał Kulej. semestr letni, Michał Kulej () Badania operacyjne semestr letni, / 13 Badania operacyjne Michał Kulej semestr letni, 2012 Michał Kulej () Badania operacyjne semestr letni, 2012 1/ 13 Literatura podstawowa Wykłady na stronie: www.ioz.pwr.wroc.pl/pracownicy/kulej Trzaskalik

Bardziej szczegółowo

Zagadnienia egzaminacyjne TELEKOMUNIKACJA studia rozpoczynające się po 01.10.2012 r.

Zagadnienia egzaminacyjne TELEKOMUNIKACJA studia rozpoczynające się po 01.10.2012 r. (TIM) Teleinformatyka i multimedia 1. Elementy systemu multimedialnego: organizacja i funkcje. 2. Jakość usług VoIP: metody oceny jakości, czynniki wpływające na jakość. 3. System biometryczny: schemat

Bardziej szczegółowo

Sprzęg światłowodu ze źródłem światła

Sprzęg światłowodu ze źródłem światła Sprzęg światłowodu ze źródłem światła Oczywistym problemem przy sprzęganiu światłowodu ze źródłami światła jest w pierwszym rzędzie umieszczenie wiazki w wewnatrz apertury numeryczne światłowodu. W przypadku

Bardziej szczegółowo

Współczesna problematyka klasyfikacji Informatyki

Współczesna problematyka klasyfikacji Informatyki Współczesna problematyka klasyfikacji Informatyki Nazwa pojawiła się na przełomie lat 50-60-tych i przyjęła się na dobre w Europie Jedna z definicji (z Wikipedii): Informatyka dziedzina nauki i techniki

Bardziej szczegółowo

Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Rok akademicki 2014/15 semestr letni

Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Rok akademicki 2014/15 semestr letni Harmonogram dla kierunku INFORMATYKA ANALITYCZNA Studia licencjackie I ROK: Analiza Matematyczna 2 wykªad prof. dr hab. Piotr Tworzewski czwartki 810 0004 Analiza Matematyczna 2 w gr 1 dr Edward Szczypka

Bardziej szczegółowo

Opisy przedmiotów do wyboru. oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki

Opisy przedmiotów do wyboru. oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki Opisy przedmiotów do wyboru wykłady monograficzne w języku angielskim oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 1 roku matematyki semestr letni, rok akademicki 2016/2017 Spis treści

Bardziej szczegółowo