gdzie f abc są stałymi struktury (antysymetryczne). Różnica: stałe d abc (symetryczne): λ a λ b = 2 3 δ ab + if abc λ c + d abc λ c.

Wielkość: px
Rozpocząć pokaz od strony:

Download "gdzie f abc są stałymi struktury (antysymetryczne). Różnica: stałe d abc (symetryczne): λ a λ b = 2 3 δ ab + if abc λ c + d abc λ c."

Transkrypt

1 Chromodynamika kwantowa: grupa SU(3) Co trzyma kwarki związane w hadronach? Teoria z symetrią cechowania oparta na grupie SU(3) (lub SU(N c )): u r u = u g u b każdy u i jest czteorokomponentowym bispinorem Diraka. Lokalna symetria SU(3): (x) (x) = U(x)(x) gdzie U(x) jest macierzą unitarną 3 3 o wyznaczniku 1. Jest sparametryzowana N 2 c 1 = 8 rzeczywistymi parametrami. Można ją zapisać jako U(x) = e iλ aα a (x)/2 gdzie N 2 c 1 = 8 macierzy Gell-Mana λ a spełnia relację komutacji: [λ a, λ b ] = 2if abc λ c a, b, c = 1, analogicznie do [τ i, τ j ] = 2iε ijk λ k i, j, k = 1, 2, 3. 1

2 gdzie f abc są stałymi struktury (antysymetryczne). Różnica: stałe d abc (symetryczne): τ i τ j = δ ij + iε ijk τ k, λ a λ b = 2 3 δ ab + if abc λ c + d abc λ c. 2

3 Pochodna kowariantna Analogicznie do grupy SU(2) wprowadzmy pola cechowania gluony: Transformacja pola: W µ (x) = 3 Wµ k (x)τ k G µ (x) = 1 2 k=1 8 G a µ(x)λ a a=1 W µ = UW µ U + i 2 g 2 ( µ U) U G µ = UG µ U + i 1 g ( µu) U. Pochodna kowariantna: Mamy zatem Tensor pola D µ = µ + i g 2 2 W µ D µ = µ + igg µ = U, D µ D µ = UD µ G µν = D µ G ν D ν G µ = µ G ν ν G µ + ig [G µ, G ν ] 3

4 Gęstość Lagrange a L = 1 2 Tr [G µνg µν ] + 6 [ ] f iγ µ D µ f m f f f=1 4

5 Niezmienniki grupy SU(3): δ ab, Dlaczego grupa SU(3)? ε abc albowiem: U U = 1 U ab δ bcu cd = δ ad oraz ε abc U aa U bb U cc = ε a b c det U = ε a b c Jest to analogon związku dla SU(2) U T εu = ε Ua T a ε abu bb = ε ab U aa U bb = ε a b. Zatem singlety kolorowe to stany M 12 = 1 2 = B 123 = 1 6 ε abc a 1 b 2 c 3 [ ] r1, g1, b1 r 2 g 2 b2 bariony mezony 5

6 Naiwny model kwarków: kwarki w uśrednionym potencjale siedzą na poziomie podstawowym (jak elektrony w atomie wodoru) czyli w fali s. Jak zatem możliwe jest istnienie rezonansu który składa się z trzech kwarków u, każdy ze spinem +1/2? Funkcja falowa = u (x)u (y)u (z) przestrzenna symetryczna spinowa symetryczna kolorowa antysymetryczna 6

7 Policzmy stosunek: Dlaczego grupa SU(3)? R = σ e + e hadrons σ e + e µ + µ e e e + µ µ + 1 e e + Dlaenergii poniżej progu na charm (E < 3 GeV) i.t.d.: ( R = e 2 d + e 2 u + e 2 s = 1 2 ( ) 2 ( ) 1 ) 2 = ( R = e 2 d + e 2 u + e 2 s + e 2 c = 1 2 ( ) 2 ( ) ) R = e 2 d + e 2 u + e 2 s + e 2 c + e 2 b = ( 1 3) 2 + ( ) 2 + ( 1 3) 2 + ( ) 2 2 = ( 2 3 ) 2 + ( 1 3 ) 2 = 11 9

8 Poprawki: e e e e e + mezon e + Poprawki perturbacyjne małe, nieperturbacyjne duże, ale waskie. 8

9 Ê Â 10-8 ¾Ëµ ¼ 10 2 Ô Î 10 1 ÙÖ ¼º ÏÓÖÐ Ø ÓÒØ ØÓØ ÐÖÓ Ø ÓÒÓ ÖÓÒ Ò Ø Ö Ø ÓÊ µ ÖÓÒ µ 10-1 ½ µº Ö Ø¹Ï Ò ÖÔ Ö Ñ Ø Ö Þ Ø ÓÒ Ó Â ¾Ëµ Ò Ò˵ Ò ½ ¾ Ö Ð Ó ÓÛÒºÌ ÙÐÐÐ ØÓ Ö Ö Ò ØÓØ ÓÖ Ò Ð Ø ÓÒÓ Ø Ê Ú Û Õº º½¾µÓÖ ÓÖÑÓÖ Ø Ð Ãº º ØÝÖ Ò Ø Ðº ÆÙÐºÈ Ý º ¾¼¼¼µ ÖÖ ØÙÑ º ¾¼¼¾µ Ø ÖÓ ÒÓÒ Ò Ú ÕÙ Ö ¹Ô ÖØÓÒÑÓ ÐÔÖ Ø ÓÒ Ò Ø ÓÐ ÓÒ ¹ÐÓÓÔÔÉ ÔÖ Ø ÓÒ ÉÙ ÒØÙÑ ÖÓÑÓ ÝÒ Ñ µº µ «¾ µ º Ø ÖÖÓÖ Ö ØÓØ Ð ÐÓÛ¾ Î Ò Ø Ø Ø Ð ÓÚ ¾ ÎºÌ ÙÖÚ Ö Ò Ù Ø Ú Ù ÖÓÒ µ Ø ÜÔ Ö Ñ ÒØ ÐÖÓ Ø ÓÒÓÖÖ Ø ÓÖ Ò Ø Ð Ø Ø Ö Ø ÓÒ Ò Ð ØÖÓÒ¹ÔÓ ØÖÓÒÚ ÖØ ÜÐÓÓÔ Ð Ö Ú Ð Ð Ø ØØÔ»»Ô º Ôº Ù»Ü Ø»ÓÒØ ÒØ º ØÑк ÓÙÖØ ÝÓ Ø ÇÅÈ Ë ÈÖÓØÚ ÒÓµ Ò À È Ì ÙÖ Ñµ ÖÓÙÔ Ø Ò Ø Ø Ð Ó Ø ÊÖ Ø Ó ÜØÖ Ø ÓÒ ÖÓÑØ Ñ Ò ÓÙÒ Ò Ô¹Ô»¼ ½¾½½ º ÓÖÖ ÔÓÒ Ò ÓÑÔÙØ Ö¹Ö Ð Ø Ù Ù Ø¾¼¼ º ÓÖÖ Ø ÓÒ ÝȺ ÒÓØ ÊƵ Ò ÅºË Ñ ØØ ÆÓÖØ Û Ø ÖÒͺµµ R = e 2 d + e 2 u + e 2 s = e2 c = e2 b =

