Wstęp do oddziaływań hadronów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do oddziaływań hadronów"

Transkrypt

1 Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia GórniczoHutnicza Wykład 3 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 1 / 16

2 Diaramy Feynmana Po wysumowaniu po wszystkich możliwych uporządkowaniach w czasie otrzymujemy lorentzowsko niezmienniczy element macierzowy: space a b c d time space a b c d time Uporządkowana czasowo MK : pęd zachowany w wierzchołkach, eneria niezachowana w wierzchołkach, wymieniana cząstka na powłoce masy: tchannel a c b E 2 X p X 2 = m 2 X d a b time c d M fi = a b 2 m 2 X Diaram Feynmana: pęd i eneria zachowane w wierzchołkach wymieniana cząstka wirtualna: E 2 X p X 2 m 2 X Mamy: 2 = (p 1 p 3 ) 2 = (p 2 p 4 ) 2 = t Dla rozpraszania elastyczneo: p 1 = (E, p 1 ), p 3 = (E, p 3 ) Mamy: 2 = (p 1 p 2 ) 2 = (p 3 p 4 ) 2 = s W układzie CMS: p 1 = (E, p), p 2 = (E, p) 2 = (E E) 2 ( p p) 2 = 4E 2 > 0 2 = (E E) 2 ( p 1 p 3 ) 2 < 0 schannel M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 2 / 16

3 Fizyka w diaramach Feynmana Wielkość 1/( 2 m 2 X) nazywamy propaatorem. Jest on odwrotnie proporcjonalny do teo jak bardzo cząstka jest poza powłoką masy. Im bardziej poza powłoką masy tym mniejsze jest ptwo produkcji takieo stanu wirtualneo. Podstawowe elementy składowe diaramów Feynmana w QED: elektron radiacja pozyton anihilacja foton produkcja pary Siła oddziaływania pomiędzy wirtualnym fotonem i fermionem nazywana jest sprzężeniem i jest proporcjonalna do ładunku fermionu. p e 1 2 e p Element macierzowy dla rozpraszania elastyczneo ep: im = ū e ie µ u e iµν 2 ū p ie µ u p Wielkości µ oraz µν to macierze 4 4 uwzledniające strukturę spinową oddziaływania, natomiast ū oraz u to tzw. spinory. Wielkości Ôµ te oraz postacie prądów fermionowych wynikają z równania Diraca. Ôµ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 3 / 16

4 Przykłady procesów elektromanetycznych Å ¾ Rozpraszanie Comptona: propaator Åe Å ¾ M Å e 2 σ ¾ (4π) 2 α 2 µ ¾ «Rozpraszanie ep: Anihilacja e Å e : M e É e Ù É Ù Å ¾ Å ¾ É Ù µ ¾ 1 σ Å M 2 ¾ e 4 ¾ É Ù 2 σ (4π) µ «¾ 2 α 2 µ ¾ «¾ ¾ «¼ Å µ Å µ ¾ «¾ Bremsstrahlun: M Å ¾ ÅZe e e σ M 2 e ¾4 e σ Å M ¾ ¾ 2 Z ¾2 e ¾ 6 µ ¾ «¾ σ (4π) 3 Z 2 µ µ α 3 ¾ nucleus Produkcja pary e : ¼ Pair Production Rozpad π 0 : M e e Ze u Å M Q u e Å Å QÉ u e Å ¾ ¾ Ù É Ù Å σ ¾ M 2 ¾ Z 2 e 6 ¾ µ ¾ π u Å 0 σ M ¾ 2 Å QÉ Ù ¾ σ (4π) µ 3 Z µ 2 α 3¾ «¾ «4 ue 4 ¾ µ σ (4π) 2 Q 4 ¾ É uα µ 2 ¾ «¾ nucleus u ¼ p p ¼ Â Å É Ù É Ù MÅ ¾ e Q É Ù Å u e É µ ¾ É «Ù Ù σ M 2 Q 2 É ue 4 ¾ Ù σ (4π) 2 µ Q 2 uα ¾ É 2 ¾ Ù «¾ Å ¾ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 4 / 16

5 Wyższe rzędy w rachunku zaburzeń Aby obliczyć przekrój czynny należy dodać do siebie elementy macierzowe odpowiadające kolejnym rzędom w rachunku zaburzeń: M fi = M 1 M 2 M 3... Lowest Order: najniższy rząd: M 2 α drui rząd: M 2 α trzeci rząd: M 2 α µ Å ¾» «¾ ½ µ Å ¾» «¾ ½ µ Third Order: Å ¾» «¾ ½ ½ ¾ Å ¾» «½ ½ Å ¾» «½ ½ Å ¾» ««¾ ½ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów ¾ Wykład 3 5 / 16 µ µ ½ ¾ ½ ¾ µ... Å ¾» «½ ½ Å ¾» «½ ½... Wkład od każdeo kolejneo rzędu jest oraniczony czynnikiem α 2. Zakładając, że α jest małe, w sumie dominuje najniższy rząd. ½ «Sumowanie amplitud, a więc różnych diaramów, może prowadzić Å ¾» ½ «¾ do interferencji pozytywnych lub neatywnych. «½

6 Bienąca stała sprzężenia α «¾ ««¾ Stała sprzężenia «α = e2 «określa siłę oddziaływania pomiędzy elektronem i 4π fotonem. W rzeczywistości α nie jest stałe, ale zależy od wirtulaności «fotonu! Fluktuacje kwantowe prowadzą do powstania chmury«õ ¾ µ e e wirtualnych cząstek w otoczeniu elektronu (nieskończona liczba podobnych diaramów). Pary e uleają e polaryzacji i ekranują ładunek ołeo elektronu. Wartość α rośnie wraz ze wzrostem 2 (tzn. kiedy jesteśmy bliżej ołeo elektronu). At lare R test chare 155 sees screened TOPAZ µµ/eeµµ: : chare Test Chare 140 α 1 (0) At small R test chare sees bare chare Test Chare α( 2 = 0) = 1/137, α( 2 = 100 GeV 2 ) = 1/128 α 1 (Q) e e α 1 SM (Q) e e Fits to leptonic data from: DORIS, PEP, PETRA, TRISTAN Q / GeV M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 6 / 16 OPAL

7 Chromodynamika kwantowa QCD Elektrodynamika kwantowa (QED): kwantowa teoria oddziaływań elektromanetycznych przenoszonych przez bezmasowe fotony, sprzęające się do ¾ ładunku elektryczneo. Siła oddziaływania ψ f Ĥ ψ i α, α = e 2 /4π. Chromodynamika kwantowa (QCD): kwantowa teoria oddziaływań silnych przenoszonych przez bezmasowe luony sprzęające się do ładunku À silneo.» Ô ««¾ W QCD ładunkiem jest kolor liczba kwantowa zachowana w oddziaływaniach silnych i przyjmująca trzy wartości: red, reen oraz blue. Kwarki niosą kolor : r, oraz b Antykwarki niosą antykolor : r, ḡ oraz b QED ½Õ ¾ «Ë «Å Leptony oraz, W ±, Z 0 Q nie niosą koloru ( kolor = 0) i nie uczestniczą w oddziaływaniach silnych. α = e Gluony są bezmasowymi cząstkami o spinie 1 i /4π ~ 1/137 «przenoszą ładunek kolorowy. Oczekujemy 9 luonów: Ë «Å r b, rḡ, r, b, bḡ, b r, r r, ḡ, b b QCD «Ë Rzeczywiste luony są ortoonalnymi kombinacjami S liniowymi powyższych ( stanów. Kombinacja 1 3 r r ḡ b b) ma wypadkowy kolor α S = S 2/4π ~ 1 równy 0 i nie przenosi oddziaływań silnych. α s α em«ñ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów «Ë Wykład 3 7 / 16

8 Oddziaływania kolorowe Przykład: Rozpraszanie oraz anihilacja. Dla małych odlełości potencjały w QED i QCD wylądają podobnie: r V QED = α V QCD = 4 α s ÕÕ r r 3 r Podobieństwo to wynika z faktu, że oba oddziaływania przenoszone są za pomocą bezmasowych cząstek o spinie 1. Gluony niosą jednak ładunek kolorowy. Oznacza, to żeö moą Ö Ö między sobą Ö ÖÖ silnie oddziaływać. Moą występować wierzchołki luonowe: Przykład: Rozpraszanie luon É «Ö ½Ô ÖÖ µ r r É «Ë Ö np. e.. rḡ r b r r r b b r r r b r M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 8 / 16

9 Uwięzienie (confinement) Nie obserwujemy swobodnych kwarków ani luonów. Uwięzienie kwarków w hadronach jest konsekwencją samooddziaływania lunów. Samoodziaływanie luonów prowadzi do ich wzajemneo przyciąania, co powoduje że linie pola koloroweo układają się w wąską strunę, w przybliżeniu mającą stałą ęstość enerii V (r) = kr dzie k 1 GeV/fm Do odseparowania kwarków potrzebna jest nieskończona eneria! uwięzienie. Przykład: Jak silne są oddziaływania silne? V QCD = 4 α s 3 F = dv dr = 4 3 r kr α s r 2 k Dla dużych r mamy: F = k = [N] = N V QCD (GeV) Ö V = 4α s 3r kr V = 4α s 3r α s =0.2 k=1 GeV/fm r(fm) M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 9 / 16 «Ë Ö

10 Hadronizacja i dżety Rozważmy parę wyprodukowaną w anihilacji e, tzn. e : początkowo kwarki oddalają się od siebie z dużą prędkością, tworzy się struna kolorowa pomiędzy nimi, eneria struny staje się wystarczająca do wyprodukowania pary, proces ten jest kontynuowany aż kwarki utworzą dżety hadronów ÕÕ (hadronizacja). SPACE TIME ÕÕ ÕÕ π (ud) etc... π π 0 π K π π 0 π 0 π p π 0 e ÕÕ ÕÕ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 10 / 16

11 Bienąca silna stała sprzężenia α s «Ë Stała sprzężenia α s podobnie jak α QED zależy od 2 (bienie): Fluktuacje kwantowe w QCD prowadzą do powstania wokół kwarku chmury wirtualnych par oraz chmury wirtualnych luonów (brak analoii w QED ze wzlędu na brak samooddziaływania fotonu). Goły kolor kwarku jest ÕÕekranowany zarówno przez kwarki jak i luony. «Ë «Ë Chmura wirtualnych luonów niesie kolor i efektywny ładunek kolorowy rośnie z odlełością! Przy niskich eneriach (duże odlełości) α s staje się duże i nie można stosować rachunku zaburzeń. Przy wysokich eneriach (małe odlełości) α s jest małe, kwarki zachowują się jak swobodne cząstki (asymptotic freedom) i można stosować rachunek zaburzeń. ÕÕ 1 1 α s M Z α s «Ë 0 M p lo 10 ( 2 /GeV 2 ) lo 10 (r/m) M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 11 / 16

12 QCD w anihilacji e Ê ÖÓÒ µ Anihilacja e µ dostarcza bezpośrednieo dowodu na istnienie koloru. Porównajmy przekroje czynne na procesy e µ µ oraz e R µ = σ(e e hadrons) σ( e µ µ ) Zaniedbując masy cząstek w stanie końcowym (muon, kwark) jedyną róznicą pomiędzy nimi jest ładunek elektryczny. Obliczymy przekrój czynny na process e f f, dzie f f oznacza µ µ lub. p µ 2 ÕÕ 1 2 ¾ ½ 1 p µ 1 2 µ µ f Q f 1 2 Q θ É ½ É Õ f f Þ Mamy: p µ 1 = (E, 0, 0, E), pµ 2 = (E, 0, 0 E), µ = p µ µ Ô 1 pµ 2 = (2E, 0, 0, 0) ½ Ô Ü Ô Ý Ô Þ µ Obliczamy element macierzowy i rózniczkowy przekrój czynny: ÕÕ Ô ½ ¼ ¼ µ ÒÐØÒ Ñ M = v Ô ¾ ¼ ¼ µ Q e e u e 1 2 v f Q f e u f = 4παQ eq f 2 Õ Ô ½ Ô ¾ dσ ¾ ¼ ¼ ¼µ dω = dρ(e 2π M 2 f ) dω = 2π ( 4παQ eq f ) 2 E (2π) Õ 2¾ 4 (1 cos2 θ) = α2 Q 2 f ¾ 4s (1 cos2 θ) µ ¾ Czynnik (1 cos 2 θ) wynika z rówania Diraca i opisuje rozpad fotonu o spinie 1 na dwa fermiony o spinie 1/2. ¾ µ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 12 / 16 f

13 dzie suma przebiea po zapachach kwarków kinematycznie dostępnych w danym eksperymencie ( s > 2m ). W obszarze s < 11 GeV duży wpływ rezonasów. Pomiar R µ wyklucza hipotezę braku koloru. M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 13 / 16 QCD w anihilacji e Całkowity przekrój czynny na proces e f f: dσ 2π π σ = dω dω = α 2 Q 2 f 4s (1 cos2 θ) sin θ dθ dφ = πα2 Q 2 f 2s (1 y 2 ) dy = 4πα2 Q 2 f 3s W szczeólności otrzymujemy: σ( e µ µ ) = 4πα2 3s Dla pojedynczeo kwarku wielkość R = Q 2. W rzeczywistości obserwujemy e jets, musimy więc sumować po kwarkach i kolorach: R = 3 i Q 2 i

14 Eksperymentalne dowody na istnieniekoloru i luonów Konieczność wprowadzenia koloru wynika m. in. z: Rozkład wielkości R µ istnienie barionu Ω (sss) o spinie 3/2 złożoneo z trzech kwarków dziwnych s. Funkcja falowa jest symetryczna wzlędem przestawień µ ÓÐÓÙÖ kwarków (ψ = s s s ). Jednak kwarki ÕÕ jako fermiony wymaają ÓÐÓÙÖ Ô ½ Ö Ö Ö Ö Ö Ö antysymetrycznej funkcji falowej, tzn. konieczny jest dodatkowy stopień swobody kolor: ψ = (s s s )ψ kolor = (s s s ) 1 ¼ (rbbrbr ¼ rb rb br) 6 częstość rozpadu π 0 u Γ(π 0 ) Nkolor 2 u u Exp: N kolor = 2.99 ± 0.12 ¼ µ» Æ ¾ ÓÐÓÙÖ Eksperymentalne potwierdzenie istnienia luonów: Æ ÓÐÓÙÖ ¾ ¼½¾ przypadki ÕÕ trójdżetowe e S Q 1 2 Ô ivin an extra factor of «Ë in the matrix π 0 Ô «Ë «Ë M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 14 / 16

15 Eksperymentalne potwierdzenie istnienia luonów Rozkład kątowy dżetów luonowych zależy od spinu luonu. Rysunek przedstawia rozkład kąta φ pomiędzy dżetem o największej enerii (zakładamy, że jest to dżet kwarkowy) oraz kierunkiem lotu pozostałych dwóch dżetów (w układzie ich środka masy). Zmierzony rozkład kąta φ jest zodny z przewidywaniami dla spinu luonu równeo 1 (linia przerywana spin 0). OPAL at LEP ( ) przypadki czterodżetowe e ( ) Rozkład kąta χ BZ pomiędzy płaszczyznami zawierającymi dżety kwarkowe i luonowe wymaa istnienia samoodziaływania luonów. χ BZ χ BZ ÕÕ µ ½ ¾ M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 15 / 16

16 Pomiary silnej stałej sprzężenia α s Pomiar w oparciu o stosunek R µ. W praktyce sumujemy diaramy, co oznacza, że nie rozróżniamy przypadki 2/3 dżetowe: R µ = σ(e e ) σ( e µ µ ) = 3 R µ = σ(e e hadrons) σ( e µ µ ) Pomiar: ( 1 α ) s π = 3 Q 2 Q 2 ( 1 α s π α s ( 2 = 25 2 ) 0.20 Inne metody pomiaru α s, np. stosunek liczby przypadków 3 i 2 dżetowych: σ(3 dżety) σ(2 dżety) = σ( ) σ( ) α s Podsumowanie aktualnych pomiarów α s przedstawia rysunek obok α s bienie! ) «Ë Ê Ë Ê ÒÓØ Ê... Ê Ê É ¾ Õ ½ «Ë ÕÕ ÒÓØ Ê È Ê É ¾ Õ ½ «Ë ½ «Ë µ «Ë Õ ¾ ¾ ¾ µ ¼¾¼ ½ «Ë µ «Ë Õ ¾ ¾ ¾ µ ¼¾¼ Õ È Õ É M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 16 / 16

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Dynamika oddziaływań cząstek Elektrodynamika kwantowa (QED) Chromodynamika kwantowa (QCD) Oddziaływania słabe Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Wstęp do oddziaływań hadronów

Wstęp do oddziaływań hadronów Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 9 1 / 21 Rozpraszanie

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 27 listopada 2018 A.F.Żarnecki WCE Wykład 8 27 listopada 2018 1 / 28 1 Budowa materii (przypomnienie)

Bardziej szczegółowo

Wstęp do chromodynamiki kwantowej

Wstęp do chromodynamiki kwantowej Wstęp do chromodynamiki kwantowej Wykład 1 przez 2 tygodnie wykład następnie wykład/ćwiczenia/konsultacje/lab proszę pamiętać o konieczności posiadania kąta gdy będziemy korzystać z labolatorium (Mathematica

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 21 listopada 2017 A.F.Żarnecki WCE Wykład

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Oddziaływania elektrosłabe

Oddziaływania elektrosłabe Oddziaływania elektrosłabe X ODDZIAŁYWANIA ELEKTROSŁABE Fizyka elektrosłaba na LEPie Liczba pokoleń. Bardzo precyzyjne pomiary. Obserwacja przypadków. Uniwersalność leptonów. Mieszanie kwarków. Macierz

Bardziej szczegółowo

Struktura porotonu cd.

Struktura porotonu cd. Struktura porotonu cd. Funkcje struktury Łamanie skalowania QCD Spinowa struktura protonu Ewa Rondio, 2 kwietnia 2007 wykład 7 informacja Termin egzaminu 21 czerwca, godz.9.00 Wiemy już jak wygląda nukleon???

Bardziej szczegółowo

Rozpraszanie elektron-proton

Rozpraszanie elektron-proton Rozpraszanie elektron-proton V Badania struktury atomu - rozpraszanie Rutherforda. Rozpraszanie elastyczne elektronu na punktowym protonie. Rozpraszanie elastyczne elektronu na protonie o skończonych wymiarach.

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania III

Cząstki elementarne i ich oddziaływania III Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania

Cząstki elementarne i ich oddziaływania Cząstki elementarne i ich oddziaływania IV 1. Antycząstki wg Feynmana. 2. Cząstki wirtualne 3. Propagator. 4. Oddziaływania elektromagnetyczne. 1 Interpretacja Feynmana Rozwiązania r. Diraca: są cząstkami

Bardziej szczegółowo

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Cząstki i siły. Piotr Traczyk. IPJ Warszawa Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała

Bardziej szczegółowo

Oddziaływania. Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)

Oddziaływania. Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED) Oddziaływania Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca Antycząstki; momenty

Bardziej szczegółowo

Oddziaływania. Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)

Oddziaływania. Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED) Oddziaływania Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca

Bardziej szczegółowo

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy

Bardziej szczegółowo

Salam,Weinberg (W/Z) t Hooft, Veltman 1999 (renomalizowalność( renomalizowalność)

Salam,Weinberg (W/Z) t Hooft, Veltman 1999 (renomalizowalność( renomalizowalność) Teoria cząstek elementarnych 23.IV.08 1948 nowa faza mechaniki kwantowej precyzyjne pomiary wymagały precyzyjnych obliczeń metoda Feynmana Diagramy Feynmana i reguły Feynmana dziś uniwersalne narzędzie

Bardziej szczegółowo

Fizyka cząstek elementarnych i oddziaływań podstawowych

Fizyka cząstek elementarnych i oddziaływań podstawowych Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Symetrie. D. Kiełczewska, wykład 5 1

Symetrie. D. Kiełczewska, wykład 5 1 Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych

Bardziej szczegółowo

Bozon Higgsa oraz SUSY

Bozon Higgsa oraz SUSY Bozon Higgsa oraz SUSY Bozon Higgsa Poszukiwania bozonu Higgsa w LEP i Tevatronie - otrzymane ograniczenia na masę H Plany poszukiwań w LHC Supersymetria (SUSY) Zagadkowe wyniki CDF Masy cząstek cząstki

Bardziej szczegółowo

Bozon Higgsa prawda czy kolejny fakt prasowy?

Bozon Higgsa prawda czy kolejny fakt prasowy? Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

WYKŁAD 5 sem zim.2010/11

WYKŁAD 5 sem zim.2010/11 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 5 sem zim.2010/11 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne

Bardziej szczegółowo

VI. 6 Rozpraszanie głębokonieelastyczne i kwarki

VI. 6 Rozpraszanie głębokonieelastyczne i kwarki r. akad. 005/ 006 VI. 6 Rozpraszanie głębokonieelastyczne i kwarki 1. Fale materii. Rozpraszanie cząstek wysokich energii mikroskopią na bardzo małych odległościach.. Akceleratory elektronów i protonów.

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu Struktura protonu Wykład V równania ewolucji QCD spin protonu struktura fotonu Elementy fizyki czastek elementarnych Funkcja struktury Różniczkowy przekrój czynny na NC DIS elektron proton: d 2 σ dx dq

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

Symetrie. D. Kiełczewska, wykład 5 1

Symetrie. D. Kiełczewska, wykład 5 1 Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych

Bardziej szczegółowo

Wstęp do fizyki cząstek elementarnych

Wstęp do fizyki cząstek elementarnych Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania

Bardziej szczegółowo

WYKŁAD Wszechświat cząstek elementarnych. 24.III.2010 Maria Krawczyk, Wydział Fizyki UW. Masa W

WYKŁAD Wszechświat cząstek elementarnych. 24.III.2010 Maria Krawczyk, Wydział Fizyki UW. Masa W Wszechświat cząstek elementarnych WYKŁAD 6 24 24.III.2010 Maria Krawczyk, Wydział Fizyki UW Oddziaływania kolorowe i biegnąca stała sprzężenia α s Oddziaływania słabe Masa W Stałe sprzężenia Siła elementarnego

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

WYKŁAD Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa

WYKŁAD Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa Wszechświat cząstek elementarnych WYKŁAD 10 29.04 29.04.2009.2009 1 Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa Cząstki fundamentalne w Modelu Standardowym

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla humanistów

WYKŁAD 8. Wszechświat cząstek elementarnych dla humanistów Wszechświat cząstek elementarnych dla humanistów WYKŁAD 8 Maria Krawczyk, A.Filip Żarnecki, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne

Bardziej szczegółowo

WYKŁAD 7. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW

WYKŁAD 7. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych WYKŁAD 7 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne

Bardziej szczegółowo

czastki elementarne Czastki elementarne

czastki elementarne Czastki elementarne czastki elementarne "zwykła" materia, w warunkach które znamy na Ziemi, które panuja w ekstremalnych warunkach na Słońcu: protony, neutrony, elektrony. mówiliśmy również o neutrinach - czastki, które nie

Bardziej szczegółowo

Oddziaływania słabe i elektrosłabe

Oddziaływania słabe i elektrosłabe Oddziaływania słabe i elektrosłabe IX ODDZIAŁYWANIA SŁABE Kiedy są widoczne. Jak bardzo są słabe. Teoria Fermiego Ciężkie bozony pośredniczące. Łamanie parzystości P. ODDZIAŁYWANIA ELEKTROSŁABE Słabe a

Bardziej szczegółowo

WYKŁAD I Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW. Model Standardowy AD 2010

WYKŁAD I Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW. Model Standardowy AD 2010 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW Model Standardowy AD 2010 Hadrony i struny gluonowe 20.I. 2010 Hadrony=stany związane kwarków Kwarki zawsze

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

kwantowanie: Wskazówka do wyprowadzenia (plus p. Gaussa) ds ds Wykład VII: Schrodinger Klein Gordon, J. Gluza

kwantowanie: Wskazówka do wyprowadzenia (plus p. Gaussa) ds ds Wykład VII: Schrodinger Klein Gordon, J. Gluza kwantowanie: Wskazówka do wyprowadzenia (plus p. Gaussa) ds ds V Erwin Schrodinger Austriak 1926 (4 prace) Nobel (wraz z Dirakiem), 1933 Paradoks kota Banknot 1000 szylingowy Czym jest życie? (o teorii

Bardziej szczegółowo

kwarki są uwięzione w hadronie

kwarki są uwięzione w hadronie kwarki są uwięzione w hadronie gluony są uwięzione w hadronie QED - potencjał - QCD VQED α = r 1 potencjał coulombowski r nośniki (małe odległości) brak uwięzienia Precyzyjne przewidywania poziomów energetycznych

Bardziej szczegółowo

Rozpraszanie elektron-proton

Rozpraszanie elektron-proton Rozpraszanie elektron-proton V Badania struktury atomu - rozpraszanie Rutherforda. Rozpraszanie elastyczne elektronu na punktowym protonie. Rozpraszanie elastyczne elektronu na protonie o skończonych wymiarach.

Bardziej szczegółowo

WYKŁAD 6. Oddziaływania kolorowe cd. Oddziaływania słabe. Wszechświat cząstek elementarnych dla przyrodników

WYKŁAD 6. Oddziaływania kolorowe cd. Oddziaływania słabe. Wszechświat cząstek elementarnych dla przyrodników Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 6 Maria Krawczyk, Wydział Fizyki UW 11.XI.2009 Oddziaływania kolorowe cd. Oddziaływania słabe Cztery podstawowe oddziaływania Oddziaływanie grawitacyjne

Bardziej szczegółowo

Symetrie w fizyce cząstek elementarnych

Symetrie w fizyce cząstek elementarnych Symetrie w fizyce cząstek elementarnych Odkrycie : elektronu- koniec XIX wieku protonu początek XX neutron lata 3 XX w; mion µ -1937, mezon π 1947 Lata 5 XX w zalew nowych cząstek; łączna produkcja cząstek

Bardziej szczegółowo

Karta przedmiotu. Przedmiot Grupa ECTS. Fizyka Wysokich Energii 9. Kierunek studiów: fizyka. Specjalność: fizyka

Karta przedmiotu. Przedmiot Grupa ECTS. Fizyka Wysokich Energii 9. Kierunek studiów: fizyka. Specjalność: fizyka Wydział Fizyki, Uniwersytet w Białymstoku Kod USOS Karta przedmiotu Przedmiot Grupa ECTS Fizyka Wysokich Energii 9 Kierunek studiów: fizyka Specjalność: fizyka Formy zajęć Wykład Konwersatorium Seminarium

Bardziej szczegółowo

Oddziaływania silne. Również na tym wykładzie Wielkie unifikacje. Mówiliśmy na poprzednich wykładach o: rezonansach hadronowych multipletach

Oddziaływania silne. Również na tym wykładzie Wielkie unifikacje. Mówiliśmy na poprzednich wykładach o: rezonansach hadronowych multipletach Oddziaływania silne Mówiliśmy na poprzednich wykładach o: rezonansach hadronowych multipletach Tu powiemy więcej o: Kolorze QCD czyli chromodynamice kwantowej Symetrii SU(3) kolor Uwięzieniu kwarków i

Bardziej szczegółowo

Fizyka cząstek elementarnych. Tadeusz Lesiak

Fizyka cząstek elementarnych. Tadeusz Lesiak Fizyka cząstek elementarnych Tadeusz Lesiak 1 WYKŁAD VII Elektrodynamika kwantowa T.Lesiak Fizyka cząstek elementarnych 2 Krótka historia oddziaływań elektromagnetycznych 1900-1930 r. powstanie mechaniki

Bardziej szczegółowo

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest

Bardziej szczegółowo

Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39

Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39 Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,

Bardziej szczegółowo

WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:

WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe: Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Oddziaływania silne

Wszechświat Cząstek Elementarnych dla Humanistów Oddziaływania silne Wszechświat Cząstek Elementarnych dla Humanistów Oddziaływania silne Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 6 listopada 2018 A.F.Żarnecki WCE Wykład 5 6 listopada 2018 1 / 37 Oddziaływania

Bardziej szczegółowo

Rozszyfrowywanie struktury protonu

Rozszyfrowywanie struktury protonu Rozszyfrowywanie struktury protonu Metody pomiaru struktury obiektów złożonych v Rozpraszanie elektronów na nukleonie czy na jego składnikach v Składniki punktowe wewnątrz nukleonu to kwarki v Definicja

Bardziej szczegółowo

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład IX. Co to jest ładunek?...

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład IX. Co to jest ładunek?... Wielka Unifikacja Wykład IX Co to jest ładunek?... Elementy fizyki czastek elementarnych Biegnaca stała sprzężenia i renormalizacja w QED Asymptotyczna swoboda QCD Unifikacja SU(5) QED Ładunek elektryczny

Bardziej szczegółowo

Zderzenia relatywistyczna

Zderzenia relatywistyczna Zderzenia relatywistyczna Dynamika relatywistyczna Zasady zachowania Relatywistyczne wyrażenie na pęd cząstki: gdzie Relatywistyczne wyrażenia na energię cząstki: energia kinetyczna: energia spoczynkowa:

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III Struktura protonu Elementy fizyki czastek elementarnych Wykład III kinematyka rozpraszania doświadczenie Rutherforda rozpraszanie nieelastyczne partony i kwarki struktura protonu Kinematyka Rozpraszanie

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC

r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC 1 V.1 WYNIKI LEP 2 e + e - Z 0 Calkowity przekroj czynny 3 4 r. akad. 2008/2009 s Q N 3 4 s M s N Q I M 12 s ) M (s s s 2 f C 2 Z C f f

Bardziej szczegółowo

Już wiemy. Wykład IV J. Gluza

Już wiemy. Wykład IV J. Gluza Już wiemy Oddziaływania: QED, QCD, słabe Ładunek kolor, potencjały w QED i QCD Stała struktury subtelnej zależy od odległości od ładunku: wielkie osiągnięcie fizyki oddziaływań elementarnych (tzw. running)

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład XI. Co to jest ładunek?... Biegnaca stała sprzężenia i renormalizacja w QED Pomiar

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład XI. Co to jest ładunek?... Biegnaca stała sprzężenia i renormalizacja w QED Pomiar Wielka Unifikacja Wykład XI Co to jest ładunek?... Elementy fizyki czastek elementarnych Biegnaca stała sprzężenia i renormalizacja w QED Pomiar Biegnaca stała sprzężenia QCD Unifikacja SU(5) Leptokwarki

Bardziej szczegółowo

Jak to działa: poszukiwanie bozonu Higgsa w eksperymencie CMS. Tomasz Früboes

Jak to działa: poszukiwanie bozonu Higgsa w eksperymencie CMS. Tomasz Früboes Plan wystąpienia: 1.Wprowadzenie 2.Jak szukamy Higgsa na przykładzie kanału H ZZ 4l? 3.Poszukiwanie bozonu Higgsa w kanale ττ μτjet 4.Właściwości nowej cząstki Częste skróty: LHC Large Hadron Collider

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak

Bardziej szczegółowo

Wykład 43 Cząstki elementarne - przedłużenie

Wykład 43 Cząstki elementarne - przedłużenie Wykład 4 Cząstki elementarne - przedłużenie Hadrony Cząstki elementarne oddziałujące silnie nazywają hadronami ( nazwa hadron oznacza "wielki" "masywny"). Hadrony są podzielony na dwie grupy: mezony i

Bardziej szczegółowo

Fizyka na LHC - Higgs

Fizyka na LHC - Higgs Fizyka na LHC - Higgs XI Program fizyczny LHC. Brakujący element. Pole Higgsa. Poszukiwanie Higgsa na LEP. Produkcja Higgsa na LHC. ATLAS. Wyniki doświadczalne Teraz na LHC 1 FIZYKA NA LHC Unifikacja oddziaływań

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

Elektrodynamika cząstek o spinie 1/2

Elektrodynamika cząstek o spinie 1/2 Elektrodynamika cząstek o spinie 1/2 Dodatkowa gama^0, aby mieć odpowiedniość z oddziaływaniem nierelatywistycznym dla składowych, gdy A^mu=A^0 Tak powstają tzw. Reguły Feynmana Przykłady Spiny Spiny s,s'

Bardziej szczegółowo

WYKŁAD IV.2013

WYKŁAD IV.2013 Wszechświat cząstek elementarnych WYKŁAD 10 24.IV.2013 Maria Krawczyk, Wydział Fizyki UW Teoria cząstek elementarnych- opis zdarzeń Rachunek zaburzeń i nieskończoności Renormalizacja Prawdopodobieństwo

Bardziej szczegółowo

Rozpraszanie elektron-proton

Rozpraszanie elektron-proton Rozpraszanie elektron-proton V 1. Badania struktury atomu - rozpraszanie Rutherforda. 2. Rozpraszanie elastyczne elektronu na punktowym protonie. 3. Rozpraszanie elastyczne elektronu na protonie o skończonych

Bardziej szczegółowo

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład XI. Co to jest ładunek?...

Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład XI. Co to jest ładunek?... Wielka Unifikacja Wykład XI Co to jest ładunek?... Elementy fizyki czastek elementarnych Biegnaca stała sprzężenia i renormalizacja w QED Asymptotyczna swoboda QCD Unifikacja SU(5) Problemy Modelu Standardowego

Bardziej szczegółowo

WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:

WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe: Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby

Bardziej szczegółowo

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

Budowa nukleonu. Krzysztof Kurek

Budowa nukleonu. Krzysztof Kurek Krzysztof Kurek Data selection Plan Statyczny model kwarków Plan Statyczny model kwarków i symetrie SU(N) zapachowe. Elastyczne rozpraszanie elektronów na nukleonie. Składniki punktowe wewnątrz nukleonu.

Bardziej szczegółowo

Unifikacja elektro-słaba

Unifikacja elektro-słaba Unifikacja elektro-słaba ee + Anihilacja Oddziaływania NC (z wymianą bozonu ) - zachowanie zapachów Potrzeba unifikacji Warunki unifikacji elektro-słabej Rezonans Liczenie zapachów neutrin (oraz generacji)

Bardziej szczegółowo

M. Krawczyk, Wydział Fizyki UW

M. Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych WYKŁAD 3 M. Krawczyk, Wydział Fizyki UW Zoo cząstek elementarnych 6.III.2013 Masy, czasy życia cząstek elementarnych Liczby kwantowe kwarków (zapach i kolor) Prawa zachowania

Bardziej szczegółowo

Fizyka cząstek elementarnych. Tadeusz Lesiak

Fizyka cząstek elementarnych. Tadeusz Lesiak Fizyka cząstek elementarnych Tadeusz Lesiak 1 WYKŁAD IX Oddziaływania słabe T.Lesiak Fizyka cząstek elementarnych 2 Rola oddziaływań słabych w przyrodzie Oddziaływania słabe są odpowiedzialne (m.in.) za:

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

LHC i po co nam On. Piotr Traczyk CERN

LHC i po co nam On. Piotr Traczyk CERN LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Czego brakuje w Modelu Standardowym

Czego brakuje w Modelu Standardowym Czego brakuje w Modelu Standardowym What is missing in the Standard Model concepts and ideas Instytut Problemów Jądrowych im. A. Sołtana w Świerku 1 Plan Równania Maxwella droga do QED Symetria cechowania

Bardziej szczegółowo

Wyk³ady z Fizyki. Zbigniew Osiak. Cz¹stki Elementarne

Wyk³ady z Fizyki. Zbigniew Osiak. Cz¹stki Elementarne Wyk³ady z Fizyki 13 Zbigniew Osiak Cz¹stki Elementarne OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Masy cząstek vs. struktura wewnętrzna

Masy cząstek vs. struktura wewnętrzna Masy cząstek vs. struktura wewnętrzna Leptony Hadrony Skąd wiemy, że atomy mają strukturę? Podobnie jak na atomy można spojrzeć na hadrony Rozpatrzmy wpierw proton i neutron http://pdg.lbl.gov 938.27203(8)

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

WYKŁAD 13. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 5.I Hadrony i struny gluonowe

WYKŁAD 13. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 5.I Hadrony i struny gluonowe Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW 5.I. 2011 Hadrony i struny gluonowe Model Standardowy AD 2010 Hadrony = stany związane kwarków Kwarki zawsze

Bardziej szczegółowo

WYKŁAD 9. Wszechświat cząstek elementarnych dla przyrodników

WYKŁAD 9. Wszechświat cząstek elementarnych dla przyrodników Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 9 Maria Krawczyk, Wydział Fizyki UW 1.XII.2010 Teoria cząstek elementarnych- opis zdarzeń Rachunek zaburzeń i nieskończoności Renormalizacja Prawdopodobieństwo

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako

Bardziej szczegółowo

Na tropach czastki Higgsa

Na tropach czastki Higgsa Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005 A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki

Bardziej szczegółowo

Odkrywanie supersymetrii - przypadek ciężkich sfermionów

Odkrywanie supersymetrii - przypadek ciężkich sfermionów Odkrywanie supersymetrii - przypadek ciężkich sfermionów Krzysztof Rolbiecki (IFT UW) we współpracy z: K. Desch, J. Kalinowski, G. Moortgat-Pick, J. Stirling JHEP 612, 7 (26) Warszawa, 9/3/27 1. Wstęp

Bardziej szczegółowo

Reakcje jądrowe. kanał wyjściowy

Reakcje jądrowe. kanał wyjściowy Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV Struktura protonu Elementy fizyki czastek elementarnych Wykład IV kinematyka rozpraszania rozpraszanie nieelastyczne partony i kwarki struktura protonu akcelerator HERA wyznaczanie funkcji struktury Kinematyka

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2 9 października 2017 A.F.Żarnecki

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo