Materiały piezoelektryczne: pomiar prostego i odwrotnego zjawiska piezoelektrycznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Materiały piezoelektryczne: pomiar prostego i odwrotnego zjawiska piezoelektrycznego"

Transkrypt

1 Laboratorium Nowoczesna Diagnostyka Materiałowa Materiały piezoelektryczne: pomiar prostego i odwrotnego zjawiska piezoelektrycznego Zagadnienia do przygotowania 1. Prosty i odwrotny efekt piezoelektryczny i układ równań opisujący te efekty wraz z jednostkami zmiennych i parametrów materiałowych. 2. Podstawowe równania elektromechaniki. 3. Anizotropia w piezoelektrykach i podstawowe anizotropowe efekty piezoelektryczne. 4. Podstawowe geometrie rezonatorów piezoelektrycznych. 5. Metody pomiaru materiałów piezoelektrycznych. Literatura 1. Wykład Spis treści Zagadnienia do przygotowania Literatura Wstęp Opis zjawisk piezoelektrycznych Równania elektromechaniki Anizotropia zjawiska piezoelektrycznego Rezonatory piezoelektryczne Współczynnik sprzężenia elektromechanicznego Program ćwiczenia Prosty efekt piezoelektryczny - pomiar statyczny Pomiary współczynnika sprzężenia elektromechanicznego Na podstawie pomiarów pojemności Ze wzorów Okami Badanie odwrotnego efektu piezoelektrycznego Materiały dodatkowe

2 1. Wstęp Zjawisko piezoelektryczności zostało odkryte w 1880 r. przez Pierre a i Piotra Curie. Do piezoelektryków należą do niektóre materiały krystaliczne, polimerowe i ceramiczne. W przypadku materiałów krystalicznych, kryształy piezoelektryczne są układami nie posiadającymi środka symetrii. Wiele materiałów organicznych wykazuje efekt piezoelektryczny. Może on być obserwowany w niektórych gatunkach drewna, jedwabiu i ścięgnach zwierzęcych. Efekt występujący w materiałach pochodzenia naturalnego jest jednak bardzo słaby, w przeciwieństwie do niektórych tworzyw sztucznych, a zwłaszcza syntetycznych polimerów. Duże znaczenie praktyczne mają cienkie folie tych materiałów, które mogą być prasowane w postaci stosów piezoelektrycznych. Efekt piezoelektryczny polimerów ulega zwiększeniu w wyniku przeprowadzenia dodatkowych zabiegów, do których należy wyciąganie folii w podwyższonej temperaturze i w dużym polu elektrycznym, jak również domieszkowanie tworzywa sztucznego ceramiką piezoelektryczną. Ceramiki piezoelektryczne są natomiast obecnie jednym z najszerzej stosowanych w technice materiałów piezoelektrycznych. Szeroki zakres praktycznych zastosowań materiałów piezoceramicznych oprócz tego, że jest związany z właściwościami ceramik, tj. głównie z silnym efektem piezoelektrycznym i w niektórych przypadkach z dużą wartością stałej dielektrycznej, wynika z łatwej i prostej technologii, która może być z powodzeniem stosowana w wielkoseryjnej produkcji. Najbardziej znanym piezoelektrykiem jest kryształ kwarcu, jednakże niektóre związki, jak np. BaTiO 3 lub PbZrTiO 6, wykazują ten efekt w znacznie większym stopniu ( razy). Piezoelektryki wykorzystywane są w różnych dziedzinach nauki i techniki. Najbardziej popularne to zastosowania to: w elementach elektronicznych (filtry, rezonatory) transformatory piezoelektryczne w zapalarkach do gazu, zapalniczkach uderzenie ciężarka rozpędzonego przez napiętą sprężynę a następnie zwolnioną przez zapadkę powoduje powstanie potencjału od kilku do kilkunastu kv i przeskok iskry elektrycznej, precyzyjne wagi analityczne, wagi domowe, sterowanie pomiarem w tzw. mikroskopach STM czy AFM, wkładki gramofonowe w popularnych gramofonach z lat , gdzie drgania igły gramofonowej przenoszone na kryształy piezoelektryka, powodując powstanie napięć i uzyskanie sygnału dźwiękowego, w sondach USG, które umożliwiają wytworzenie fali akustycznej i rejestrację ech, pochodzących od granic struktur o różnych wartościach impedancji akustycznych wzdłuż jednego kierunku Opis zjawisk piezoelektrycznych Polaryzacja elektryczna w wielu materiałach może wywołać zmiany wymiarów nieliniowo zależne od polaryzacji, czyli efekt zwany elektrostrykcją. W niektórych dielektrykach, nazywanych piezoelektrykami, zachodzi zjawisko piezoelektryczne bądź też efekt piezoelektryczny prosty i odwrotny. Efekt piezoelektryczny prosty to zjawisko fizyczne polegające na powstawaniu na przeciwległych ścianach kryształów ładunków elektrycznych przeciwnego znaku w wyniku deformacji kryształu. Zjawisko to powstaje tylko w pewnych ciałach stałych, mających uporządkowaną budowę atomową i wykazujących właściwą symetrię tej budowy. Zjawisko piezoelektryczne może zaist- 2

