Wstęp do oddziaływań hadronów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do oddziaływań hadronów"

Transkrypt

1 Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia GórniczoHutnicza Wykład 3 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 1 / 16

2 Diaramy Feynmana Po wysumowaniu po wszystkich możliwych uporządkowaniach w czasie otrzymujemy lorentzowsko niezmienniczy element macierzowy: space a b c d time space a b c d time Uporządkowana czasowo MK : pęd zachowany w wierzchołkach, eneria niezachowana w wierzchołkach, wymieniana cząstka na powłoce masy: tchannel a c b E 2 X p X 2 = m 2 X d a b time c d M fi = a b 2 m 2 X Diaram Feynmana: pęd i eneria zachowane w wierzchołkach wymieniana cząstka wirtualna: E 2 X p X 2 m 2 X Mamy: 2 = (p 1 p 3 ) 2 = (p 2 p 4 ) 2 = t Dla rozpraszania elastyczneo: p 1 = (E, p 1 ), p 3 = (E, p 3 ) Mamy: 2 = (p 1 p 2 ) 2 = (p 3 p 4 ) 2 = s W układzie CMS: p 1 = (E, p), p 2 = (E, p) 2 = (E E) 2 ( p p) 2 = 4E 2 > 0 2 = (E E) 2 ( p 1 p 3 ) 2 < 0 schannel M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 2 / 16

3 Fizyka w diaramach Feynmana Wielkość 1/( 2 m 2 X) nazywamy propaatorem. Jest on odwrotnie proporcjonalny do teo jak bardzo cząstka jest poza powłoką masy. Im bardziej poza powłoką masy tym mniejsze jest ptwo produkcji takieo stanu wirtualneo. Podstawowe elementy składowe diaramów Feynmana w QED: elektron radiacja pozyton anihilacja foton produkcja pary Siła oddziaływania pomiędzy wirtualnym fotonem i fermionem nazywana jest sprzężeniem i jest proporcjonalna do ładunku fermionu. p e 1 2 e p Element macierzowy dla rozpraszania elastyczneo ep: im = ū e ie µ u e iµν 2 ū p ie µ u p Wielkości µ oraz µν to macierze 4 4 uwzledniające strukturę spinową oddziaływania, natomiast ū oraz u to tzw. spinory. Wielkości Ôµ te oraz postacie prądów fermionowych wynikają z równania Diraca. Ôµ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 3 / 16

4 Przykłady procesów elektromanetycznych Å ¾ Rozpraszanie Comptona: propaator Åe Å ¾ M Å e 2 σ ¾ (4π) 2 α 2 µ ¾ «Rozpraszanie ep: Anihilacja e Å e : M e É e Ù É Ù Å ¾ Å ¾ É Ù µ ¾ 1 σ Å M 2 ¾ e 4 ¾ É Ù 2 σ (4π) µ «¾ 2 α 2 µ ¾ «¾ ¾ «¼ Å µ Å µ ¾ «¾ Bremsstrahlun: M Å ¾ ÅZe e e σ M 2 e ¾4 e σ Å M ¾ ¾ 2 Z ¾2 e ¾ 6 µ ¾ «¾ σ (4π) 3 Z 2 µ µ α 3 ¾ nucleus Produkcja pary e : ¼ Pair Production Rozpad π 0 : M e e Ze u Å M Q u e Å Å QÉ u e Å ¾ ¾ Ù É Ù Å σ ¾ M 2 ¾ Z 2 e 6 ¾ µ ¾ π u Å 0 σ M ¾ 2 Å QÉ Ù ¾ σ (4π) µ 3 Z µ 2 α 3¾ «¾ «4 ue 4 ¾ µ σ (4π) 2 Q 4 ¾ É uα µ 2 ¾ «¾ nucleus u ¼ p p ¼ Â Å É Ù É Ù MÅ ¾ e Q É Ù Å u e É µ ¾ É «Ù Ù σ M 2 Q 2 É ue 4 ¾ Ù σ (4π) 2 µ Q 2 uα ¾ É 2 ¾ Ù «¾ Å ¾ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 4 / 16

5 Wyższe rzędy w rachunku zaburzeń Aby obliczyć przekrój czynny należy dodać do siebie elementy macierzowe odpowiadające kolejnym rzędom w rachunku zaburzeń: M fi = M 1 M 2 M 3... Lowest Order: najniższy rząd: M 2 α drui rząd: M 2 α trzeci rząd: M 2 α µ Å ¾» «¾ ½ µ Å ¾» «¾ ½ µ Third Order: Å ¾» «¾ ½ ½ ¾ Å ¾» «½ ½ Å ¾» «½ ½ Å ¾» ««¾ ½ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów ¾ Wykład 3 5 / 16 µ µ ½ ¾ ½ ¾ µ... Å ¾» «½ ½ Å ¾» «½ ½... Wkład od każdeo kolejneo rzędu jest oraniczony czynnikiem α 2. Zakładając, że α jest małe, w sumie dominuje najniższy rząd. ½ «Sumowanie amplitud, a więc różnych diaramów, może prowadzić Å ¾» ½ «¾ do interferencji pozytywnych lub neatywnych. «½

6 Bienąca stała sprzężenia α «¾ ««¾ Stała sprzężenia «α = e2 «określa siłę oddziaływania pomiędzy elektronem i 4π fotonem. W rzeczywistości α nie jest stałe, ale zależy od wirtulaności «fotonu! Fluktuacje kwantowe prowadzą do powstania chmury«õ ¾ µ e e wirtualnych cząstek w otoczeniu elektronu (nieskończona liczba podobnych diaramów). Pary e uleają e polaryzacji i ekranują ładunek ołeo elektronu. Wartość α rośnie wraz ze wzrostem 2 (tzn. kiedy jesteśmy bliżej ołeo elektronu). At lare R test chare 155 sees screened TOPAZ µµ/eeµµ: : chare Test Chare 140 α 1 (0) At small R test chare sees bare chare Test Chare α( 2 = 0) = 1/137, α( 2 = 100 GeV 2 ) = 1/128 α 1 (Q) e e α 1 SM (Q) e e Fits to leptonic data from: DORIS, PEP, PETRA, TRISTAN Q / GeV M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 6 / 16 OPAL

7 Chromodynamika kwantowa QCD Elektrodynamika kwantowa (QED): kwantowa teoria oddziaływań elektromanetycznych przenoszonych przez bezmasowe fotony, sprzęające się do ¾ ładunku elektryczneo. Siła oddziaływania ψ f Ĥ ψ i α, α = e 2 /4π. Chromodynamika kwantowa (QCD): kwantowa teoria oddziaływań silnych przenoszonych przez bezmasowe luony sprzęające się do ładunku À silneo.» Ô ««¾ W QCD ładunkiem jest kolor liczba kwantowa zachowana w oddziaływaniach silnych i przyjmująca trzy wartości: red, reen oraz blue. Kwarki niosą kolor : r, oraz b Antykwarki niosą antykolor : r, ḡ oraz b QED ½Õ ¾ «Ë «Å Leptony oraz, W ±, Z 0 Q nie niosą koloru ( kolor = 0) i nie uczestniczą w oddziaływaniach silnych. α = e Gluony są bezmasowymi cząstkami o spinie 1 i /4π ~ 1/137 «przenoszą ładunek kolorowy. Oczekujemy 9 luonów: Ë «Å r b, rḡ, r, b, bḡ, b r, r r, ḡ, b b QCD «Ë Rzeczywiste luony są ortoonalnymi kombinacjami S liniowymi powyższych ( stanów. Kombinacja 1 3 r r ḡ b b) ma wypadkowy kolor α S = S 2/4π ~ 1 równy 0 i nie przenosi oddziaływań silnych. α s α em«ñ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów «Ë Wykład 3 7 / 16

8 Oddziaływania kolorowe Przykład: Rozpraszanie oraz anihilacja. Dla małych odlełości potencjały w QED i QCD wylądają podobnie: r V QED = α V QCD = 4 α s ÕÕ r r 3 r Podobieństwo to wynika z faktu, że oba oddziaływania przenoszone są za pomocą bezmasowych cząstek o spinie 1. Gluony niosą jednak ładunek kolorowy. Oznacza, to żeö moą Ö Ö między sobą Ö ÖÖ silnie oddziaływać. Moą występować wierzchołki luonowe: Przykład: Rozpraszanie luon É «Ö ½Ô ÖÖ µ r r É «Ë Ö np. e.. rḡ r b r r r b b r r r b r M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 8 / 16

9 Uwięzienie (confinement) Nie obserwujemy swobodnych kwarków ani luonów. Uwięzienie kwarków w hadronach jest konsekwencją samooddziaływania lunów. Samoodziaływanie luonów prowadzi do ich wzajemneo przyciąania, co powoduje że linie pola koloroweo układają się w wąską strunę, w przybliżeniu mającą stałą ęstość enerii V (r) = kr dzie k 1 GeV/fm Do odseparowania kwarków potrzebna jest nieskończona eneria! uwięzienie. Przykład: Jak silne są oddziaływania silne? V QCD = 4 α s 3 F = dv dr = 4 3 r kr α s r 2 k Dla dużych r mamy: F = k = [N] = N V QCD (GeV) Ö V = 4α s 3r kr V = 4α s 3r α s =0.2 k=1 GeV/fm r(fm) M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 9 / 16 «Ë Ö

10 Hadronizacja i dżety Rozważmy parę wyprodukowaną w anihilacji e, tzn. e : początkowo kwarki oddalają się od siebie z dużą prędkością, tworzy się struna kolorowa pomiędzy nimi, eneria struny staje się wystarczająca do wyprodukowania pary, proces ten jest kontynuowany aż kwarki utworzą dżety hadronów ÕÕ (hadronizacja). SPACE TIME ÕÕ ÕÕ π (ud) etc... π π 0 π K π π 0 π 0 π p π 0 e ÕÕ ÕÕ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 10 / 16

11 Bienąca silna stała sprzężenia α s «Ë Stała sprzężenia α s podobnie jak α QED zależy od 2 (bienie): Fluktuacje kwantowe w QCD prowadzą do powstania wokół kwarku chmury wirtualnych par oraz chmury wirtualnych luonów (brak analoii w QED ze wzlędu na brak samooddziaływania fotonu). Goły kolor kwarku jest ÕÕekranowany zarówno przez kwarki jak i luony. «Ë «Ë Chmura wirtualnych luonów niesie kolor i efektywny ładunek kolorowy rośnie z odlełością! Przy niskich eneriach (duże odlełości) α s staje się duże i nie można stosować rachunku zaburzeń. Przy wysokich eneriach (małe odlełości) α s jest małe, kwarki zachowują się jak swobodne cząstki (asymptotic freedom) i można stosować rachunek zaburzeń. ÕÕ 1 1 α s M Z α s «Ë 0 M p lo 10 ( 2 /GeV 2 ) lo 10 (r/m) M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 11 / 16

12 QCD w anihilacji e Ê ÖÓÒ µ Anihilacja e µ dostarcza bezpośrednieo dowodu na istnienie koloru. Porównajmy przekroje czynne na procesy e µ µ oraz e R µ = σ(e e hadrons) σ( e µ µ ) Zaniedbując masy cząstek w stanie końcowym (muon, kwark) jedyną róznicą pomiędzy nimi jest ładunek elektryczny. Obliczymy przekrój czynny na process e f f, dzie f f oznacza µ µ lub. p µ 2 ÕÕ 1 2 ¾ ½ 1 p µ 1 2 µ µ f Q f 1 2 Q θ É ½ É Õ f f Þ Mamy: p µ 1 = (E, 0, 0, E), pµ 2 = (E, 0, 0 E), µ = p µ µ Ô 1 pµ 2 = (2E, 0, 0, 0) ½ Ô Ü Ô Ý Ô Þ µ Obliczamy element macierzowy i rózniczkowy przekrój czynny: ÕÕ Ô ½ ¼ ¼ µ ÒÐØÒ Ñ M = v Ô ¾ ¼ ¼ µ Q e e u e 1 2 v f Q f e u f = 4παQ eq f 2 Õ Ô ½ Ô ¾ dσ ¾ ¼ ¼ ¼µ dω = dρ(e 2π M 2 f ) dω = 2π ( 4παQ eq f ) 2 E (2π) Õ 2¾ 4 (1 cos2 θ) = α2 Q 2 f ¾ 4s (1 cos2 θ) µ ¾ Czynnik (1 cos 2 θ) wynika z rówania Diraca i opisuje rozpad fotonu o spinie 1 na dwa fermiony o spinie 1/2. ¾ µ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 12 / 16 f

13 dzie suma przebiea po zapachach kwarków kinematycznie dostępnych w danym eksperymencie ( s > 2m ). W obszarze s < 11 GeV duży wpływ rezonasów. Pomiar R µ wyklucza hipotezę braku koloru. M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 13 / 16 QCD w anihilacji e Całkowity przekrój czynny na proces e f f: dσ 2π π σ = dω dω = α 2 Q 2 f 4s (1 cos2 θ) sin θ dθ dφ = πα2 Q 2 f 2s (1 y 2 ) dy = 4πα2 Q 2 f 3s W szczeólności otrzymujemy: σ( e µ µ ) = 4πα2 3s Dla pojedynczeo kwarku wielkość R = Q 2. W rzeczywistości obserwujemy e jets, musimy więc sumować po kwarkach i kolorach: R = 3 i Q 2 i

14 Eksperymentalne dowody na istnieniekoloru i luonów Konieczność wprowadzenia koloru wynika m. in. z: Rozkład wielkości R µ istnienie barionu Ω (sss) o spinie 3/2 złożoneo z trzech kwarków dziwnych s. Funkcja falowa jest symetryczna wzlędem przestawień µ ÓÐÓÙÖ kwarków (ψ = s s s ). Jednak kwarki ÕÕ jako fermiony wymaają ÓÐÓÙÖ Ô ½ Ö Ö Ö Ö Ö Ö antysymetrycznej funkcji falowej, tzn. konieczny jest dodatkowy stopień swobody kolor: ψ = (s s s )ψ kolor = (s s s ) 1 ¼ (rbbrbr ¼ rb rb br) 6 częstość rozpadu π 0 u Γ(π 0 ) Nkolor 2 u u Exp: N kolor = 2.99 ± 0.12 ¼ µ» Æ ¾ ÓÐÓÙÖ Eksperymentalne potwierdzenie istnienia luonów: Æ ÓÐÓÙÖ ¾ ¼½¾ przypadki ÕÕ trójdżetowe e S Q 1 2 Ô ivin an extra factor of «Ë in the matrix π 0 Ô «Ë «Ë M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 14 / 16

15 Eksperymentalne potwierdzenie istnienia luonów Rozkład kątowy dżetów luonowych zależy od spinu luonu. Rysunek przedstawia rozkład kąta φ pomiędzy dżetem o największej enerii (zakładamy, że jest to dżet kwarkowy) oraz kierunkiem lotu pozostałych dwóch dżetów (w układzie ich środka masy). Zmierzony rozkład kąta φ jest zodny z przewidywaniami dla spinu luonu równeo 1 (linia przerywana spin 0). OPAL at LEP ( ) przypadki czterodżetowe e ( ) Rozkład kąta χ BZ pomiędzy płaszczyznami zawierającymi dżety kwarkowe i luonowe wymaa istnienia samoodziaływania luonów. χ BZ χ BZ ÕÕ µ ½ ¾ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 15 / 16

16 Pomiary silnej stałej sprzężenia α s Pomiar w oparciu o stosunek R µ. W praktyce sumujemy diaramy, co oznacza, że nie rozróżniamy przypadki 2/3 dżetowe: R µ = σ(e e ) σ( e µ µ ) = 3 R µ = σ(e e hadrons) σ( e µ µ ) Pomiar: ( 1 α ) s π = 3 Q 2 Q 2 ( 1 α s π α s ( 2 = 25 2 ) 0.20 Inne metody pomiaru α s, np. stosunek liczby przypadków 3 i 2 dżetowych: σ(3 dżety) σ(2 dżety) = σ( ) σ( ) α s Podsumowanie aktualnych pomiarów α s przedstawia rysunek obok α s bienie! ) «Ë Ê Ë Ê ÒÓØ Ê... Ê Ê É ¾ Õ ½ «Ë ÕÕ ÒÓØ Ê È Ê É ¾ Õ ½ «Ë ½ «Ë µ «Ë Õ ¾ ¾ ¾ µ ¼¾¼ ½ «Ë µ «Ë Õ ¾ ¾ ¾ µ ¼¾¼ Õ È Õ É M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 16 / 16

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu Struktura protonu Wykład V równania ewolucji QCD spin protonu struktura fotonu Elementy fizyki czastek elementarnych Funkcja struktury Różniczkowy przekrój czynny na NC DIS elektron proton: d 2 σ dx dq

Bardziej szczegółowo

Rozpraszanie elektron-proton

Rozpraszanie elektron-proton Rozpraszanie elektron-proton V Badania struktury atomu - rozpraszanie Rutherforda. Rozpraszanie elastyczne elektronu na punktowym protonie. Rozpraszanie elastyczne elektronu na protonie o skończonych wymiarach.

Bardziej szczegółowo

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład IX. Co to jest ładunek?...

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład IX. Co to jest ładunek?... Wielka Unifikacja Wykład IX Co to jest ładunek?... Elementy fizyki czastek elementarnych Biegnaca stała sprzężenia i renormalizacja w QED Asymptotyczna swoboda QCD Unifikacja SU(5) QED Ładunek elektryczny

Bardziej szczegółowo

Wyk³ady z Fizyki. Zbigniew Osiak. Cz¹stki Elementarne

Wyk³ady z Fizyki. Zbigniew Osiak. Cz¹stki Elementarne Wyk³ady z Fizyki 13 Zbigniew Osiak Cz¹stki Elementarne OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

LHC i po co nam On. Piotr Traczyk CERN

LHC i po co nam On. Piotr Traczyk CERN LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC

Bardziej szczegółowo

Oddziaływanie pomiędzy kwarkami i leptonami -- krótki opis Modelu Standardowego

Oddziaływanie pomiędzy kwarkami i leptonami -- krótki opis Modelu Standardowego Oddziaływanie pomiędzy kwarkami i leptonami -- krótki opis Modelu Standardowego Początkowe poglądy na temat oddziaływań Ugruntowanie poglądów poprzednich- filozofia mechanistyczna Kartezjusza ciała zawsze

Bardziej szczegółowo

Model Standardowy i model Higgsa. Sławomir Stachniewicz, IF PK

Model Standardowy i model Higgsa. Sławomir Stachniewicz, IF PK Model Standardowy i model Higgsa Sławomir Stachniewicz, IF PK 1. Wstęp. Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami materii. Model Higgsa to dodatek do

Bardziej szczegółowo

Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW

Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW sem.zim.2010/11 Masy, czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe:

Bardziej szczegółowo

LEPTON TAU : jako taki, oraz zastosowania. w niskich i wysokich energiach. Zbigniew Wąs

LEPTON TAU : jako taki, oraz zastosowania. w niskich i wysokich energiach. Zbigniew Wąs LEPTON TAU : jako taki, oraz zastosowania w niskich i wysokich energiach Zbigniew Wąs Podziękowania: A. Kaczmarska, E. Richter-Wąs (Atlas); A. Bożek (Belle); T. Przedziński, P. Golonka (IT); R. Decker,

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( )

Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( ) Lucja Sławianowska 7 grudnia 2001 Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( ) macierz opisuje łamanie CP i niezachowanie zapachu w Modelu Standardowym jest to jedyne

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

Poszukiwanie sygnału rozpraszania bozonów W w eksperymencie CMS przy LHC

Poszukiwanie sygnału rozpraszania bozonów W w eksperymencie CMS przy LHC Uniwersytet Warszawski Wydział Fizyki Tomasz Kuśmierczyk Nr albumu: 290810 Poszukiwanie sygnału rozpraszania bozonów W w eksperymencie CMS przy LHC Praca licencjacka na kierunku FIZYKA Praca wykonana pod

Bardziej szczegółowo

Korekcja energii dżetów w eksperymencie CMS

Korekcja energii dżetów w eksperymencie CMS Maciej Misiura Wydział Fizyki UW opiekun: dr Artur Kalinowski Wstęp O czym seminarium? Zmierzyliśmy energię dżetu w CMS. Jak ona ma się do energii na poziomie hadronowym? Dlaczego taki temat? Zagadnienie

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

Fizyka cząstek elementarnych warsztaty popularnonaukowe

Fizyka cząstek elementarnych warsztaty popularnonaukowe Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński

Bardziej szczegółowo

Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS

Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS Artur Kalinowski Wydział Fizyki Uniwersytet Warszawski Warszawa, 7 grudnia 2012 DETEKTOR CMS DETEKTOR CMS Masa całkowita : 14

Bardziej szczegółowo

Marcin Kucharczyk Zakład XVII

Marcin Kucharczyk Zakład XVII Strumienie ciężkich kwarków przy energiach LHC: Model Standardowy i modele egzotyczne Marcin Kucharczyk Zakład XVII 27.06.2013 Plan Motywacja fizyczna Eksperyment LHCb Pomiar przekroju czynnego na produkcję

Bardziej szczegółowo

Compact Muon Solenoid

Compact Muon Solenoid Compact Muon Solenoid (po co i jak) Piotr Traczyk CERN Compact ATLAS CMS 2 Muon Detektor CMS był projektowany pod kątem optymalnej detekcji mionów Miony stanowią stosunkowo czysty sygnał Pojawiają się

Bardziej szczegółowo

Spin spina fizykę i... SPiN. prof. Mariusz P. Dąbrowski

Spin spina fizykę i... SPiN. prof. Mariusz P. Dąbrowski Spin spina fizykę i... SPiN prof. Mariusz P. Dąbrowski Co łączy ze sobą rowerzystę, łyżwiarkę i tancerza hip-hopu... Ziemię, gwiazdę... czarną dziurę w kosmosie... z cząstkami w Wielkim Zderzaczu Hadronów?

Bardziej szczegółowo

1. Matematyka Fizyki Kwantowej: Cześć Druga

1. Matematyka Fizyki Kwantowej: Cześć Druga . Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie?

Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie? Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie? Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16) Seminarium IFJ PAN, Kraków, 05.12.2013 Plan

Bardziej szczegółowo

WINHAC++ Obiektowy generator Monte Carlo do modelowania produkcji bozonów W w LHC. Kamil Sobol

WINHAC++ Obiektowy generator Monte Carlo do modelowania produkcji bozonów W w LHC. Kamil Sobol WINHAC++ Obiektowy generator Monte Carlo do modelowania produkcji bozonów W w LHC Kamil Sobol Zakład Zastosowań Metod Obliczeniowych, Instytut Fizyki UJ 24. stycznia 2010 we współpracy z: W. Płaczek, A.

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Warsztaty metod fizyki teoretycznej Zestaw 3 i 4 String theory made easy

Warsztaty metod fizyki teoretycznej Zestaw 3 i 4 String theory made easy Warsztaty metod fizyki teoretycznej Zestaw 3 i 4 String theory made easy Michał P. Heller, Jan Kaczmarczyk 18.10.2007 25.10.2007 (31.10.2007) I. Wstęp historyczny Najbliższy, podwójny zestaw (18.10.2007

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

WYKŁAD 7 17.11.2010. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW

WYKŁAD 7 17.11.2010. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 7 17.11.2010 Maria Krawczyk, Wydział Fizyki UW Teoria cząstek elementarnych rola symetrii Symetrie globalne i lokalne Spontaniczne łamanie symetrii

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h

Bardziej szczegółowo

Siła magnetyczna działająca na przewodnik

Siła magnetyczna działająca na przewodnik Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Wykład 16: Atomy wieloelektronowe

Wykład 16: Atomy wieloelektronowe Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015 kod wewnątrz Zadanie 1. (0 1) KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 2015 Vademecum Fizyka fizyka ZAKRES ROZSZERZONY VADEMECUM MATURA 2016 Zacznij przygotowania

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Czasy starożytne. Wykład III

Czasy starożytne. Wykład III Czasy starożytne 4 6 20 8 12 Platon (428-347 pne): Republika - matematyka była absolutnym musem w edukacji polityków i filozofów, napis w Akademii: Niech nikt nie znający geometrii nie przekracza tych

Bardziej szczegółowo

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13

Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13 5 Spis treści Przedmowa do wydania szóstego........................................ 13 Przedmowa do wydania czwartego....................................... 14 Przedmowa do wydania pierwszego.......................................

Bardziej szczegółowo

Zjawisko Dopplera w fizyce jądrowej. 3.1 Wstęp. (opracowany na podstawie podręcznika Mayera-Kuckuka [8])

Zjawisko Dopplera w fizyce jądrowej. 3.1 Wstęp. (opracowany na podstawie podręcznika Mayera-Kuckuka [8]) Zjawisko Dopplera w fizyce jądrowej 3.1 Wstęp (opracowany na podstawie podręcznika Mayera-Kuckuka [8]) W fizyce jądrowej, badanie stanów wzbudzonych i przejść między nimi stanowi klucz do zrozumienia skomplikowanej

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

gdzie f abc są stałymi struktury (antysymetryczne). Różnica: stałe d abc (symetryczne): λ a λ b = 2 3 δ ab + if abc λ c + d abc λ c.

gdzie f abc są stałymi struktury (antysymetryczne). Różnica: stałe d abc (symetryczne): λ a λ b = 2 3 δ ab + if abc λ c + d abc λ c. Chromodynamika kwantowa: grupa SU(3) Co trzyma kwarki związane w hadronach? Teoria z symetrią cechowania oparta na grupie SU(3) (lub SU(N c )): u r u = u g u b każdy u i jest czteorokomponentowym bispinorem

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

SKALA ENERGII. w MIKRO - oraz w MAKROKOSMOSIE

SKALA ENERGII. w MIKRO - oraz w MAKROKOSMOSIE SKALA ENERGII w MIKRO - oraz w MAKROKOSMOSIE Dyskusja panelowa - 17 listopada 2006 Energia ενεργεια "w pracy" Energia zdolność do wykonywania pracy Wiele form energii: w fizyce ( grawitacyjna, elektryczna,

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa

Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa Czego oczekujemy od LHC? Piotr Traczyk IPJ Warszawa Plan 1)Dwa słowa o LHC 2)Eksperymenty i program fizyczny 3)Kilka wybranych tematów - szczegółowo 2 LHC Large Hadron Collider UWAGA! Start jeszcze w tym

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

1. Jądro atomowe. 1.1. Jądro atomowe jako element struktury materii

1. Jądro atomowe. 1.1. Jądro atomowe jako element struktury materii 1. Jądro atomowe Jądro atomowe w prezentacji Instytutu Fizyki Jądrowej PAN w Krakowie; zob. http://popul.ifj.edu.pl/badania/2/zobacz.html 1.1. Jądro atomowe jako element struktury materii Pozycja jądra

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Laser na swobodnych elektronach w Hamburgu

Laser na swobodnych elektronach w Hamburgu Laser na swobodnych elektronach w Hamburgu Janusz A. Zakrzewski Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Pamięci Bjoerna Wiika 1. Wstęp Niniejszy wykład, rozpoczynający XXXVI Zjazd Fizyków

Bardziej szczegółowo

Wielki Zderzacz Hadronów, LHC

Wielki Zderzacz Hadronów, LHC CZĄSTKI ELEMENTARNE Wielki Zderzacz Hadronów, LHC największy na świecie akcelerator cząstek (hadronów), znajdujący się w CERN. Jego zasadnicze elementy są umieszczone w tunelu w kształcie torusa o długości

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Politechnika Warszawska Wydział Fizyki PRACA MAGISTERSKA

Politechnika Warszawska Wydział Fizyki PRACA MAGISTERSKA Politechnika Warszawska Wydział Fizyki PRACA MAGISTERSKA Badanie korelacji cząstek dziwnych produkowanych w zderzeniach relatywistycznych ciężkich jonów Marcin Zawisza PROMOTOR: dr Tomasz Pawlak Warszawa

Bardziej szczegółowo

Hamiltonowski opis kwarków efektywnych w QCD

Hamiltonowski opis kwarków efektywnych w QCD Hamiltonowski opis kwarków efektywnych w QCD Jakub Nar ebski praca magisterska napisana pod kierunkiem dra hab. Stanis lawa G lazka w Instytucie Fizyki Teoretycznej Uniwersytetu Warszawskiego Warszawa,

Bardziej szczegółowo

Praca inżynierska. 27 GeV w ramach eksperymentu STAR

Praca inżynierska. 27 GeV w ramach eksperymentu STAR Politechnika Warszawska Wydział Fizyki Praca inżynierska Opracowanie metody do wyznaczenia parametrów modelu Therminator w zderzeniach jonów złota przy energiach s NN = 7.7, 19.6 oraz 27 GeV w ramach eksperymentu

Bardziej szczegółowo

Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna

Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna Cząstka w pudle potencjału Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna 1 Plan prezentacji Czym jest cząstka w pudle potencjału? Czym się różni od piłki w pudle kartonowym? Teoria jednowymiarowego

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R E-15 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

30. Czym jest ładunek dodatni, jeśli nie jest ładunkiem pozytonów? Elektrony, krążące wokół jądra, posiadają masę, a zatem podlegają siłom dośrodkowym

30. Czym jest ładunek dodatni, jeśli nie jest ładunkiem pozytonów? Elektrony, krążące wokół jądra, posiadają masę, a zatem podlegają siłom dośrodkowym 30. Czym jest ładunek dodatni, jeśli nie jest ładunkiem pozytonów? Elektrony, krążące wokół jądra, posiadają masę, a zatem podlegają siłom dośrodkowym i odśrodkowym. Jedyny elektron zewnętrznej powłoki

Bardziej szczegółowo

im. ANDRZEJA SOŁTANA MHCTMTYT flflephblx npobhem MM.A.COJTTAHA SOLTAN INSTITUTE FOR NUCLEAR STUDIES

im. ANDRZEJA SOŁTANA MHCTMTYT flflephblx npobhem MM.A.COJTTAHA SOLTAN INSTITUTE FOR NUCLEAR STUDIES IPJ INSTYTUT PROBLEMÓW JĄDROWYCH im. ANDRZEJA SOŁTANA MHCTMTYT flflephblx npobhem MM.A.COJTTAHA SOLTAN INSTITUTE FOR NUCLEAR STUDIES RAPORT SINS - 2154/VI LEPI WYNIKI UZYSKANE PRZEZ DELPHI PO CZTERECH

Bardziej szczegółowo

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski

XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski 1 Rysunek 1: Elektrody (bramki) definiujące elektrostatyczną boczną kropkę kwantową. Fotografia otrzymana przy użyciu elektronowego mikroskopu

Bardziej szczegółowo

Fizyka do przodu Część 2: przegląd wyników z CMS

Fizyka do przodu Część 2: przegląd wyników z CMS Fizyka do przodu Część 2: przegląd wyników z CMS Grzegorz Brona Seminarium Fizyki Wielkich Energii Warszawa, 23.03.2012 Do przodu czyli gdzie? Fizyka do przodu = Zjawiska obserwowane pod małym kątem θ

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Fizyka 15 lat eksperymentów H1 i ZEUS na akceleratorze HERA (2): stany hadronowe

Fizyka 15 lat eksperymentów H1 i ZEUS na akceleratorze HERA (2): stany hadronowe Fizyka 15 lat eksperymentów H1 i ZEUS na akceleratorze HERA (2): stany hadronowe Jan Figiel H1 proton, 920 GeV ZEUS elektron, 27.5 GeV...badamy fundamentalne cząstki i siły natury w zderzeniach e p przy

Bardziej szczegółowo

Wpływ pól magnetycznych na rotację materii w galaktykach spiralnych. Joanna Jałocha-Bratek, IFJ PAN

Wpływ pól magnetycznych na rotację materii w galaktykach spiralnych. Joanna Jałocha-Bratek, IFJ PAN Wpływ pól magnetycznych na rotację materii w galaktykach spiralnych. Joanna Jałocha-Bratek, IFJ PAN c Czy pola magnetyczne mogą wpływać na kształt krzywych rotacji? W galaktykach spiralnych występuje wielkoskalowe,

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Badanie właściwości magnetycznych

Badanie właściwości magnetycznych Ćwiczenie 20 Badanie właściwości magnetycznych ciał stałych Filip A. Sala Spis treści 1 Cel ćwiczenia 2 2 Wstęp teoretyczny 2 2.1 Zagadnienia z teorii atomu............................ 2 2.2 Magnetyzm....................................

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Wykład 14 Test chi-kwadrat zgodności

Wykład 14 Test chi-kwadrat zgodności Wykład 14 Test chi-kwadrat zgodności Obserwacje klasyfikujemy do jakościowych klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to liczba obserwacji w pierszej klasie ma rozkład

Bardziej szczegółowo