10 Ê Â 10-8 ¾Ëµ ¼ 10 2 Ô Î 10 1 ÙÖ ¼º ÏÓÖÐ Ø ÓÒØ ØÓØ ÐÖÓ Ø ÓÒÓ ÖÓÒ Ò Ø Ö Ø ÓÊ µ ÖÓÒ µ 10-1 ½ µº Ö Ø¹Ï Ò ÖÔ Ö Ñ Ø Ö Þ Ø ÓÒ Ó Â ¾Ëµ Ò Ò˵ Ò ½ ¾ Ö Ð Ó ÓÛÒºÌ ÙÐÐÐ ØÓ Ö Ö Ò ØÓØ ÓÖ Ò Ð Ø ÓÒÓ Ø Ê Ú Û Õº º½¾µÓÖ ÓÖÑÓÖ Ø Ð Ãº º ØÝÖ Ò Ø Ðº ÆÙÐºÈ Ý º ¾¼¼¼µ ÖÖ ØÙÑ º ¾¼¼¾µ Ø ÖÓ ÒÓÒ Ò Ú ÕÙ Ö ¹Ô ÖØÓÒÑÓ ÐÔÖ Ø ÓÒ Ò Ø ÓÐ ÓÒ ¹ÐÓÓÔÔÉ ÔÖ Ø ÓÒ ÉÙ ÒØÙÑ ÖÓÑÓ ÝÒ Ñ µº µ «¾ µ º Ø ÖÖÓÖ Ö ØÓØ Ð ÐÓÛ¾ Î Ò Ø Ø Ø Ð ÓÚ ¾ ÎºÌ ÙÖÚ Ö Ò Ù Ø Ú Ù ÖÓÒ µ Ø ÜÔ Ö Ñ ÒØ ÐÖÓ Ø ÓÒÓÖÖ Ø ÓÖ Ò Ø Ð Ø Ø Ö Ø ÓÒ Ò Ð ØÖÓÒ¹ÔÓ ØÖÓÒÚ ÖØ ÜÐÓÓÔ Ð Ö Ú Ð Ð Ø ØØÔ»»Ô º Ôº Ù»Ü Ø»ÓÒØ ÒØ º ØÑк ÓÙÖØ ÝÓ Ø ÇÅÈ Ë ÈÖÓØÚ ÒÓµ Ò À È Ì ÙÖ Ñµ ÖÓÙÔ Ø Ò Ø Ø Ð Ó Ø ÊÖ Ø Ó ÜØÖ Ø ÓÒ ÖÓÑØ Ñ Ò ÓÙÒ Ò Ô¹Ô»¼ ½¾½½ º ÓÖÖ ÔÓÒ Ò ÓÑÔÙØ Ö¹Ö Ð Ø Ù Ù Ø¾¼¼ º ÓÖÖ Ø ÓÒ ÝȺ ÒÓØ ÊƵ Ò ÅºË Ñ ØØ ÆÓÖØ Û Ø ÖÒͺµµ R = 3 ( ) e 2 d + e 2 u + e 2 s = 2 + 3e 2 c = e2 b = 11 3 Uwzględnienie koloru N c = 3 daje zgodnosc z doswiadczeniem. 10

11 40. Plots of cross sections and related uantities R in Light-Flavour, Charm, and Beauty Threshold Regions ρ ω φ u, d, s ρ 3 loop pqcd Naive uark model Sum of exclusive measurements Inclusive measurements J/ψ ψ(2s) Mark-I Mark-I + LGW Mark-II PLUTO DASP Crystal Ball BES ψ 3770 ψ 4040 ψ 4160 ψ 4415 c Υ(1S) Υ(2S) Υ(3S) Υ(4S) b MD-1 ARGUS CLEO CUSB DHHM Crystal Ball CLEO II DASP LENA 11 s [GeV] Figure 40.7: R in the light-flavour, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are the same as in Fig Note: CLEO data above Υ(4S) were not fully corrected for radiative effects, and we retain them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and the details of the R ratio extraction from them can be found in [arxiv:hep-ph/ ]. The computer-readable data are available at (Courtesy of the COMPAS(Protvino)

12 12

13 Najpierw trzeba dokonać regularyzacji. Obcięcie czterowymiarowe (Λ ) dk g 2 } {{ k } skończone Renormalizacja Λ dk gλ 2 k = g2 Λ ln Λ + skończone Regularyzacja wymiarowa (ε 0) dk g 2 gε 2 k εdk } {{ k } k = 1 g2 ε ε k ε skończone 1 g2 ε ε skończone skończone Renormalizacja polega na wepchnięciu nieskończoności do stałej sprzężenia, mas cząstek, funkcji falowych. 13

14 Poprawki do wierzchołka fermion-gluon: 14

15 Mamy (Q 2 = 2 ): ) ) suma = g Λ (1 gλ (a 2 ln Q2 Λ Renormalizacja polega na wciągnięciu nieskończoności do g Λ : Tu g jest liczbą suma = (g ag 3 ln Λ2 Q 2 0 g Λ = g ag 3 ln Λ2 Q ) ( (g ag 3 ln Λ2 Q 2 0 ) 2 ) +... (a ln Q2 Λ + b ) = g ag 3 ln Λ2 Q 2 0 = g ag 3 ln Q2 Q 2 0 Lepiej zapisać to dla stałej g 2 : g 3 a ln Q2 Λ = g(q 2 ). g 2 (Q 2 ) = g 2 2ag 4 ln Q2 Q = g ag 2 ln Q2 Q 2 0

16 Co to jest g 2? g 2 = g 2 (Q 2 0) Spróbujemy nieznaną wartość g w arbitralnym (acz ustalonym) punkcie Q 2 0 zastąpić przez jedną stałą. Najpierw przepiszmy 1 g 2 (Q 2 ) = 1 (1 g 2 (Q 2 0 ) + 2ag 2 (Q 20) ) ln Q2 1 Q2 Q 2 = 0 g 2 (Q 2 + 2a ln 0 ) Q 2 0 co daje co daje 1 g 2 (Q 2 ) 2a ln Q2 = 1 g 2 (Q 2 0 ) 2a ln Q2 0 ozn. = 2a ln Λ 2 QCD 1 = 2a ln Q2 g 2 (Q 2 ) Λ 2 g 2 (Q 2 1 ) = QCD 2a ln Q2 Λ 2 QCD Jest to wzór asymptotyczny. Jego sensowność zależy od znaku a. Jeżeli a jest ujemne to wzór g 2 (Q 2 ) = g ag 2 ln Q2 Q

17 ma osobliwość (biegun Landaua w elektrodynamice), jeżeli a jest dodatnie, g 2 (Q 2 ) znika dla dużych Q 2 (asymptotyczna swoboda). Używając (standardowa notacja): gdzie α(q 2 ) = 4π β 0 ln Q2 Λ 2 QCD, β 0 = 11 3 C A 2 3 n f n f liczba kwarhów w diagramie pętlowym C A operator Casimira dla grupy SU(N c ) 17

18 C F C A 2 n f C F = N 2 1 c 2N c C F C A 2 = N c 2 C A = N c 18

19 Czynniki kolorowe a d β γ α b a Σ a,γ T a βγ T a γα = C F δ βα Σ c,d T d bc T d ca = C A δ ba c T a γα = 1 2 λ a γα a T d ca = if dca d γ α c a 19

20 gdzie: C F = N 2 c 1 2N c, C A = N c dla SU(N c =2) C s = s(s + 1), reprezentacja fundamentalna s = 1/2, reprezentacja dołączona (adjoint) s = 1. 20

21 β 9.2. The QCD 2 = coupling and 9 n f renormalization 27 n2 f ; scheme (9.4d) The Uniwersalność: renormalization to samo scalewychodzi dependence dla rachunku of the effective z wierzchołkiem QCD coupling gluonowym. where n α s = gs/4π 2 is controlled Grupa f is the number of uarks with mass less than the energy scale µ. The expression by renormalizacji: for the next the termβ-function: in this series (β 3 ) can be found in Ref. 5. In solving this differential euation for α µ α s, a constant of integration s µ = 2β(α s) = β is 0 2π α2 s β introduced. 1 4π 2 α3 s β This constant is the one fundamental constant of QCD that must be determined 2from 64π 3 α4 sexperiment., The (9.4a) most sensible choice for this constant β 0 = 11 2 is the value of α s at a fixed-reference scale µ 0. It has become standard to choose µ 3 n 0 = f, M Z. The value at other values of µ can be obtained (9.4b) from log(µ 2 /µ 2 0 ) = α s (µ) dα. β 1 = It is also convenient to introduce the dimensional parameter α s (µ 0 ) β(α) 3 n f, (9.4c) Λ, since this provides a parameterization of the µ dependence of α s. The definition of Λ is arbitrary. One way to define β 2 = it 9 n (adopted f n2 here) f ; is to write a solution of E. (9.4) (9.4d) as an expansion in inverse powers of ln(µ 2 ): where n f is the number of uarks with [ 4π mass less than the energy scale µ. The expression for the next αterm s (µ) in = this series (β 3 ) can be found in Ref. 5. In solving this differential β euation for α s, a constant 0 ln(µ 2 /Λ of 2 1 2β 1 ln [ ln(µ 2 /Λ 2 ) ] 4β ) β integration 0 2 ln(µ is introduced. 2 /Λ ) This β0 4 constant ln2 (µ 2 /Λ is 2 ) the one ( [ ] fundamental constant of QCD that must be determined from experiment. The most ( ln ln(µ 2 /Λ 2 ) 1 ) 2 β 2 β 0 + sensible choice for this constant is the value of 2 α s at8β a 2 5 )]. (9.5) 1fixed-reference 4 scale µ 0. It has become standard to choose µ 0 = M Z. The value at other values of µ can be obtained from log(µ This 2 solution /µ 2 0 ) = illustrates α s (µ) dαthe. It asymptotic is also convenient freedom to property: introduce α s the 0 dimensional as µ parameter and shows that QCD becomes α s (µ 0 ) strongly β(α) coupled at µ Λ. 21 Λ, since this provides a parameterization of the µ dependence of α s. The definition of Λ is arbitrary. One way to define it (adopted here) is to write a solution of E. (9.4) as an expansion in inverse powers of ln(µ 2 ):

22 Average Hadronic Jets e + e - rates Photo-production Fragmentation Z width ep event shapes Polarized DIS Deep Inelastic Scattering (DIS) τ decays Spectroscopy (Lattice) Υ decay α s (M Z ) 22

23 0.3 α s (µ) µ GeV 23

ÁÒ ØÝØÙØ ÈÓ Ø Û ÁÒ ÓÖÑ ØÝ ÈÓÐ Ñ Æ Ù Ì ÑÔÓÖ ÐÒ Ô ØÝ ÔÐÓÖ ÒÝ Ñ ØÓ Ý Þ ÓÖ Û ÔÖÞÝ Ð ÓÒÝ ÊÇ ÈÊ Ï ÇÃÌÇÊËà ÙØÓÖ Ñ Ö È ÓØÖ ËÝÒ ÈÖÓÑÓØÓÖ ÈÖÓ º Ö º Ò º Ò ÖÞ Ë ÓÛÖÓÒ Ï Ö Þ Û ¾¼¼ Öº ËÔ ØÖ ½ Ï ØÔ ½º½ ÏÔÖÓÛ Þ Ò º º

Bardziej szczegółowo

Þ Á Ö Ø ØÙÖÝ ÓÑÔÙØ ÖÓÛÝ À Ö Ö ÔÖÓØÓ Ó Û Ð Ù ØÛ Ò ÔÖÓ Ù ÔÖÓ ØÓÛ Ò Û Ô Þ ÒÝ ÓÑÔÙØ ÖÓ¹ ÛÝ ÔÖÞÝ ØÓ Þ Ó Ò ÓÒ ÔÓ Û Ñ Ö ÔÖÓ Ø ØÖÙ ØÙÖ ÐÓ ÞÒ º Ç Ø Ø ÞÒ Þ Ý ÓÛ ÒÓ ÓÑÔÙØ ÖÓÛ Þ ÞÓÖ Ò ÞÓ¹ ÊÝ ÙÒ ½ Ï Ö ØÛÓÛ ØÖÙ ØÙÖ

Bardziej szczegółowo

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład IX. Co to jest ładunek?...

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład IX. Co to jest ładunek?... Wielka Unifikacja Wykład IX Co to jest ładunek?... Elementy fizyki czastek elementarnych Biegnaca stała sprzężenia i renormalizacja w QED Asymptotyczna swoboda QCD Unifikacja SU(5) QED Ładunek elektryczny

Bardziej szczegółowo

Þ Á Í Ù ÞÓÖ ÒØÓÛ Ò ÔÓ Þ Ò ÓÛÓ Ù Ù ÞÔÓ Þ Ò ÓÛ Ï Ö ØÛÝ ÑÓ Ó ÖÓÛ Û Ö ØÛÓÑ Ð ÝÑ Ó Ò ÔÓÞ ÓÑ ÛÝ Ù Ù ÞÔÓ Þ Ò ÓÛ Ù Ù ÛÝÑ ÔÓ Þ Ò º Ï Ù Ù ÓÛÝ ÞÓÖ ÒØÓÛ ÒÝ ÔÓ Þ Ò ÓÛÓ Ù ÝØ ÓÛÒ Ù Ù Ò Ô ÖÛ Ù Ø Ð ÔÓ Þ Ò ÔÓØ Ñ ÔÓ Þ Ò

Bardziej szczegółowo

Wstęp do oddziaływań hadronów

Wstęp do oddziaływań hadronów Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia GórniczoHutnicza Wykład 3 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 1 / 16 Diaramy

Bardziej szczegółowo

Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania

Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 19 Wprowadenie do teksturowania

Bardziej szczegółowo

Grafika Komputerowa. Teksturowanie

Grafika Komputerowa. Teksturowanie Grafika Komputerowa. Teksturowanie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 19 Teksturowanie Najnowsza

Bardziej szczegółowo

WYKŁAD 13. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 5.I Hadrony i struny gluonowe

WYKŁAD 13. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 5.I Hadrony i struny gluonowe Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW 5.I. 2011 Hadrony i struny gluonowe Model Standardowy AD 2010 Hadrony = stany związane kwarków Kwarki zawsze

Bardziej szczegółowo

1 Grupa SU(3) i klasyfikacja cząstek

1 Grupa SU(3) i klasyfikacja cząstek Grupa SU(3) i klasyfikacja cząstek. Grupa SU(N) Unitarne (zespolone) macierze N N można sparametryzować pzez N rzeczywistych parametrów. Ale detu =, unitarność: U U = narzucają dodatkowe warunki. Rozważmy

Bardziej szczegółowo

Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl

Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl Modelowanie i wizualizowanie 3W-grafiki Transformacje Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Matematyki i Informatyki ul. Słoneczna 54 10-561

Bardziej szczegółowo

Fizyka cząstek elementarnych i oddziaływań podstawowych

Fizyka cząstek elementarnych i oddziaływań podstawowych Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość

Bardziej szczegółowo

Grafika Komputerowa. Krzywe B-sklejane. Alexander Denisjuk.

Grafika Komputerowa. Krzywe B-sklejane. Alexander Denisjuk. Grafika Komputerowa Krzywe B-sklejane Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Masy cząstek vs. struktura wewnętrzna

Masy cząstek vs. struktura wewnętrzna Masy cząstek vs. struktura wewnętrzna Leptony Hadrony Skąd wiemy, że atomy mają strukturę? Podobnie jak na atomy można spojrzeć na hadrony Rozpatrzmy wpierw proton i neutron http://pdg.lbl.gov 938.27203(8)

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III Struktura protonu Elementy fizyki czastek elementarnych Wykład III kinematyka rozpraszania doświadczenie Rutherforda rozpraszanie nieelastyczne partony i kwarki struktura protonu Kinematyka Rozpraszanie

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

WYKŁAD V Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW. Hadrony i struny gluonowe. Model Standardowy AD 2010

WYKŁAD V Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW. Hadrony i struny gluonowe. Model Standardowy AD 2010 Wszechświat cząstek elementarnych WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW Hadrony i struny gluonowe Model Standardowy AD 2010 Poza Modelem Standardowym 19.V. 2010 Hadrony = stany związane kwarków Kwarki

Bardziej szczegółowo

Elementy grafiki komputerowej. Elementy krzywych Béziera

Elementy grafiki komputerowej. Elementy krzywych Béziera Elementy grafiki komputerowej. Elementy krzywych Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 36 Elementy krzywych Najnowsza wersja tego dokumentu

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

WYKŁAD 5 sem zim.2010/11

WYKŁAD 5 sem zim.2010/11 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 5 sem zim.2010/11 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu Struktura protonu Wykład V równania ewolucji QCD spin protonu struktura fotonu Elementy fizyki czastek elementarnych Funkcja struktury Różniczkowy przekrój czynny na NC DIS elektron proton: d 2 σ dx dq

Bardziej szczegółowo

ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ

ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ È ÓØÖ ÙÞ Å Ð Ò Ù Ð Ñ Å Û ØÝÞ ¾¼¼ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ Ã Ï Ò µº ÈÓ Ø ÛÝ

Bardziej szczegółowo

Grafika Komputerowa Podstawy animacji

Grafika Komputerowa Podstawy animacji Grafika Komputerowa Podstawy animacji Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Grafika Komputerowa

Bardziej szczegółowo

Zasada najmniejszego działania

Zasada najmniejszego działania Zasada najmniejszego działania S = T dtl(x, ẋ) gdzie L(x, ẋ) jest lagrangianem. Dokonajmy przesuniecia x = x + y, ẋ = ẋ + ẏ, gdzie y(0) = y(t ) = 0. Wtedy T T S = dt L(x, ẋ ) = dt L(x + y, ẋ = ẋ + ẏ) 0

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta  1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona

Bardziej szczegółowo

Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( )

Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( ) Lucja Sławianowska 7 grudnia 2001 Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( ) macierz opisuje łamanie CP i niezachowanie zapachu w Modelu Standardowym jest to jedyne

Bardziej szczegółowo

WYKŁAD 7. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW

WYKŁAD 7. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych WYKŁAD 7 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla humanistów

WYKŁAD 8. Wszechświat cząstek elementarnych dla humanistów Wszechświat cząstek elementarnych dla humanistów WYKŁAD 8 Maria Krawczyk, A.Filip Żarnecki, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne

Bardziej szczegółowo

Eksperyment ALICE i plazma kwarkowo-gluonowa

Eksperyment ALICE i plazma kwarkowo-gluonowa Eksperyment ALICE i plazma kwarkowo-gluonowa CERN i LHC Jezioro Genewskie Lotnisko w Genewie tunel LHC (długość 27 km, ok.100m pod powierzchnią ziemi) CERN/Meyrin Gdzie to jest? ok. 100m Tu!!! LHC w schematycznym

Bardziej szczegółowo

WYKŁAD IV.2013

WYKŁAD IV.2013 Wszechświat cząstek elementarnych WYKŁAD 10 24.IV.2013 Maria Krawczyk, Wydział Fizyki UW Teoria cząstek elementarnych- opis zdarzeń Rachunek zaburzeń i nieskończoności Renormalizacja Prawdopodobieństwo

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

Karta przedmiotu. Przedmiot Grupa ECTS. Fizyka Wysokich Energii 9. Kierunek studiów: fizyka. Specjalność: fizyka

Karta przedmiotu. Przedmiot Grupa ECTS. Fizyka Wysokich Energii 9. Kierunek studiów: fizyka. Specjalność: fizyka Wydział Fizyki, Uniwersytet w Białymstoku Kod USOS Karta przedmiotu Przedmiot Grupa ECTS Fizyka Wysokich Energii 9 Kierunek studiów: fizyka Specjalność: fizyka Formy zajęć Wykład Konwersatorium Seminarium

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2005 Pomiar napięcia przemiennego Cel ćwiczenia Celem ćwiczenia jest zbadanie dokładności woltomierza cyfrowego dla

Bardziej szczegółowo

Elektrodynamika cząstek o spinie 1/2

Elektrodynamika cząstek o spinie 1/2 Elektrodynamika cząstek o spinie 1/2 Dodatkowa gama^0, aby mieć odpowiedniość z oddziaływaniem nierelatywistycznym dla składowych, gdy A^mu=A^0 Tak powstają tzw. Reguły Feynmana Przykłady Spiny Spiny s,s'

Bardziej szczegółowo

Czy neutrina sa rzeczywiście bezmasowe? (Pontecorvo) Bo gdyby nie były, to mogłyby oscylować.. Rozważmy dwa pokolenia neutrin: ν

Czy neutrina sa rzeczywiście bezmasowe? (Pontecorvo) Bo gdyby nie były, to mogłyby oscylować.. Rozważmy dwa pokolenia neutrin: ν Oscylacje neutrin Czy neutrina sa rzeczywiście bezmasowe? (Pontecorvo) Bo gdyby nie były, to mogłyby oscylować.. Rozważmy dwa pokolenia neutrin: ν e,ν µ ν e ν µ Stany własne zapachu, produkowane w oddziaływaniach

Bardziej szczegółowo

Czego brakuje w Modelu Standardowym

Czego brakuje w Modelu Standardowym Czego brakuje w Modelu Standardowym What is missing in the Standard Model concepts and ideas Instytut Problemów Jądrowych im. A. Sołtana w Świerku 1 Plan Równania Maxwella droga do QED Symetria cechowania

Bardziej szczegółowo

Lech Banachowski. Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie

Lech Banachowski. Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie Lech Banachowski Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie Notka biograficzna Prof. Lech Banachowski jest kierownikiem Katedry Baz Danych i kierownikiem Studiów Internetowych

Bardziej szczegółowo

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment

Bardziej szczegółowo

Has the heat wave frequency or intensity changed in Poland since 1950?

Has the heat wave frequency or intensity changed in Poland since 1950? Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures

Bardziej szczegółowo

Fizyka cząstek elementarnych. Tadeusz Lesiak

Fizyka cząstek elementarnych. Tadeusz Lesiak Fizyka cząstek elementarnych Tadeusz Lesiak 1 WYKŁAD II Rudymenty kwantowej teorii pola T.Lesiak Fizyka cząstek elementarnych 2 Kinematyka relatywistyczna Szczególna Teoria Względności STW) dwa postulaty:

Bardziej szczegółowo

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Cząstki i siły. Piotr Traczyk. IPJ Warszawa Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała

Bardziej szczegółowo

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako

Bardziej szczegółowo

Reguly. Wind = Weak Temp > 20 Outlook Rain PlayTennis = Y es

Reguly. Wind = Weak Temp > 20 Outlook Rain PlayTennis = Y es ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ½ Ï ÖÙÒ Ð ØÓÖ Û Ý Ð ØÓÖ Ö ÔÖ Þ ÒØÙ Ø Ø Û ÖØÓ ÃÓÒ ÙÒ ØÖÝ ÙØÙ Û ÖÙÒ Ó ÔÓÛ Ó ØÓÑ Ô Ò ÝÑ ÔÓ ÝÒÞ Ó Ð ØÓÖÝ Û ÞÝ Ø ÝÞ Ö Ù ÞÛ Þ Ò Ø Þ Ò ÝÞ Ã Reguly ÔÖÞÝÔ ÝÛ Ò Ó ØÓÑ Ô Ò ÝÑ Û ÖÙÒ Ö Ù

Bardziej szczegółowo

Employment. Number of employees employed on a contract of employment by gender in 2012. Company

Employment. Number of employees employed on a contract of employment by gender in 2012. Company Im not found /sites/eneacsr2012.mess-asp.com/themes/eneacsr2012/img/enea.jpg Employt Capital Group is one of the largest companies in the energy industry. Therefore it has an influence, as an employer,

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Oddziaływanie pomiędzy kwarkami i leptonami -- krótki opis Modelu Standardowego

Oddziaływanie pomiędzy kwarkami i leptonami -- krótki opis Modelu Standardowego Oddziaływanie pomiędzy kwarkami i leptonami -- krótki opis Modelu Standardowego Początkowe poglądy na temat oddziaływań Ugruntowanie poglądów poprzednich- filozofia mechanistyczna Kartezjusza ciała zawsze

Bardziej szczegółowo

Wprowadzenie do grafiki maszynowej. Wprowadzenie do percepcji wizualnej i modeli barw

Wprowadzenie do grafiki maszynowej. Wprowadzenie do percepcji wizualnej i modeli barw Wprowadzenie do grafiki maszynowej. Wprowadzenie do percepcji i modeli barw Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 38 Wprowadzenie do

Bardziej szczegółowo

Classic Clad / Thermo Clad / ThermoPlus Clad option selection for projects with Pine / Fir wood

Classic Clad / Thermo Clad / ThermoPlus Clad option selection for projects with Pine / Fir wood Project me: Classic Clad / Thermo Clad / ThermoPlus Clad option selection for projects with Pine / Fir wood 1 style. quadrat NFRC compatible option classic NFRC compatible option classic sharp heritage

Bardziej szczegółowo

WYKŁAD 6. Oddziaływania kolorowe cd. Oddziaływania słabe. Wszechświat cząstek elementarnych dla przyrodników

WYKŁAD 6. Oddziaływania kolorowe cd. Oddziaływania słabe. Wszechświat cząstek elementarnych dla przyrodników Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 6 Maria Krawczyk, Wydział Fizyki UW 11.XI.2009 Oddziaływania kolorowe cd. Oddziaływania słabe Cztery podstawowe oddziaływania Oddziaływanie grawitacyjne

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe

Bardziej szczegółowo

1945 (96,1%) backlinks currently link back. 1505 (74,4%) links bear full SEO value. 0 links are set up using embedded object

1945 (96,1%) backlinks currently link back. 1505 (74,4%) links bear full SEO value. 0 links are set up using embedded object Website Backlinks Analysis Report 2023 backlinks from 224 domains Report created: Jan 3, 2015 Website: http://wpisz.stronę.odbiorcy Compared with: 7 day(s) old Domain Statistics The domain seo.zgred.pl

Bardziej szczegółowo

Konsorcjum Śląskich Uczelni Publicznych

Konsorcjum Śląskich Uczelni Publicznych Konsorcjum Śląskich Uczelni Publicznych Dlaczego powstało? - świat przeżywa dziś rewolucję w obszarze edukacji, - naszym celem jest promocja śląskiego jako regionu opartego na wiedzy, i najnowszych technologiach,

Bardziej szczegółowo

Spinowa Struktura Nukleonu

Spinowa Struktura Nukleonu Spinowa Struktura Nukleonu Marcin Stolarski CERN nukleon i jego spin doświadczenie COMPASS 6-XI-007 M. Stolarski, xxx-xxx Strona 1 Jednostki i skale mikroświata jednostki energii i odleg lości Giga elektronowolt

Bardziej szczegółowo

OD MODELU STANDARDOWEGO DO M-TEORII. modele teoriopolowe. elementarnych.

OD MODELU STANDARDOWEGO DO M-TEORII. modele teoriopolowe. elementarnych. J. Lukierski Gdańsk 09. 2003 OD MODELU STANDARDOWEGO DO M-TEORII 1859 1925 1. Podstawowe relatywistyczne modele teoriopolowe. 1968 1971 2. Model standardowy teorii cząstek elementarnych. 1921 1925 3. Pierwsze

Bardziej szczegółowo

Plazma Kwarkowo-Gluonowa

Plazma Kwarkowo-Gluonowa Fizyka zderzeń relatywistycznych ciężkich jonów Wykład 0: LHC okno na Mikroświat Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty Wykład 2: Plazma kwarkowo-gluonowa Wykład 3: Geometria

Bardziej szczegółowo

Różne rozkłady prawdopodobieństwa

Różne rozkłady prawdopodobieństwa Różne rozłady prawdopodobieństwa. Rozład dwupuntowy D(p). Zmienna losowa ξ ma rozład D(p), jeżeli P p {ξ = 0} = p oraz P p {ξ = } = p. Eξ = p D ξ = p( p). Rozład dwumianowy Bin(n, p). Zmienna losowa ξ

Bardziej szczegółowo

Aerodynamics I Compressible flow past an airfoil

Aerodynamics I Compressible flow past an airfoil Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 ) Potential equation in compressible flows Full potential theory Let us introduce

Bardziej szczegółowo

Metody matematyczne fizyki

Metody matematyczne fizyki Metody matematyczne fizyki Tadeusz Lesiak Wykład VI Elementy teorii grup Wstęp do teorii grup Teoria grup (TG) = matematyka symetrii liczne zastosowania w fizyce i chemii Odpowiada na ważne pytanie: jakie

Bardziej szczegółowo

Warsztaty metod fizyki teoretycznej Zestaw 3 i 4 String theory made easy

Warsztaty metod fizyki teoretycznej Zestaw 3 i 4 String theory made easy Warsztaty metod fizyki teoretycznej Zestaw 3 i 4 String theory made easy Michał P. Heller, Jan Kaczmarczyk 18.10.2007 25.10.2007 (31.10.2007) I. Wstęp historyczny Najbliższy, podwójny zestaw (18.10.2007

Bardziej szczegółowo

****/ZN/2012. if you are pregnant or breast-feeding.

****/ZN/2012. if you are pregnant or breast-feeding. Wydruk z drukarki nie jest wzorcem do druku. Akceptacja kolorów na podstawie proofa certyfikowanego i wzornika PANTONE. Załączony wzór przeznaczony jest do procesu akceptacji i nie może być użyty do przygotowania

Bardziej szczegółowo

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature A Surname _ Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature Polish Unit 1 PLSH1 General Certificate of Education Advanced Subsidiary Examination June 2014 Reading and

Bardziej szczegółowo

Ostatnie uzupełnienia

Ostatnie uzupełnienia Ostatnie uzupełnienia 00 DONUT: oddziaływanie neutrina taonowego (nikt nie wątpił, ale ) Osiągnięta skala odległości: 100GeV 1am; ew. struktura kwarków i leptonów musi być mniejsza! Listy elementarnych

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo

Sprężyny naciskowe z drutu o przekroju okrągłym

Sprężyny naciskowe z drutu o przekroju okrągłym Sprężyny owe z o przekroju okrągłym Stal sprężynowa, zgodnie z normą PN-71/M80057 (EN 10270:1-SH oraz DIN 17223, C; nr mat. 1.1200) Stal sprężynowa nierdzewna, zgodnie z normą PN-71/M80057 (EN 10270:3-NS

Bardziej szczegółowo

SG-MICRO... SPRĘŻYNY GAZOWE P.103

SG-MICRO... SPRĘŻYNY GAZOWE P.103 SG-MICRO... SG-MICRO 19 SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 32 SG-MICRO 32H SG-MICRO 32R SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 45 SG-MICRO SG-MICRO SG-MICRO 75 SG-MICRO 95 SG-MICRO 0 cylindra body

Bardziej szczegółowo

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm

Bardziej szczegółowo

Wykłady z Mechaniki Kwantowej

Wykłady z Mechaniki Kwantowej Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (017) Wykład 6 Długoletnie błądzenie w ciemnościach w poszukiwaniu prawdy odczuwanej, lecz nieuchwytnej,

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)

Bardziej szczegółowo

WYKŁAD 7 17.11.2010. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW

WYKŁAD 7 17.11.2010. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 7 17.11.2010 Maria Krawczyk, Wydział Fizyki UW Teoria cząstek elementarnych rola symetrii Symetrie globalne i lokalne Spontaniczne łamanie symetrii

Bardziej szczegółowo

Maria Krawczyk, Wydział Fizyki UW 29. III. 2010

Maria Krawczyk, Wydział Fizyki UW 29. III. 2010 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 57 Maria Krawczyk, Wydział Fizyki UW 1 29. III. 2010 T Teoria cząstek elementarnych rola symetrii Symetrie globalne i lokalne Spontaniczne łamanie

Bardziej szczegółowo

Poszukiwania efektów nowej fizyki w rozpadach mezonów B

Poszukiwania efektów nowej fizyki w rozpadach mezonów B Poszukiwania efektów nowej fizyki w rozpadach mezonów B Andrzej Bożek Instytut Fizyki Jądrowej PAN im. Henryka Niewodniczańskiego Kraków, maj 2013 r. rozprawa habilitacyjna Praca ta była wspierana przez

Bardziej szczegółowo

Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012

Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012 Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest

Bardziej szczegółowo

ØÓ ÔÖ Ù Ð ØÖÝÞÒ Ó ÈÖ Ó ÙÒÓ Þ Ò Ó Ò ÓÖ ØÓ ÔÖ Ù Ø Û ØÓÖ Ñ Ø Ö Ó ÖÙÒ ÛÝÞÒ Þ ØÝÞÒ Ó ØÓÖÙ ÔÓÖÙ Þ Ó ÙÒ Ù Ó ØÒ Óº ÛÖÓØ Û ØÓÖ Ó Ö Ð ÙÑÓÛÒ Ó ÖÙÒ ÖÙ Ù ÙÒ Ù Ó ØÒ

ØÓ ÔÖ Ù Ð ØÖÝÞÒ Ó ÈÖ Ó ÙÒÓ Þ Ò Ó Ò ÓÖ ØÓ ÔÖ Ù Ø Û ØÓÖ Ñ Ø Ö Ó ÖÙÒ ÛÝÞÒ Þ ØÝÞÒ Ó ØÓÖÙ ÔÓÖÙ Þ Ó ÙÒ Ù Ó ØÒ Óº ÛÖÓØ Û ØÓÖ Ó Ö Ð ÙÑÓÛÒ Ó ÖÙÒ ÖÙ Ù ÙÒ Ù Ó ØÒ ÈÖ Ð ØÖÝÞÒÝ ÈÓÐ Ñ Ò ØÝÞÒ ½¼»½ Ò ÖÞ Ã Ô ÒÓÛ ØØÔ»»Ù Ö ºÙ º ÙºÔл Ù Ô ÒÓ» ÁÒ ØÝØÙØ ÞÝ ÍÒ Û Ö ÝØ Ø Â ÐÐÓ ÃÖ Û ¾¼½ ÈÖ Ð ØÖÝÞÒÝ Ø ØÓ ÙÔÓÖÞ ÓÛ ÒÝ ÖÙ ÙÒ Û Ð ØÖÝÞÒÝ º ÊÙ ÙÒ Û ÑÓ Ñ Ñ Û ÔÖÞ ÛÓ Ò Û Ô ÛÒÝ Û ÖÙÒ Ö ÛÒ

Bardziej szczegółowo

Fizyka 15 lat eksperymentów H1 i ZEUS na akceleratorze HERA (2): stany hadronowe

Fizyka 15 lat eksperymentów H1 i ZEUS na akceleratorze HERA (2): stany hadronowe Fizyka 15 lat eksperymentów H1 i ZEUS na akceleratorze HERA (2): stany hadronowe Jan Figiel H1 proton, 920 GeV ZEUS elektron, 27.5 GeV...badamy fundamentalne cząstki i siły natury w zderzeniach e p przy

Bardziej szczegółowo

DYFRAKCJA W ODDZIAŁYWANIACH e-p NA AKCELRATORZE HERA

DYFRAKCJA W ODDZIAŁYWANIACH e-p NA AKCELRATORZE HERA DYFRAKCJA W ODDZIAŁYWANIACH e-p NA AKCELRATORZE HERA Jan Figiel Dyfrakcja w oddziaływaniach hadronów model Regge Dyfrakcja w oddziaływaniach e-p perturbacyjna chromodynamika (pqcd) produkcja mezonów wektorowych

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Wstęp do Fizyki Jądra Atomowego i cząstek elementarnych. III. Leptony i kwarki

Wstęp do Fizyki Jądra Atomowego i cząstek elementarnych. III. Leptony i kwarki Wstęp do Fizyki Jądra Atomowego i cząstek elementarnych III. Leptony i kwarki Jan Królikowski krolikow@fuw.edu.pl, pok. 123 w Pawilonie IPJ J. Królikowski: Wstęp do Fizyki Jądra i J. Królikowski: Wstęp

Bardziej szczegółowo

ELF. system: pokój młodzieżowy / teenagers room MEBLE MŁODZIEŻOWE / YOUTH ROOM FURNITURE ELF

ELF. system: pokój młodzieżowy / teenagers room MEBLE MŁODZIEŻOWE / YOUTH ROOM FURNITURE ELF 144 Nowoczesny system mebli młodzieżowych jest nie tylko funkcjonalny, ale także dzięki wzornictwu niezwykły. Sprawdza się nawet w najmniejszych pomieszczeniach. Poszczególne bryły mebli mają kształty

Bardziej szczegółowo

Ewolucja Wykład Wszechświata Era Plancka Cząstki elementarne

Ewolucja Wykład Wszechświata Era Plancka Cząstki elementarne Krystyna Wosińska Ewolucja Wykład Wszechświata 3 Era Plancka Cząstki elementarne Era Plancka 10-44 s Temperatura 10 32 K Dwie cząstki punktowe o masach równych masie Plancka i oddalone o długość Plancka:

Bardziej szczegółowo

Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści

Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, 2011 Spis treści Przedmowa 15 Przedmowa do wydania drugiego 19 I. PODSTAWY I POSTULATY 1. Doświadczalne podłoŝe mechaniki kwantowej

Bardziej szczegółowo

Cracow University of Economics Poland

Cracow University of Economics Poland Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach

Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach If you are looking for the ebook by Anna Stelmach Polski krok po kroku: Tablice gramatyczne (Polish Edition) in pdf form, in

Bardziej szczegółowo

Wstęp do fizyki cząstek elementarnych

Wstęp do fizyki cząstek elementarnych Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania

Bardziej szczegółowo

STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017

STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017 STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków

Bardziej szczegółowo

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT) AIP VFR POLAND VFR ENR 2.4-1 VFR ENR 2.4 STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT) 1. INFORMACJE OGÓLNE 1. GENERAL 1.1 Konkretne przebiegi tras MRT wyznaczane są według punktów sieci

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

Przegląd działalności naukowej 2011-2013 Zakład Oddziaływań Leptonów NZ11

Przegląd działalności naukowej 2011-2013 Zakład Oddziaływań Leptonów NZ11 Przegląd działalności naukowej 2011-2013 Zakład Oddziaływań Leptonów NZ11 Grażyna Nowak Samodzielni pracownicy naukowi Adiunkci 1) dr hab. Andrzej Bożek 2) dr hab. Lidia Görlich (ALICE od 02.2012) 3) dr

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama

Bardziej szczegółowo

!"! # $ % % &' &( ) *+,#%%#-***./,.0*00

!! # $ % % &' &( ) *+,#%%#-***./,.0*00 !! # $ % % &' &( ) *+,#%%#-***./,.0*00 *,%#10* *,%#10*222222222222222222222222222222222222222222222222222222222222222222222222222222222222222 3 4 2 222222222222222222222222222222222222222222222222222222222222222222222222222

Bardziej szczegółowo

Patients price acceptance SELECTED FINDINGS

Patients price acceptance SELECTED FINDINGS Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may

Bardziej szczegółowo

Komputerowe przetwarzanie obrazu Laboratorium 5

Komputerowe przetwarzanie obrazu Laboratorium 5 Komputerowe przetwarzanie obrazu Laboratorium 5 Przykład 1 Histogram obrazu a dobór progu binaryzacji. Na podstawie charakterystyki histogramu wybrano dwa różne progi binaryzacji (120 oraz 180). Proszę

Bardziej szczegółowo

MS Visual Studio 2005 Team Suite - Performance Tool

MS Visual Studio 2005 Team Suite - Performance Tool MS Visual Studio 2005 Team Suite - Performance Tool przygotował: Krzysztof Jurczuk Politechnika Białostocka Wydział Informatyki Katedra Oprogramowania ul. Wiejska 45A 15-351 Białystok Streszczenie: Dokument

Bardziej szczegółowo

O spinie kilka spraw ciekawych

O spinie kilka spraw ciekawych O spinie kilka spraw ciekawych Barbara Badełek Uniwersytet Warszawski i Uniwersytet Uppsalski Nauczyciele fizyki w CERN 20 26 maja 2007 B. Badełek (Warsaw and Uppsala) O spinie kilka spraw ciekawych 1

Bardziej szczegółowo