3 nieć w materiałach wykazujących samoistną lub indukowaną polaryzację. Polaryzacja ta zmienia się pod wpływem naprężeń mechanicznych T, które powodują powstanie indukcji elektrycznej: D = d T (1) gdzie: D - indukcja elektryczna w C, T - naprężenia mechaniczne w P a, d moduł piezoelektryczny. m 2 Efekt piezoelektryczny odwrotny to zjawisko polegające na zmianie wymiarów piezoelektryka pod wpływem zewnętrznego pola elektrycznego, który to efekt można opisać równaniem: S = d E (2) gdzie S - bezwymiarowe odkształcenie względne, E natężenie pola elektrycznego w V m. Wynika stąd, że moduł piezoelektryczny d, nazywany również stałą ładunkową, można wyrazić na dwa sposoby: d = D T = S E a jego jednostkami mogą być zarówno C N jak i m V Równania elektromechaniki Ponieważ i naprężenia i pole elektryczne mogą oddziaływać na materiał jednocześnie, powyższe zależności należy powiązać. Formułuje się równania stanu, nazywane podstawowymi równaniami elektromechaniki. Opisują one związki miedzy elektrycznymi i elastycznymi zmiennymi ośrodka, występującymi przy określonych warunkach brzegowych: (3) D = ɛ T E + d T S = s E T + d E (4a) (4b) gdzie ɛ T - przenikalność elektryczna dla stałych naprężeń w F, m se - podatność mechaniczna przy stałym natężeniu pola elektrycznego, wyrażana w P a 1. Równania stanu można wyrazić również dla innych zmiennych elastoelektrycznych: S = s D T + g t D E = β T D g T T = c E S + e t E D = ɛ S E + e S T = c D S h t D E = β S D h S (5a) (5b) (5c) (5d) (5e) (5f) W równaniach (4) - (5) występują: parametry mechaniczne materiałów takie jak moduł sprężystości c i jego odwrotność czyli podatność mechaniczna d, a indeks górny E lub D oznacza warunki brzegowe, w jakich zostały wyznaczone (przy stałym E lub D), parametry elektryczne, takie jak przenikalność elektryczna ɛ i jej odwrotność β, wyznaczone dla stałego T (nazywane wolnymi) lub S (nazywane obciążonymi), współczynniki piezoelektryczne d moduł piezoelektryczny i jego odwrotność h, g stała napięciowa i jej odwrotność e. 2 1 Wykaż samodzielnie, że istnieje równoważność pomiędzy tymi jednostkami. 2 Zastanów się, jakie jednostki będą miały parametry występujące w równaniach (5). 3

4 1.3. Anizotropia zjawiska piezoelektrycznego Analizę zjawisk piezoelektrycznych komplikuje fakt, że zazwyczaj piezoelektryki są anizotropowe, to znaczy, że współczynniki mechaniczne, elektryczne i piezoelektryczne zależą od kierunków działania sił i naprężeń. Dla ceramiki piezoelektrycznej tensory D i E mają po trzy współrzędne (1 3), odpowiadające kierunkom układu współrzędnych x, y, z, natomiast tensory S i T mają po sześć współrzędnych, związanych z naprężeniami i odkształceniami liniowymi w trzech osiach (1 3) oraz ścinającymi, również w trzech osiach (4 6). Dla materiałów anizotropowych równania elektromechaniki przyjmują postać macierzową. Dla materiałów ceramicznych występują pewne symetrie powodując, że niektóre z elementów macierzy są równe 0 a inne powtarzają się. Dla typowej ceramiki piezoelektrycznej tensorowa postać podstawowych równań elektromechaniki wygląda jak następująco: S = s E T + d E D = d T T + ɛ E gdzie s E 11 s E 12 s E d 31 s E 11 s E 11 s E d 31 s E = s E 13 s E 13 s E ɛ s E d = 0 0 d d 15 0 ɛ = 0 ɛ s E 0 0 ɛ 44 0 d (s E 11 + s E 12) (6a) (6b) gdzie d T oznacza transpozycję macierzy współczynników d. W takim równaniu współczynniki d ik to moduły piezoelektryczne opisujące związek między składową naprężeń mechanicznych T k lub odkształceń mechanicznych S k ze składową indukcji elektrycznej D i lub natężenia pola elektrycznego E i w identyczny sposób, jak równanie (4) opisze to dla materiału izotropowego. Jeśli w tensorach odkształceń, naprężeń czy pola elektrycznego niezerowa jest tylko jedna składowa, wtedy równanie (6) silnie się upraszcza. W materiałach anizotropowych wyróżnia się podstawowe kombinacje wyodrębnionych kierunków działania sił i pola elektrycznego: podłużny efekt piezoelektryczny, w którym kierunki naprężenia mechanicznego i indukcji elektrycznej (polaryzacji) są zgodne a pozostałe równe zero, obowiązuje zatem w tym przypadku zależność: d 33 = D 3 T 3 = S 3 E 3 (7) poprzeczny efekt piezoelektryczny, w którym kierunki naprężenia mechanicznego i indukcji elektrycznej (polaryzacji), są prostopadłe, obowiązuje zatem w tym przypadku zależność: d 31 = D 3 T 1 = S 1 E 3 (8) skośny efekt piezoelektryczny, w którym wektor polaryzacji jest równoległy do płaszczyzny, w której zachodzi odkształcenie ścinające, obowiązuje zatem w tym przypadku zależność: d 15 = D 1 T 5 = S 5 E 1 (9) Kierunki działania sił i pola elektrycznego w tych zjawiskach ilustruje rysunek 1. 4

5 a) b) c) T 3 l l T 3 T 5 l P E 3 P P E 1 E 1 Rysunek 1. Rodzaje prostego i odwrotnego efektu piezoelektrycznego obserwowanego w piezoceramice: a) efekt podłużny, b) efekt poprzeczny, c) efekt skośny. Rysunek 2. Podstawowe rodzaje drgań w rezonatorach piezoelektrycznych: a) drgania grubościowe, b) drgania poprzeczne, c) drgania radialne, d) drgania ścinania Rezonatory piezoelektryczne Rezonatory piezoelektryczne to elementy elektroniczne, wykonane z piezoelektryków z naniesionymi na nie elektrodami, w których wykorzystuje się zależność impedancji takiego elementu od częstotliwości. Materiał piezoelektryczny jest w nich umieszczony tak, aby mógł się swobodnie odkształcać pod wpływem napięcia przyłożonego do elektrod rezonatora dzięki odwrotnemu zjawisku piezoelektrycznemu. W normalnych warunkach i napięciach rzędu woltów odkształcenia te są znikome, rzędu pikometra Jeśli jednak napięcie będzie przemienne a jego częstotliwość zbliżona do częstotliwości rezonansowej, to dzięki wzmocnieniu rezonansowemu odkształcenia staną się znacznie większe. Wtedy ładunek generowany dzięki prostemu zjawisku odwrotnemu silnie będzie wpływał na właściwości elektryczne rezonatora. W rezonatorach mogą występować różne rodzaje wzbudzonych drgań, których przykłady pokazano na rysunku 2. Ich częstotliwości zależą od wymiarów rezonatora oraz prędkości rozchodzenia się fali akustycznej w materiale N (nazywaną również stałą częstotliwościową), z którego je wykonano. Na przykład dla rezonatora o kształcie dysku o średnicy φ i grubości h częstotliwość rezonansowa dla drgań radialnych wynosi: f r = N φ (10) a grubościowych: f r = N h (11) 5

6 Wartość N również może zależeć od kierunku rozchodzenia się fali a jej typowe wartości dla ceramik piezoelektrycznych to m/s Współczynnik sprzężenia elektromechanicznego Ważnym parametrem opisującym materiał piezoelektryczny jest współczynnik sprzężenia elektromechanicznego k. Jest on bezwymiarową miarą stopnia przetwarzania energii elektrycznej w mechaniczną i odwrotnie w piezoelektryku. Można go określić na podstawie stosunku wewnętrznej energii elektromechanicznej W EM do iloczynu energii zmagazynowanej w postaci pola elektrycznego W E oraz energii mechanicznej (energii potencjalnej sprężystości) W M : k 2 = W EM 2, gdzie: W E W M W EM = 1 2 S 3E 3 = 1 [ ] J 2 d 33E 3 T 3 m 3 [ J m 3 ] W E = 1 2 E 3D 3 = 1 2 ɛt 33E3 2 W M = 1 2 S 3T 3 = 1 [ ] J 2 se 33T33 2 m 3 (12a) (12b) (12c) (12d) W zależności od materiału, rodzaju wzbudzonych drgań i warunków brzegowych przy jakich pracuje element wykonany z materiału piezoelektrycznego liczbowe wartości k mogą osiągać wartości od 0,01 do 0,75. Im ta wartość jest większa, tym większa skuteczność przetwarzania energii elektrycznej w mechaniczną i odwrotnie. Współczynnik ten można wyznaczyć na różne sposoby. Jeden z nich polega na pomiarze przenikalności dielektrycznej wolnej ɛ T i obciążonej ɛ S piezoelektryka. Związek między tymi właściwościami opisuje zależnosć: ɛ S = ɛ T (1 k 2 ) (13) Jak wyznaczyć te dwie przenikalności elektryczne? Jeśli element piezoelektryczny ma regularny kształt, na przykład pastylki, na której elektrody umieszczone są np. jak na rysunku 2c, wtedy łatwo jest wyliczyć przenikalność ɛ przez pomiar pojemności C na podstawie równania opisującego pojemność kondensatora płaskiego: C = ɛ A h (14) gdzie ɛ to przenikalność bezwzględna, 3 A pole powierzchni okładki kondensatora, h odległość pomiędzy okładkami, w tym wypadku grubość piezoelektryka. Pojemność można dokładnie mierzyć za pomocą mierników RLC bądź analizatorów impedancji. W obu wypadkach do kondensatora przyłożone jest napięcie o zadanej częstotliwości i na podstawie zmierzonego natężęnia przepływającego prądu wylicza się pojemność. Dla rezonatora wartość ta zależy od częstotliwości, przy której dokonuje się pomiaru, jak pokazano na rysunku 3. Jeśli element piezoelektryczny jest zamocowany swobodnie a częstotliwość, przy której dokonuje się pomiaru jest znacznie poniżej częstotliwości rezonansowej, wtedy piezoelektryk zdąży się odkształcić przy każdym cyklu napięcia pomiarowego a swobodne zamocowanie spowoduje, że brak będzie zewnętrznych naprężeń, które można uznać za stałe. Gdy z drugiej strony częstotliwość pomiaru znacznie przekracza rezonansową, wtedy piezoelektryk nie nadąży się odkształcać. W ten sposób zmieniając częstotliwość dokonać pomiaru C T oraz C S, z których na podstawie (14) można określić przenikalności ɛ T i ɛ S. 3 Przenikalność bezwzględna ɛ = ɛ 0 ɛ r, gdzie ɛ 0 to przenikalność elektryczna próżni a ɛ r to przenikalność elektryczna względna materiału. 6

7 pojemnosć 0 C T C S częstotliwość Rysunek 3. Zależność pojemności rezonatora piezoelektrycznego od częstotliwości. a) b) rezonator R I R rezonator Y Z f r f a f r f a częstotliwość częstotliwość Rysunek 4. Dwa sposoby pomiaru krzywych rezonansowych za pomocą oscyloskopu w metodzie dynamicznej: a) pobudzenie napięciowe i pomiar prądu, b) pobudzenie prądowe i pomiar napięcia. Współczynnik sprzężenia elektromechanicznego można również wyznaczyć badając krzywe rezonansowe rezonatora wykonanego z materiału piezoelektrycznego. Krzywe te można wyznaczać w sposób przybliżony za pomocą prostych układów pomiarowych, pokazanych na rysunku 4. W układach tych generator funkcyjny pracuje jako wobulator, czyli generator sygnału sinusoidalnego, o relatywnie dużej częstotliwości zmiennej w czasie, a przykład w zakresie od 100 khz do kilku MHz w ciągu 0,1 s. Jeśli czas trwania kreślenia obrazu na ekranie oscyloskopu podłączonego do układu jak na rysunku 4a to również będzie 0,1 s, wtedy uzyskamy przebieg, którego obwiednia będzie odpowiadała natężeniu prądu I płynącego przez szeregowe połączenie rezonatora i rezystora. 4 Zakładając, że napięcie z generatora odkłada się w większości na rezonatorze można w przybliżeniu powiedzieć, że oscyloskop pokaże przebieg modułu admitancji Y = I od częstotliwości. U Taki wykres można uzyskać również używając analizatora impedancji. Na takim wykresie widoczne maksimum odpowiada częstotliwości, dla której następuje rezonans. Minimum odpowiada tzw. antyrezonansowi. Określając częstotliwości rezonansu f r i antyrezonansu f a można określić współczynnik sprzężenia elektromechanicznego korzystając z przybliżonej zależności podanej przez Okami: 1 k 2 = a f a f r + b (15) f r na podstawie której można obliczyć k r dla drgań radialnych podstawiając a = 0, 495, b = 0, 574 a k 33 dla drgań grubościowych podstawiając a = 0, 405, b = 0, Prąd jest tu mierzony pośrednio, poprzez zastosowanie rezystora i obrazowanie na oscyloskopie napięcia na rezystorze, przez który płynie ten prąd (U = R I). 7

8 dźwignia trzpień przeciwwaga belka badany element podstawa spust Rysunek 5. Stanowisko do pomiarów prostego efektu piezoelektrycznego metodą statyczną. Jeśli pomiary przeprowadza się w układzie z pobudzeniem prądowym, pokazanym na rysunku 4b, wtedy na oscyloskopie obserwuje się wykres, którego obwiednia odpowiada w przybliżeniu przebiegowi modułu impedancji Z = U, rezonansowi odpowiada minimum a antyrezonansowi I maksimum. 2. Program ćwiczenia 2.1. Prosty efekt piezoelektryczny - pomiar statyczny Zadanie polega na pomiarze ładunku wygenerowanego na elementach piezoelektrycznych, umieszczonych w stanowisku pomiarowym (rysunek 5), na które wywierany jest nacisk związany z ciężarem użytych obciążników. Dostępne obciążenia: 100 g, 200 g, 200 g, 500 g, 1000 g (obciążniki duże). Akwizycja danych jest półautomatyczna (program piezo.vee). Program rejestruje wskazania elektrometru w czasie trwania pomiaru. Opcja ZERO CHECK powoduje zwarcie (opcja uaktywniona) lub rozwarcie wejścia elektrometru. Procedura pomiaru: 1. Sprawdzić, czy nieobciążona belka nie naciska na mierzony element, w razie potrzeby wyregulować przeciwwagą. 2. Uruchomić program piezo.vee i nacisnąć START, 3. Zewrzeć wejście elektrometru zaznaczając opcję ZERO CHECK w programie. 4. Obrócić dźwignię (rysunek 5) do oporu w lewo. 5. Obciążyć mierzony element dobranymi ciężarkami umieszczanymi na trzpieniu. 6. Obrócić dźwignię z powrotem do oporu do pozycji pionowej. 7. Rozewrzeć wejście elektrometru usuwając zaznaczenie ZERO CHECK. 8. Przycisnąć spust, na element piezoelektryczny wywierany jest nacisk. 9. Po kilku sekundach ponownie zewrzeć wejście elektrometru (ZERO CHECK). 10. Powtórzyć algorytm pomiaru efektu piezoelektrycznego od punktu d) dla dostępnych obciążeń (od 100 g do 2000 g, a następnie od 2000 g do 100 g, z krokiem co 200 g). 11. Zapisane dane należy wykreślić. Z wykresu wyznaczyć wartości ładunku przy kolejnych obciążeniach. 12. Sporządzić wykres zależności wygenerowanego ładunku od siły nacisku. Na podstawie przeprowadzonej serii pomiarów należy wyznaczyć wartość modułu piezoelektrycznego d 33. 8

9 2.2. Pomiary współczynnika sprzężenia elektromechanicznego Na podstawie pomiarów pojemności Współczynnik sprzężenia elektromechanicznego można wyznaczyć poprzez pomiar pojemności C T i C S na podstawie równań (13) i (14). Dokonaj takich pomiarów dla elementu badanego metodą statyczną i/lub innych elementów wskazanych przez prowadzącego Ze wzorów Okami Wyznaczenie współczynnika sprzężenia elektromechanicznego dla wskazanych przez prowadzącego elementów piezoelektrycznych odbywa się w układzie, jak na rysunku 4. Przed przystąpieniem do pomiarów należy zgrubnie oszacować częstotliwości, przy których mogą wystąpić podstawowe typy rezonansów. Dokonuje się tego na podstawie równań (10) i (11). Przygotowanie układu pomiarowego do pracy wymaga zmian ustawień oscyloskopu: 1. zmienić metodę pomiaru na Peak-Detect (menu Acquire), 2. do kanału 1 dołączyć wyjście z badanego układu, 3. kanał 2 służy do synchronizacji z generatorem, należy go połączyć z odpowiednim wyjściem generatora funkcyjnego, sprzężenie DC. Zbocze rosnące na tym sygnale oznacza początek przemiatania, opadające wystepuje albo w połowie przemiatania, albo przy częstotliwości ustawionej za pomocą funkcji MARKER w generatorze funkcyjnym. Procedura pomiaru: 1. Na generatorze wybrać funkcję sinus o amplitudzie kilku V P P przemiatany liniowo od 100 khz do np. 5 MHz w czasie np. 100 ms (dłuższe czasy dają mniej wygodny, ale dokładniejszy pomiar). 2. Ustawić odpowiednio wyzwalanie oscyloskopu na rosnące zbocze na kanale 2, a poziom wyzwalania około połowy wysokości przebiegu na kanale 2. Podstawa czasu i położenie wykresu w osi X należy ustawić tak, aby był widoczny jeden pełny cykl przemiatania. Jeśli został ustawiony czas przemiatania 1 s lub dłuższy trzeba przełączyć tryb pracy wyzwalania na NORMAL. W przeciwnym wypadku wygodniejszy jest tryb AUTO. 3. Na oscylogramie widoczne będą liczne rezonanse. Określić zgrubnie częstotliwość wszystkich z nich w przedziale częstotliwości zadanym przez prowadzącego. 4. Na podstawie przeprowadzonych wcześniej oszacowań zidentyfikować rzeczywiste podstawowe drgania radialne i grubościowe. 5. Zmieniając wyłącznie ustawienia generatora zawęzić zakres przemiatania tak, aby na oscylogramie był widoczny wyłącznie podstawowy rezonans dla drgań radialnych. Zmierzyć częstotliwości rezonansu i antyrezonansu. 6. Wyznaczyć ze wzorów Okami (15) współczynnik sprzężenia elektromechanicznego dla drgań radialnych. 7. Powtórzyć dwa poprzednie punkty dla podstawowych drgań grubościowych Badanie odwrotnego efektu piezoelektrycznego Badanie odwrotnego efektu piezoelektrycznego odbywa się za pomocą stanowiska przedstawionego schematycznie na rysunku 6. Elementem badanym jest piezostos. Składa się on z 78 warstw ceramiki piezoelektrycznej przedzielonych elektrodami. Napięcie polaryzujące piezostos oddziałuje na każdą warstwę osobno przez co zmiana l długości l piezostosu jest 78 razy większa, niż pojedynczej warstwy. Górny koniec piezostosu zamocowany jest sztywno a koniec dolny oddziałuje na dźwignię prostą, której przełożenie określa stosunek r 2 do r 1. Do drugiego końca dźwigni zamocowano ruchomą okładkę kondensatora, druga jego okładka jest nieruchoma. Ruchy dźwigni, wywołane 9

10 wskaźnik zegarowy l piezoelement dźwignia r 2 r 1 śruba nastawcza kondensator h Rysunek 6. Schemat budowy stanowiska do pomiaru odwrotnego efektu piezoelektrycznego. zmianą długości piezostosu l powodują zmiany odległości h pomiędzy okładkami kondensatora. Śruba nastawcza i wskaźnik zegarowy wykorzystywane są wyłącznie do kalibracji stanowiska, przy normalnym pomiarze nie stykają się z dźwignią. Pojemność kondensatora można mierzyć bezpośrednio odpowiednim miernikiem, bądź pośrednio, poprzez pomiar częstotliwości generatora RC, w którym za pojemność wzorcową dołączony jest kondensator pomiarowy. Częstotliwość sygnału z takiego generatora wynosi f = 1 2RC gdzie R to rezystor umieszczony w obwodzie generatora, którego wartość należy odczytać, a pojemność C to: C = C 0 + ɛ 0A = C 0 + k (17) h + h 0 h + h 0 gdzie C 0 to pojemność pasożytnicza kondensatora pomiarowego, niezależna od odległości h, k współczynnik kalibracyjny wynikający z powierzchni okładek kondensatora A, h 0 drugi współczynnik kalibracyjny, uwzględniający niedokładności wykonania kondensatora. Wartości współczynników wyznaczane są w czasie kalibracji, w której odległość między okładkami ustala się śrubą nastawczą i mierzy wskaźnikiem zegarowym. Wartości współczynników kalibracyjnych będą podane przez prowadzącego. Jak wspomniano, w trakcie właściwych pomiarów czujnik zegarowy i śruba nastawcza nie stykają się z dźwignią. Zmiany jej wychylenia określane są bezdotykowo, na podstawie pomiaru częstotliwości generatora RC dokonywanych za pomocą multimetru. Zależność wiążącą h z f należy wyprowadzić samodzielnie na podstawie (16) i (17). W trakcie pomiarów należy: 1. Upewnić się, że wskaźnik zegarowy nie styka się z dźwignią. 2. Upewnić się, że piezostos znajduje się w kontakcie z dźwignią, a początkowa odległość pomiędzy okładkami kondensatora pomiarowego jest taka, że częstotliwość f znajduje się w przedziale od 7 do 10 khz. 3. W sposób wskazany przez prowadzącego zajęcia określić zależność częstotliwości f of napięcia U przyłożonego do piezostosu. 4. Uwzględniając współczynniki kalibracyjne, przełożenie dźwigni oraz wielowarstwową budowę piezoelektryka, wykreślić zależność wydłużenia pojedynczej warstwy piezostosu od napięcia. 5. Na podstawie tej zależności wyznaczyć wartość podłużnego modułu piezoelektrycznego d 33. (16) Materiały dodatkowe 10

11 Materiał Typ IV 880 względna przenikalność elektryczna ɛ T 33r współczynnik strat tgδ 0,40 0,35 1,40 1,70 0,35 temperatura Curie [ C] gęstość ρ[g/cm 3 ] 7,6 7,6 7,6 7,6 7,6 dobroć mechaniczna Q m współczynniki sprzężenia elektromechanicznego k p 0,59 0,60 0,63 0,77 0,50 k t 0,59 0,60 0,63 0,77 0,50 k ,52 - k 31 0,72 0,68 0,72-0,62 k 15 0,35 0,33 0,36-0,30 moduły piezoelektryczne [ ] [ ] pc N, pm V d d d stałe ładunkowe [ ] [ ] mv m N, mc m 2 g 33 26,5 25,5 24,8 20,9 25,0 g 31 11,0 10,5 12,4-10,0 g 15 38,0 35,0 36,0-28,0 moduły sprężystości [GPa] c c stałe częstotliwości drgań [ m s N L N T N P Tabela 1. Podstawowe parametry materiałowe wybranych ceramik piezoelektrycznych. ] 11

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 3 Pomiary i wyznaczanie parametrów ceramiki piezoelektrycznej Zagadnienia do przygotowania 1. Prosty i odwrotny efekt piezoelektryczny i układ

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 4 Pomiary rezonatorów i filtrów piezoelektrycznych Zagadnienia do przygotowania 1. Anizotropia zjawiska piezoelektrycznego 2. Model zastępczy

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 5 Badanie odwrotnego efektu piezoelektrycznego Zagadnienia do przygotowania 1. Elektrostrykcja i odwrotny efekt piezoelektryczny 2. Podstawowe

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

ZJAWISKO PIEZOELEKTRYCZNE.

ZJAWISKO PIEZOELEKTRYCZNE. ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego

Bardziej szczegółowo

Zjawisko piezoelektryczne 1. Wstęp

Zjawisko piezoelektryczne 1. Wstęp Zjawisko piezoelektryczne. Wstęp W roku 880 Piotr i Jakub Curie stwierdzili, że na powierzchni niektórych kryształów poddanych działaniu zewnętrznych naprężeń mechanicznych indukują się ładunki elektryczne,

Bardziej szczegółowo

Dielektryki i Magnetyki

Dielektryki i Magnetyki Dielektryki i Magnetyki Zbiór zdań rachunkowych dr inż. Tomasz Piasecki tomasz.piasecki@pwr.edu.pl Wydanie 2 - poprawione ponownie 1 marca 2018 Spis treści 1 Zadania 3 1 Elektrotechnika....................................

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

E107. Bezpromieniste sprzężenie obwodów RLC

E107. Bezpromieniste sprzężenie obwodów RLC E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor) 14 Modulatory FM CELE ĆWICZEŃ Poznanie zasady działania i charakterystyk diody waraktorowej. Zrozumienie zasady działania oscylatora sterowanego napięciem. Poznanie budowy modulatora częstotliwości z oscylatorem

Bardziej szczegółowo

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof PIEZOELEKTRYKI I PIROELEKTRYKI Krajewski Krzysztof Zjawisko piezoelektryczne Zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach

Bardziej szczegółowo

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Defektoskop ultradźwiękowy

Defektoskop ultradźwiękowy Ćwiczenie nr 1 emat: Badanie rozszczepiania fali ultradźwiękowej. 1. Zapoznać się z instrukcją obsługi defektoskopu ultradźwiękowego na stanowisku pomiarowym.. Wyskalować defektoskop. 3. Obliczyć kąty

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO ĆWICZENIE 14 R. POPRAWSKI BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO Cel ćwiczenia: zapoznanie studentów z opisem, metodami badania oraz przykładami zastosowań prostego i odwrotnego zjawiska

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Krzysztof Makles Sprzęt i architektura komputerów Laboratorium Temat: Elementy i układy półprzewodnikowe Katedra Architektury Komputerów i Telekomunikacji Zakład Systemów i Sieci Komputerowych SPIS TREŚCI

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE A POMIAR ZALEŻNOŚCI POJENOŚCI ELEKTRYCZNEJ OD WYMIARÓW KONDENSATOR PŁASKIEGO I Zestaw przyrządów: Kondensator płaski 2 Miernik pojemności II Przebieg pomiarów: Zmierzyć

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo

I= = E <0 /R <0 = (E/R)

I= = E <0 /R <0 = (E/R) Ćwiczenie 28 Temat: Szeregowy obwód rezonansowy. Cel ćwiczenia Zmierzenie parametrów charakterystycznych szeregowego obwodu rezonansowego. Wykreślenie krzywej rezonansowej szeregowego obwodu rezonansowego.

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

Materiał do tematu: Piezoelektryczne czujniki ciśnienia. piezoelektryczny

Materiał do tematu: Piezoelektryczne czujniki ciśnienia. piezoelektryczny Materiał do tematu: Piezoelektryczne czujniki ciśnienia Efekt piezoelektryczny Cel zajęć: Celem zajęć jest zapoznanie się ze zjawiskiem piezoelektrycznym, zachodzącym w niektórych materiałach krystalicznych

Bardziej szczegółowo

Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

1. Nadajnik światłowodowy

1. Nadajnik światłowodowy 1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych

Bardziej szczegółowo

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu Obowiązujące zagadnienia teoretyczne: INSTRUKACJA WYKONANIA ZADANIA 1. Pojemność elektryczna, indukcyjność 2. Kondensator, cewka 3. Wielkości opisujące

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STDIA DZIENNE e LABOATOIM PZYZĄDÓW PÓŁPZEWODNIKOWYCH Ćwiczenie nr Pomiar częstotliwości granicznej f T tranzystora bipolarnego Wykonując

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza ĆWICZENIE 51 POMIARY OSCYLOSKOPOWE Instrukcja wykonawcza 1. Wykaz przyrządów a. Oscyloskop dwukanałowy b. Dwa generatory funkcyjne (jednym z nich może być generator zintegrowany z oscyloskopem) c. Przesuwnik

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego. Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Instrukcja wykonawcza 1 Wykaz przyrządów a. Generator AG 1022F. b. Woltomierz napięcia przemiennego. c. Miliamperomierz prądu przemiennego. d. Zestaw składający

Bardziej szczegółowo

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 2 Badanie własności ferroelektrycznych soli Seignette a Celem ćwiczenia jest wyznaczenie zależności temperaturowej

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 12 Pomiary dielektryków i magnetyków metodami klasycznymi Zagadnienia do przygotowania 1. Definicje parametrów materiałowych i ich jednostki:

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo