Hurtownie danych - przegląd technologii

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Hurtownie danych - przegląd technologii"

Transkrypt

1 Funkcje analityczne SQL CUBE (1) Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki JOB DEPTNO SUM(SAL) CLERK 4150 CLERK 10 CLERK 950 ANALYST 6000 MANAGER 8275 MANAGER MANAGER 2850 SALESMAN 5600 PRESIDENT select job, deptno, sum(sal) group by cube(job, deptno); Politechnika Poznańska, Instytut Informatyki 2 Funkcje analityczne SQL CUBE (2) Funkcje analityczne SQL ROLLUP (1) CUBE (job, deptno, mgr) jest równowaŝne: select... group by mgr, deptno, mgr, mgr, deptno, mgr select..."total"; JOB DEPTNO SUM(SAL) CLERK 10 CLERK 950 CLERK 4150 ANALYST 6000 MANAGER MANAGER 2850 MANAGER 8275 SALESMAN 5600 PRESIDENT select job, deptno, sum(sal) group by ROLLUP(job, deptno); Politechnika Poznańska, Instytut Informatyki 3 Politechnika Poznańska, Instytut Informatyki 4 Funkcje analityczne SQL ROLLUP (2) Funkcje analityczne SQL ROLLUP (3) DEPTNO JOB SUM(SAL) CLERK 10 MANAGER PRESIDENT CLERK ANALYST MANAGER CLERK 950 MANAGER 2850 SALESMAN select deptno, job, sum(sal) group by ROLLUP(deptno, job); ROLLUP (job, deptno, mgr) jest równowaŝne:, deptno, deptno, mgr select..."total"; Politechnika Poznańska, Instytut Informatyki 5 Politechnika Poznańska, Instytut Informatyki 6

2 SETS (1) JOB DEPTNO MGR SUM(SAL) select job, deptno, mgr, sum(sal) CLERK 10 group by GROUPING SETS CLERK 950 ((job, deptno), (job, mgr), ()); MANAGER MANAGER 2850 group by job, deptno CLERK CLERK CLERK CLERK group by job, mgr ANALYST MANAGER SALESMAN PRESIDENT Politechnika Poznańska, Instytut Informatyki 7 SETS (2) GROUPING SETS (job, deptno, mgr) jest równowaŝne: select... group by mgr; GROUPING SETS (job, deptno, (deptno, mgr)) jest równowaŝne:, mgr; Politechnika Poznańska, Instytut Informatyki 8 SETS (3) CUBE (job, deptno, mgr) jest równowaŝne: GROUPING SETS ( (job, deptno, mgr), (job, deptno), (job, mgr), (deptno, mgr), (job), (deptno), (mgr), () ) ROLLUP (job, deptno, mgr) jest równowaŝne: GROUPING SETS ( (job, deptno, mgr), (job, deptno), (job), () ) select job, deptno, sum(sal), GROUPING(job), GROUPING(deptno) group by ROLLUP(job, deptno); JOB DEPTNO SUM(SAL) GROUPING(JOB) GROUPING(DEPTNO) CLERK CLERK CLERK ANALYST MANAGER MANAGER MANAGER SALESMAN PRESIDENT Politechnika Poznańska, Instytut Informatyki 9 Politechnika Poznańska, Instytut Informatyki wyznaczanie rankingu (select d.dname, sum(e.sal+nvl(comm, 0)) as total_sal, RANK() over (order by sum(e.sal+nvl(comm, 0)) desc nulls last) as rank, DENSE_RANK() over (order by sum(e.sal+nvl(comm, 0)) desc nulls last) as drank dept d, emp e where d.deptno=e.deptno group by d.dname) where rank<=4; PARTITION BY (1) wyznaczanie rankingu (select ename, deptno, sal, RANK() over (PARTITION BY deptno order by sal desc nulls last) as rank ) where rank<=2; DNAME TOTAL_SAL RANK DRANK HUMAN RES SALES RESEARCH ACCOUNTING kolejność sortowania wartości NULL -domyślnie NULLS LAST -moŝliwe NULLS FIRST ENAME DEPTNO SAL RANK KING 1 CLARK 2 SCOTT FORD BLAKE ALLEN Politechnika Poznańska, Instytut Informatyki 11 Politechnika Poznańska, Instytut Informatyki 12

3 wyznaczanie rankingu podzbiorach (select deptno, job, sum(sal), RANK() over (PARTITION BY deptno order by sum(sal) desc nulls last) as rank group by deptno, job) where rank<=2; PARTITION BY (2) DEPTNO JOB SUM(SAL) RANK PRESIDENT 1 MANAGER 2 20 ANALYST MANAGER SALESMAN MANAGER Politechnika Poznańska, Instytut Informatyki 13 what if analysis wyznaczanie hipotetycznego rankingu pracownika o zarobkach 4000 select RANK(4000) WITHIN GROUP (order by sal desc) as hrank ; pensja 4000 byłaby drugą co do wielkości HRANK Politechnika Poznańska, Instytut Informatyki 14 Funkcje analityczne SQL NTILE dzieli uporządkowany zbiór wynikowy na n podzbiorów kaŝdy podzbiór otrzymuje numer liczba rekordów w podzbiorach róŝni się maksymalnie o 1 zakres wartości minimalnej i maksymalnej w tym samym podzbiorze moŝe być szeroki select ename, sal, NTILE(2) over(order by sal desc) as "ntile(2)" where deptno=20; ENAME SAL ntile(2) SCOTT 00 1 FORD 00 1 JONES ADAMS 10 2 SMITH Politechnika Poznańska, Instytut Informatyki 15 Funkcje analityczne SQL WIDTH_BUCKET dzieli uporządkowany zbiór wynikowy na n podzbiorów; zbiór wynikowy zawiera rekordy z zadanego przedziału liczba rekordów w podzbiorach moŝe się róŝnić znacząco zakres wartości minimalnej i maksymalnej w tym samym podzbiorze powinien być niewielki ENAME SAL WB zakres dziedziny <00, ) jest dzielony na 4 równej SMITH wartości < 00 szerokości przedziały: <00, JAMES ), <2000, 00), <00, ALLEN WARD ), <4000, ) ADAMS 10 1 przedział <4000, ) nie ma TURNER rekordów MARTIN MILLER 10 1 JONES BLAKE CLARK SCOTT select ename, sal, WIDTH_BUCKET(sal, 00,, 4) as WB order by WB; FORD 00 3 KING Robert 5 Wrembel wartości >= zakres wartości <00, ) Politechnika Poznańska, Instytut Informatyki 16 kumulacyjna (1) over (order by deptno rows unbounded preceding) as cum_sum kumulacyjna (2) over (order by deptno rows 1 preceding) as cum_sum suma kumulacyjna jest obliczana z wykorzystaniem bieŝącego rekordu i wszystkich rekordów go poprzedzających suma kumulacyjna jest obliczana z wykorzystaniem bieŝącego rekordu i 1 rekordu go poprzedzającego Politechnika Poznańska, Instytut Informatyki 17 Politechnika Poznańska, Instytut Informatyki 18

4 kumulacyjna (3) over (order by deptno rows between 1 preceding and 1 following) as cum_sum = = kumulacyjna (4) SELECT t.time_key, SUM(f.purchase_price) as sales, SUM(SUM(f.purchase_price)) OVER (ORDER BY t.time_key RANGE BETWEEN INTERVAL '2' DAY PRECEDING AND INTERVAL '2' DAY FOLLOWING) as sales_5_day FROM purchases f, time t WHERE f.time_key = t.time_key GROUP BY t.time_key; TIME_KEY SALES SALES_5_DAY JAN ,02 239,04 02-JAN ,02 239,04 01-FEB FEB FEB FEB FEB MAR MAR APR jest moŝliwe określanie interwału z wykorzystaniem słów kluczowych MONTH lub YEAR 239,04=56,02+183,02 84=42+42 Politechnika Poznańska, Instytut Informatyki 19 Politechnika Poznańska, Instytut Informatyki 20 Funkcje analityczne SQL max max (1) Funkcje analityczne SQL max max (2) select job, deptno, sum(sal) as job_sal, max(sum(sal)) over (partition by job) as max_job_sal group by job, deptno; JOB DEPTNO JOB_SAL MAX_JOB_SAL CLERK CLERK MANAGER MANAGER pensje na poszczególnych etatach w poszczególnych zespołach maksymalne pensje na etatach Politechnika Poznańska, Instytut Informatyki 21 select job, deptno, job_sal (select job, deptno, sum(sal) as job_sal, max(sum(sal)) over (partition by job) as max_job_sal group by job, deptno) where job_sal=max_job_sal; JOB DEPTNO JOB_SAL Politechnika Poznańska, Instytut Informatyki 22 Funkcje analityczne SQL RATIO_TO_REPORT select job, deptno, sum(sal) as job_sal, over () as total_sal, RATIO_TO_REPORT(sum(sal)) OVER() as ratio_to_report group by job, deptno; JOB DEPTNO JOB_SAL TOTAL_SAL RATIO_TO_REPORT , CLERK 10, , CLERK 950, MANAGER, , MANAGER 2850, , , RATIO_TO_REPORT = total_sal/sum_sal suma pensji dla wszystkich rekordów pracowników Politechnika Poznańska, Instytut Informatyki 23 Funkcje analityczne SQL LAG i LEAD umoŝliwiają dostęp do wartości atrybutów rekordów poprzedzających dany rekord (LAG) lub następujących po danym rekordzie (LEAD) argument wywołania funkcji określa przesunięcie w tył/przód względem bieŝącego rekordu SELECT t.month, SUM(f.purchase_price) as sales, LAG(SUM(f.purchase_price),1) OVER (ORDER BY t.month) as sales_last_month, LEAD(SUM(f.purchase_price),1) OVER (ORDER BY t.month) as sales_next_month FROM purchases f, time t WHERE f.time_key = t.time_key AND t.year = 1999 GROUP BY t.month; MONTH SALES SALES_LAST_MONTH SALES_NEXT_MONTH NULL brak rekordu poprzedzającego , , NULL brak rekordu następującego Politechnika Poznańska, Instytut Informatyki 24

5 Schemat magazynu danych do ćwiczeń PRODUCT product_id product_name category cost_price sell_price shipping_charge CUSTOMER customer_id town postal_code country occupation PURCHASES product_id time_key customer_id purchase_date purchase_price state_id TIME time_key day month quarter year day_number day_of_the_week week_number GEOGRAPHY state_id state_name region Politechnika Poznańska, Instytut Informatyki 25

Funkcje analityczne SQL CUBE (1)

Funkcje analityczne SQL CUBE (1) Funkcje analityczne SQL CUBE (1) JOB DEPTNO SUM(SAL) --------- ---------- ---------- 29025 10 8750 20 10875 30 9400 CLERK 4150 CLERK 10 1300 CLERK 20 1900 CLERK 30 950 ANALYST 6000 ANALYST 20 6000 MANAGER

Bardziej szczegółowo

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Raportowanie z wykorzystaniem fraz rollup, cube Frazy cube, rollup, grouping sets umożliwiają rozszerzoną

Bardziej szczegółowo

Rozdział 14 Funkcje analityczne

Rozdział 14 Funkcje analityczne Rozdział 14 Funkcje analityczne Operatory ROLLUP i CUBE, funkcja GROUPING, funkcje porządkujące (ranking), okienkowe, raportujące, statystyczne, funkcje LAG/LAD (c) Instytut Informatyki Politechniki Poznańskiej

Bardziej szczegółowo

SQL do zaawansowanych analiz danych część 2.

SQL do zaawansowanych analiz danych część 2. SQL do zaawansowanych analiz danych część 2. Funkcje analityczne Materiały wykładowe Bartosz Bębel Politechnika Poznańska, Instytut Informatyki Plan wykładu 1. Podstawowe definicje. 2. Sposób działania

Bardziej szczegółowo

188 Funkcje analityczne

188 Funkcje analityczne Funkcje analityczne 188 Plan rozdziału 189 Wprowadzenie do funkcji analitycznych Funkcje rankingu Funkcje okna Funkcje raportujące Funkcje LAG/LEAD Funkcje FIRST/LAST Odwrotne funkcje percentyli Funkcje

Bardziej szczegółowo

Materiały szkoleniowe. Podstawy języka SQL

Materiały szkoleniowe. Podstawy języka SQL Materiały szkoleniowe Podstawy języka SQL Spis treści Zawartość tabel wykorzystywanych na kursie... 4 Zawartość tabeli DEPT...5 Zawartość tabeli EMP...5 Zawartość tabeli SALGRADE...5 Budowa tabel wykorzystywanych

Bardziej szczegółowo

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL

ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Plan laboratorium Frazy SQL: group by, rollup, cube, grouping sets funkcje analityczne, budowa modeli

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 6: Algebra relacji. SQL - cd Algebra relacji operacje teoriomnogościowe rzutowanie selekcja przemianowanie Małgorzata Krętowska Wydział Informatyki Politechnika

Bardziej szczegółowo

Ćwiczenie 3. Funkcje analityczne

Ćwiczenie 3. Funkcje analityczne Ćwiczenie 3. Funkcje analityczne 1. Uruchomienie i skonfigurowanie środowiska do ćwiczeń Czas trwania: 15 minut Zadaniem niniejszych ćwiczeń jest przedstawienie podstawowych zagadnień dotyczących wykorzystywania

Bardziej szczegółowo

Zadania SELECT do schematu EDS (EMP, DEPT, SALGRADE)

Zadania SELECT do schematu EDS (EMP, DEPT, SALGRADE) Zadania SELECT do schematu EDS (EMP, DEPT, SALGRADE) W Bazie występują trzy tabele, o następujących schematach: EMP {empno(pk), ename, deptno(fk), mgr(fk), sal, comm, hiredate, job} DEPT {deptno(pk), dname,

Bardziej szczegółowo

Oracle 12c: Nowości w SQL i PL/SQL

Oracle 12c: Nowości w SQL i PL/SQL Oracle 12c: Nowości w SQL i PL/SQL Marek Wojciechowski Politechnika Poznańska, PLOUG Nowe możliwości w klauzuli DEFAULT Odwołania do sekwencji Obsługa jawnie wstawianych wartości NULL Wartości na poziomie

Bardziej szczegółowo

SQL do zaawansowanych analiz danych część 1.

SQL do zaawansowanych analiz danych część 1. SQL do zaawansowanych analiz danych część 1. Mechanizmy języka SQL dla agregacji danych Rozszerzenia PIVOT i UNPIVOT Materiały wykładowe Bartosz Bębel Politechnika Poznańska, Instytut Informatyki Plan

Bardziej szczegółowo

Standard SQL/XML. Wprowadzenie do XQuery

Standard SQL/XML. Wprowadzenie do XQuery Standard SQL/XML Wprowadzenie do XQuery Marek Wojciechowski marek@cs.put.poznan.pl http://www.cs.put.poznan.pl/~marek/ Języki zapytań dla XML Wraz z pojawieniem się standardu XML pojawiały się również

Bardziej szczegółowo

Materiały szkoleniowe. Podstawy jzyka SQL. Prowadzcy Anna Pijanowska - Kunierz Paweł ołnierczyk

Materiały szkoleniowe. Podstawy jzyka SQL. Prowadzcy Anna Pijanowska - Kunierz Paweł ołnierczyk Materiały szkoleniowe Podstawy jzyka SQL Prowadzcy Anna Pijanowska - Kunierz Paweł ołnierczyk Spis treci Zawarto tabel wykorzystywanych na kursie 5 Zawarto tabeli DEPT 6 Zawarto tabeli EMP 6 Zawarto tabeli

Bardziej szczegółowo

Oracle Statistical Functions 11g: statystyka dla dużych i małych

Oracle Statistical Functions 11g: statystyka dla dużych i małych XVI Konferencja PLOUG Kościelisko Październik 2010 Oracle Statistical Functions 11g: statystyka dla dużych i małych Mikołaj Morzy Instytut Informatyki Politechniki Poznańskiej Mikolaj.Morzy@put.poznan.pl

Bardziej szczegółowo

Bazy danych. Plan wykáadu. Zale*noci funkcyjne. Wykáad 4: Relacyjny model danych - zale*noci funkcyjne. A B

Bazy danych. Plan wykáadu. Zale*noci funkcyjne. Wykáad 4: Relacyjny model danych - zale*noci funkcyjne. A B Plan wykáadu Bazy danych Wykáad 4: Relacyjny model danych - zale*noci funkcyjne. Maágorzata Krtowska Wydziaá Informatyki Politechnika Biaáostocka Deficja zale*noci funkcyjnych Klucze relacji Reguáy dotyczce

Bardziej szczegółowo

select zam_id, cena_euro,(rank() over (partition by zam_id order by cena_euro)) from pozycjezamowien order by zam_id

select zam_id, cena_euro,(rank() over (partition by zam_id order by cena_euro)) from pozycjezamowien order by zam_id See also: OLAP.mth Suma narastająco... 1 Min max w poszczególnych grupach... 1 Numeracja elementów w grupach... 1 KLAUZULE GROUP BY, GROUP BY CUBE, GROUP BY ROLLUP... 1 MATERIAŁ ROBOCZY... 5 First VALUE

Bardziej szczegółowo

Bazy danych wykład trzeci. Konrad Zdanowski

Bazy danych wykład trzeci. Konrad Zdanowski SQL - przypomnienie Podstawowa forma kwerendy SQL: select A1,..., Ak from R1,..., Rn where ; Odpowiada jej w algebrze relacji operacja π A1,...,Ak (σ (R1 Rn)) SQL semantyka select R.

Bardziej szczegółowo

Funkcje analityczne języka SQL

Funkcje analityczne języka SQL Plan wykładu Funkcje analityczne języka SQL 1. Podstawowe definicje 2. Podział funkcji analitycznych 3. Omówienie kolejnych grup funkcji Hurtownie danych, wykład Bartosz Bębel E-mail: bartosz.bebel@cs.put.poznan.pl

Bardziej szczegółowo

Ćwiczenie 3 funkcje agregujące

Ćwiczenie 3 funkcje agregujące Ćwiczenie 3 funkcje agregujące Funkcje agregujące, klauzule GROUP BY, HAVING Ćwiczenie 3 funkcje agregujące Celem ćwiczenia jest zaprezentowanie zagadnień dotyczących stosowania w zapytaniach języka SQL

Bardziej szczegółowo

TECHNOLOGIE BAZ DANYCH

TECHNOLOGIE BAZ DANYCH TECHNOLOGIE BAZ DANYCH WYKŁAD 3 Diagramy związków encji. Funkcje agregujące. (Wybrane materiały) Dr inż. E. Busłowska Copyright 2014-2015 E. Busłowska. 1 DIAGRAMY ZWIĄZKÓW ENCJI (DZE) Metoda graficznej

Bardziej szczegółowo

sqlplus [ użytkownik [ / hasło ] ]

sqlplus [ użytkownik [ / hasło ] ] Uruchomienie SQL*Plus: sqlplus [ użytkownik [ / hasło ] ] Zasady wpisywania komend PL/SQL: komendy mogą być wieloliniowe nie można skracać słów kluczowych można oddzielać słowa spacjami lub tabulacją słowa

Bardziej szczegółowo

OnLine Analytical Processing (OLAP) Zapytania SQL

OnLine Analytical Processing (OLAP) Zapytania SQL OnLine Analytical Processing (OLAP) Zapytania SQL 17 kwietnia 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały

Bardziej szczegółowo

Nauczycielem wszystkiego jest praktyka Juliusz Cezar. Nauka to wiara w ignorancję ekspertów Richard Feynman

Nauczycielem wszystkiego jest praktyka Juliusz Cezar. Nauka to wiara w ignorancję ekspertów Richard Feynman Oracle i DB2 zadanie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej

Bardziej szczegółowo

Wybór EUROPEAN będzie rozpoznawał dzień przed miesiącem, natomiast US miesiąc przed dniem.

Wybór EUROPEAN będzie rozpoznawał dzień przed miesiącem, natomiast US miesiąc przed dniem. Typy numeryczne Typy daty i czasu. W celu uniknięcia niejasności czy zapis 11-08-2005 oznacza - 11 sierpnia 2005, czy może 8 listopada 2005, należy ustalić sposób interpretacji daty (europejski lub amerykański).

Bardziej szczegółowo

Język SQL. Rozdział 4. Funkcje grupowe Funkcje grupowe, podział relacji na grupy, klauzule GROUP BY i HAVING.

Język SQL. Rozdział 4. Funkcje grupowe Funkcje grupowe, podział relacji na grupy, klauzule GROUP BY i HAVING. Język SQL. Rozdział 4. Funkcje grupowe Funkcje grupowe, podział relacji na grupy, klauzule GROUP BY i HAVING. 1 Funkcje grupowe (agregujące) (1) Działają na zbiorach rekordów, nazywanych grupami. Rekordy

Bardziej szczegółowo

Bazy danych. Plan wykáadu. Powtórzenie BCNF i 3NF. Nowa forma redundancji. Wykáad 6: Postaci normalne. SQL - zapytania záo*one.

Bazy danych. Plan wykáadu. Powtórzenie BCNF i 3NF. Nowa forma redundancji. Wykáad 6: Postaci normalne. SQL - zapytania záo*one. Plan wykáadu Bazy danych Wykáad 6: Postaci normalne. SQL - zapytania záo*one. Maágorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl Zale*noci wielowartociowe Czwarta postaü normalna

Bardziej szczegółowo

Relacji między tabelami klucze obce. Schemat bazy danych, wczytanej z pliku create_tables.sql. Klucz obcy jako ograniczenie dla kolumny

Relacji między tabelami klucze obce. Schemat bazy danych, wczytanej z pliku create_tables.sql. Klucz obcy jako ograniczenie dla kolumny Schemat bazy danych, wczytanej z pliku create_tables.sql Relacji między tabelami klucze obce Klucz obcy jako ograniczenie dla kolumny customer_id INTEGER NOT NULL REFERENCES customer(customer_id), CONSTRAINT

Bardziej szczegółowo

Klasyczna Analiza Danych

Klasyczna Analiza Danych Klasyczna Analiza Danych Funkcje analityczne Materiały laboratoryjne Bartosz Bębel Politechnika Poznańska, Instytut Informatyki Wprowadzenie do c wiczenia W niniejszym ćwiczeniu student nabierze praktycznych

Bardziej szczegółowo

Plan. Wyświetlanie n początkowych wartości (TOP n) Użycie funkcji agregujących. Grupowanie danych - klauzula GROUP BY

Plan. Wyświetlanie n początkowych wartości (TOP n) Użycie funkcji agregujących. Grupowanie danych - klauzula GROUP BY Plan Wyświetlanie n początkowych wartości (TOP n) Użycie funkcji agregujących Grupowanie danych - klauzula GROUP BY Generowanie wartości zagregowanych Użycie klauzul COMPUTE i COMPUTE BY Wyświetlanie początkowych

Bardziej szczegółowo

Grupowanie danych klauzula GROUP BY

Grupowanie danych klauzula GROUP BY Grupowanie danych klauzula GROUP BY! Użycie klazuli GROUP BY! Użycie klauzuli GROUP BY z klauzulą HAVING Użycie klauzuli GROUP BY SELECT productid, orderid,quantity SELECT productid,sum(quantity) AS total_quantity

Bardziej szczegółowo

3. Podzapytania, łączenie tabel i zapytań

3. Podzapytania, łączenie tabel i zapytań 3. Podzapytania, łączenie tabel i zapytań I. PODZAPYTANIE (SUBSELECT) oddzielna, ujęta w nawiasy instrukcja SELECT, zagnieżdżona w innej instrukcji SQL, zazwyczaj w instrukcji SELECT w instrukcji SELECT,

Bardziej szczegółowo

Schemat bazy danych. Funkcje analityczne. ROLLUP - wynik ROLLUP

Schemat bazy danych. Funkcje analityczne. ROLLUP - wynik ROLLUP Schemat bazy danych TIMES # TIME_KEY TRANSACTION_DATE DAY_OF_WEEK HOLIDAY_FLAG Funkcje analityczne Operatory ROLLUP i CUBE, funkcja GROUPING, funkcje porządkujące (ranking), okienkowe, raportujące, statystyczne,

Bardziej szczegółowo

Klasyczna Analiza Danych

Klasyczna Analiza Danych Klasyczna Analiza Danych Mechanizmy języka SQL dla agregacji danych Rozszerzenia PIVOT i UNPIVOT Wyszukiwanie danych wg zadanego wzorca Materiały wykładowe Bartosz Bębel Politechnika Poznańska, Instytut

Bardziej szczegółowo

Technologie semantyczne i sieci społecznościowe laboratorium

Technologie semantyczne i sieci społecznościowe laboratorium Technologie semantyczne i sieci społecznościowe laboratorium Oracle Semantic Technologies Celem ćwiczenia jest zapoznanie studentów z narzędziem Oracle Semantic Technologies oraz przedstawienie sposobów

Bardziej szczegółowo

Zbiór pytań nr 2. 1 Tabela DEPARTMENTS ma następującą strukturę:

Zbiór pytań nr 2. 1 Tabela DEPARTMENTS ma następującą strukturę: Zbiór pytań nr 2 1 Tabela DEPARTMENTS ma następującą strukturę: Nazwa kolumny Typ danych Uwagi dept_id NUMBER(4) NOT NULL, PRIMARY KEY dept_name VARCHAR2(30) mgr_id NUMBER(6) location_id NUMBER(4) Które

Bardziej szczegółowo

SQL. Receptury IDZ DO KATALOG KSI EK TWÓJ KOSZYK CENNIK I INFORMACJE CZYTELNIA PRZYK ADOWY ROZDZIA. SPIS TREœCI KATALOG ONLINE ZAMÓW DRUKOWANY KATALOG

SQL. Receptury IDZ DO KATALOG KSI EK TWÓJ KOSZYK CENNIK I INFORMACJE CZYTELNIA PRZYK ADOWY ROZDZIA. SPIS TREœCI KATALOG ONLINE ZAMÓW DRUKOWANY KATALOG IDZ DO PRZYK ADOWY ROZDZIA SPIS TREœCI KATALOG KSI EK KATALOG ONLINE ZAMÓW DRUKOWANY KATALOG SQL. Receptury Autor: Anthony Molinaro T³umaczenie: Miko³aj Szczepaniak ISBN: 83-246-0450-2 Tytu³ orygina³u:

Bardziej szczegółowo

Plan wykładu. Elementy ERD BAZY DANYCH. Proces modelowania i implementacji bazy danych. Diagramy związków encji. SQL podzapytania

Plan wykładu. Elementy ERD BAZY DANYCH. Proces modelowania i implementacji bazy danych. Diagramy związków encji. SQL podzapytania Plan wykładu 2 BAZY DANYCH Wykład 4: Diagramy związków encji (ERD). SQL podzapytania. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Diagramy związków encji elementy ERD liczności związków

Bardziej szczegółowo

Autor: Joanna Karwowska

Autor: Joanna Karwowska Autor: Joanna Karwowska SELECT [DISTINCT] FROM [WHERE ] [GROUP BY ] [HAVING ] [ORDER BY ] [ ] instrukcja może

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

Optymalizacja poleceń SQL Metody dostępu do danych

Optymalizacja poleceń SQL Metody dostępu do danych Optymalizacja poleceń SQL Metody dostępu do danych 1 Metody dostępu do danych Określają, w jaki sposób dane polecenia SQL są odczytywane z miejsca ich fizycznej lokalizacji. Dostęp do tabeli: pełne przeglądnięcie,

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Laboratorium nr 8. Temat: Podstawy języka zapytań SQL (część 2)

Laboratorium nr 8. Temat: Podstawy języka zapytań SQL (część 2) Laboratorium nr 8 Temat: Podstawy języka zapytań SQL (część 2) PLAN LABORATORIUM: 1. Sortowanie. 2. Warunek WHERE 3. Eliminacja powtórzeń - DISTINCT. 4. WyraŜenia: BETWEEN...AND, IN, LIKE, IS NULL. 5.

Bardziej szczegółowo

Bazy danych. Plan wykładu. Złczenia tabel. Perspektywy cd. Wykład 9: Programowanie aplikacji baz danych po stronie serwera. Sekwencje Wyzwalacze

Bazy danych. Plan wykładu. Złczenia tabel. Perspektywy cd. Wykład 9: Programowanie aplikacji baz danych po stronie serwera. Sekwencje Wyzwalacze Plan wykładu Bazy danych Wykład 9: Programowanie aplikacji baz danych po stronie serwera Sekwencje Wyzwalacze Bloki anonimowe Funkcje Procedury Pakiety Małgorzata Krtowska Katedra Oprogramowania e-mail:

Bardziej szczegółowo

SELECT * FROM tabela WHERE warunek wybiera dane spełniające podany warunek

SELECT * FROM tabela WHERE warunek wybiera dane spełniające podany warunek SELECT SELECT kolumna1, kolumna2,, kolumnan FROM tabela wybrane kolumny SELECT * FROM tabela wszystkie kolumny select * from Orders select CustomerID, CompanyName, Country from Customers WHERE SELECT *

Bardziej szczegółowo

SQL*Loader (2) SQL*Loader (1) SQL*Loader. SQL*Loader (4) SQL*Loader (3) Wczytywanie danych ze źródeł zewnętrznych

SQL*Loader (2) SQL*Loader (1) SQL*Loader. SQL*Loader (4) SQL*Loader (3) Wczytywanie danych ze źródeł zewnętrznych Wczytywanie danych ze źródeł zewnętrznych (1 Źródła zewnętrzne bazy danych - heterogeniczność producenci funkcjonalność modele danych protokoły komunikacyjne pliki tekstowe, HTML, XML arkusze kalkulacyjne

Bardziej szczegółowo

Lista zadań nr 1. 4. Wyświetlić imię i nazwisko dla każdego pracownika z departamentu DEP T NO o numerze 000.

Lista zadań nr 1. 4. Wyświetlić imię i nazwisko dla każdego pracownika z departamentu DEP T NO o numerze 000. Lista zadań nr 1 Zapytania SQL, SELECT z klauzulą WHERE i ORDER BY 1. Wyświetlić zawartość tablicy z pracownikami (EMPLOYEE). 2. Wyświetlić nazwisko i imię LAST NAME, F IRST NAME dla każdego pracownika.

Bardziej szczegółowo

Przydatne sztuczki - sql. Na przykładzie postgres a.

Przydatne sztuczki - sql. Na przykładzie postgres a. Przydatne sztuczki - sql. Na przykładzie postgres a. M. Wiewiórko 05/2014 Plan Uwagi wstępne Przykład Rozwiązanie Tabela testowa Plan prezentacji: Kilka uwag wstępnych. Operacje na typach tekstowych. Korzystanie

Bardziej szczegółowo

Wprowadzenie do języka SQL

Wprowadzenie do języka SQL Wprowadzenie do języka SQL język dostępu do bazy danych grupy poleceń języka: DQL (ang( ang.. Data Query Language) DML (ang( ang.. Data Manipulation Language) DDL (ang( ang.. Data Definition Language)

Bardziej szczegółowo

Język SQL. instrukcja laboratoryjna. Politechnika Śląska Instytut Informatyki. laboratorium Bazy Danych

Język SQL. instrukcja laboratoryjna. Politechnika Śląska Instytut Informatyki. laboratorium Bazy Danych Politechnika Śląska Instytut Informatyki instrukcja laboratoryjna laboratorium Bazy Danych przygotowali: mgr inż. Paweł Kasprowski (Kasprowski@zti.iinf.polsl.gliwice.pl) mgr inż. Bożena Małysiak (bozena@ivp.iinf.polsl.gliwice.pl)

Bardziej szczegółowo

Map Reduce Proste zliczanie słów i zapytania SQL

Map Reduce Proste zliczanie słów i zapytania SQL Map Reduce Proste zliczanie słów i zapytania SQL 15 maja 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały

Bardziej szczegółowo

Lista zadań nr 1. Bazy danych laboratorium. dr inż. Grzegorz Bazydło, dr inż. Jacek Tkacz

Lista zadań nr 1. Bazy danych laboratorium. dr inż. Grzegorz Bazydło, dr inż. Jacek Tkacz Bazy danych laboratorium dr inż. Grzegorz Bazydło, dr inż. Jacek Tkacz G.Bazydlo@iie.uz.zgora.pl, www.uz.zgora.pl/~gbazydlo Lista zadań nr 1 Zagadnienia Poznanie narzędzia DBeaver. Konfiguracja połączenia

Bardziej szczegółowo

Funkcja INITCAP. SQL> select initcap(dname), initcap(loc) from dept; Funkcja SUBSTR

Funkcja INITCAP. SQL> select initcap(dname), initcap(loc) from dept; Funkcja SUBSTR Bazy danych SQL: funkcje dostępne w Oracle Funkcje działające na pojedynczych wartościach Działają na każdym wierszu wybranym przez zapytanie Zwracają jeden wynik dla każdego wiersza Są jedno- lub wieloargumentowe

Bardziej szczegółowo

Zaawansowany SQL. Robert A. Kłopotek Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW

Zaawansowany SQL. Robert A. Kłopotek Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Zaawansowany SQL Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW MySQL GREATEST i LEAST Zarówno funkcja GEATEST jak i LEAST przyjmują N argumentów

Bardziej szczegółowo

Politechnika Łódzka, ul. Żeromskiego 116, 90-924 Łódź, tel. (042) 631 28 83. Projekt współfinansowany przez Unię Europejską

Politechnika Łódzka, ul. Żeromskiego 116, 90-924 Łódź, tel. (042) 631 28 83. Projekt współfinansowany przez Unię Europejską Oracle i DB2 zadanie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej

Bardziej szczegółowo

- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji

- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji 6. Język SQL Język SQL (Structured Query Language): - język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji - stworzony w IBM w latach 70-tych DML (Data Manipulation

Bardziej szczegółowo

Relacyjne bazy danych. Podstawy SQL

Relacyjne bazy danych. Podstawy SQL Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umoŝliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.

Bardziej szczegółowo

Podzapytania do tabel W miejscu w którym możemy użyć nazwy tabeli, możemy użyć podzapytania

Podzapytania do tabel W miejscu w którym możemy użyć nazwy tabeli, możemy użyć podzapytania Plan Podzapytania (subqueries) Podzapytania do tabel Podzapytanie jako wyrażenie Podzapytania skorelowane operatory IN, NOT IN operatory EXISTS, NOT EXISTS Podzapytania do tabel W miejscu w którym możemy

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia

Bardziej szczegółowo

w ramach realizacji V etapu umowy nr 48/2009/F pt.

w ramach realizacji V etapu umowy nr 48/2009/F pt. Sprawozdanie z realizacji zadania nr 4 w ramach realizacji V etapu umowy nr 48/2009/F pt. Realizacja programu Zintegrowanego Monitoringu Środowiska Przyrodniczego nadzór merytoryczny oraz prowadzenie pomiarów

Bardziej szczegółowo

Podstawowe zapytania SELECT (na jednej tabeli)

Podstawowe zapytania SELECT (na jednej tabeli) Podstawowe zapytania SELECT (na jednej tabeli) Struktura polecenia SELECT SELECT opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje FROM nazwy tabel lub widoków WHERE warunek (wybieranie wierszy) GROUP

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

Pobieranie danych, czyli instrukcja SELECT

Pobieranie danych, czyli instrukcja SELECT Pobieranie danych, czyli instrukcja SELECT Pobieranie danych Informacje przechowywane w bazach danych mogą być pobrane za pomocą instrukcji języka SQL SELECT. Instrukcja SELECT (zapytanie) określa, jakie

Bardziej szczegółowo

Laboratorium nr 5. Temat: Funkcje agregujące, klauzule GROUP BY, HAVING

Laboratorium nr 5. Temat: Funkcje agregujące, klauzule GROUP BY, HAVING Laboratorium nr 5 Temat: Funkcje agregujące, klauzule GROUP BY, HAVING Celem ćwiczenia jest zaprezentowanie zagadnień dotyczących stosowania w zapytaniach języka SQL predefiniowanych funkcji agregujących.

Bardziej szczegółowo

PL/SQL. Funkcje wbudowane

PL/SQL. Funkcje wbudowane Slajd 1 PL/SQL Opis funkcji SQL PL/SQL(funkcje SQL) M. Rakowski - WSISiZ 1 Slajd 2 Funkcje wbudowane Funkcje wbudowane mają za zadanie umożliwić bardziej zaawansowane operowanie danymi. Funkcje operacji

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Partycjonowanie tabel (1) Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Podział tabeli na mniejsze fragmenty

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

124 Bazy danych. Zaawansowane programowanie w T- SQL

124 Bazy danych. Zaawansowane programowanie w T- SQL 124 Bazy danych Zaawansowane programowanie w T- SQL Bazy danych 125 Przegląd zagadnień Skladnie T-SQL Obsluga bledów Podsumowanie Laboratorium Znajomość języka SQL, jakim posługuje się SZBD, jest bardzo

Bardziej szczegółowo

Zapytania z ograniczeniem czasowym w Oracle

Zapytania z ograniczeniem czasowym w Oracle 22 stycznia 2009 Tytuł oryginalny Supporting Time-Constrained Queries in Oracle Ying Hu, Seema Sundara, Jagannathan Srinivasan Oracle New England Development Center VLDB 2007 Materiały żródłowe: referat,

Bardziej szczegółowo

XML Repository. Maciej Zakrzewicz. mzakrz@cs.put.poznan.pl http://www.cs.put.poznan.pl/~mzakrz/

XML Repository. Maciej Zakrzewicz. mzakrz@cs.put.poznan.pl http://www.cs.put.poznan.pl/~mzakrz/ XML Repository Maciej Zakrzewicz mzakrz@cs.put.poznan.pl http://www.cs.put.poznan.pl/~mzakrz/ Charakterystyka XML Repository Repozytorium dokumentów XML (XML Repository) jest usługą serwera bazy danych

Bardziej szczegółowo

Wstęp Wprowadzenie do BD Podstawy SQL. Bazy Danych i Systemy informacyjne Wykład 1. Piotr Syga

Wstęp Wprowadzenie do BD Podstawy SQL. Bazy Danych i Systemy informacyjne Wykład 1. Piotr Syga Bazy Danych i Systemy informacyjne Wykład 1 Piotr Syga 09.10.2017 Ogólny zarys wykładu Podstawowe zapytania SQL Tworzenie i modyfikacja baz danych Elementy dynamiczne, backup, replikacja, transakcje Algebra

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie

Bardziej szczegółowo

Instrukcje DQL: SELECT. Zastosowanie SELECT, opcje i warianty

Instrukcje DQL: SELECT. Zastosowanie SELECT, opcje i warianty Wprowadzenie do psql i SQL 1 Bazy Danych Wykład p.t. Instrukcje DQL: SELECT. Zastosowanie SELECT, opcje i warianty Antoni Ligęza ligeza@agh.edu.pl http://galaxy.uci.agh.edu.pl/~ligeza Wykorzystano materiały:

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

przygotował: pawel@kasprowski.pl Podstawy języka MDX Tworzenie zbiorów

przygotował: pawel@kasprowski.pl Podstawy języka MDX Tworzenie zbiorów Podstawy języka MDX Tworzenie zbiorów Używanie zbiorów Zbiór to: wynik działania funkcji (np. funkcji members) lista elementów otoczona {...} {[Store Sales], [Unit Sales]} on columns, [Product].[Prod].[Category].members

Bardziej szczegółowo

Szkolenie Oracle SQL podstawy. Terminy. 15 17 lutego 2010 First Minute! 1100zł!

Szkolenie Oracle SQL podstawy. Terminy. 15 17 lutego 2010 First Minute! 1100zł! Szkolenie Oracle SQL podstawy Terminy 15 17 lutego 2010 First Minute! 1100zł! Opis szkolenia Baza danych Oracle od dawna cieszy się zasłużona sławą wśród informatyków. Jej wydajność, szybkość działania

Bardziej szczegółowo

a) Polecenie: Wyświetl wszystkie rekordy z tabeli Pracownicy (wszystkie atrybuty)

a) Polecenie: Wyświetl wszystkie rekordy z tabeli Pracownicy (wszystkie atrybuty) Ćwiczenia MS Access/SQL I. Zadania podstawowe 1. Wyświetlanie zawartości tabeli a) Polecenie: Wyświetl wszystkie rekordy z tabeli Pracownicy (wszystkie atrybuty). ; b) Polecenie: Wyświetl dane (wszystkie

Bardziej szczegółowo

Zbiór pytań nr 5. 2 Które stwierdzenie opisuje najlepiej zbiór uprawnień dostępny po wykonaniu

Zbiór pytań nr 5. 2 Które stwierdzenie opisuje najlepiej zbiór uprawnień dostępny po wykonaniu Zbiór pytań nr 5 1 Które stwierdzenie opisuje najlepiej zbiór uprawnień dostępny po wykonaniu connect athos/musketeer grant select,insert,update,delete on athos.services to porthos with grant option; grant

Bardziej szczegółowo

Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Rozszerzenie obiektowe w SZBD Oracle

Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Rozszerzenie obiektowe w SZBD Oracle Rozszerzenie obiektowe w SZBD Oracle Cześć 2. Kolekcje Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Malinowski Nowak Kowalski tablica zagnieżdżona (ang.

Bardziej szczegółowo

Krzysztof Dembczyński. Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08

Krzysztof Dembczyński. Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni 2007/08 Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni

Bardziej szczegółowo

QUERY język zapytań do tworzenia raportów w AS/400

QUERY język zapytań do tworzenia raportów w AS/400 QUERY język zapytań do tworzenia raportów w AS/400 Dariusz Bober Katedra Informatyki Politechniki Lubelskiej Streszczenie: W artykule przedstawiony został język QUERY, standardowe narzędzie pracy administratora

Bardziej szczegółowo

Bazy danych SQL Server 2005

Bazy danych SQL Server 2005 Bazy danych SQL Server 2005 TSQL Michał Kuciapski Typ zadania: Podstawowe zapytania Select Zadanie 1: Wyświetl następujące informacje z bazy: A. 1. Wyświetl informacje o klientach: nazwa firmy, imie, nazwisko,

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

Języki i środowiska przetwarzania danych rozproszonych

Języki i środowiska przetwarzania danych rozproszonych Języki i środowiska przetwarzania danych rozproszonych Wprowadzenie do przetwarzania kolekcji w językach programowania Wykładowca: Tomasz Kowalski Wykład przygotowany na podstawie materiałów prof. Kazimierza

Bardziej szczegółowo

Funkcje. Rozdział 3a Funkcje wierszowe. Funkcje znakowe (1) Funkcje wierszowe

Funkcje. Rozdział 3a Funkcje wierszowe. Funkcje znakowe (1) Funkcje wierszowe Funkcje Rozdział 3a Funkcje wierszowe Funkcje wierszowe (funkcje znakowe, funkcje liczbowe, funkcje operujące na datach, funkcje konwersji, funkcje polimorficzne) Przekształcają dane, pobrane przez polecenie

Bardziej szczegółowo

Optymalizacja poleceń SQL

Optymalizacja poleceń SQL Optymalizacja poleceń SQL Przetwarzanie polecenia SQL użytkownik polecenie PARSER słownik REGUŁOWY RBO plan zapytania RODZAJ OPTYMALIZATORA? GENERATOR KROTEK plan wykonania statystyki KOSZTOWY CBO plan

Bardziej szczegółowo

Podyplomowe Studia Systemy informatyczne w logistyce

Podyplomowe Studia Systemy informatyczne w logistyce MATERIAŁY SZKOLENIOWE Podyplomowe Studia Systemy informatyczne w logistyce Hurtownie danych w informatycznych systemach logistycznych (MS SQL Server 2012) PROWADZĄCY: Marcin Pieleszek Projekt współfinansowany

Bardziej szczegółowo

CREATE TABLE logika (p BOOLEAN); INSERT INTO logika VALUES(true); INSERT INTO logika VALUES(false); INSERT INTO logika VALUES(NULL);

CREATE TABLE logika (p BOOLEAN); INSERT INTO logika VALUES(true); INSERT INTO logika VALUES(false); INSERT INTO logika VALUES(NULL); 1. Zaªó» tabel logika o trzech atrybutach p,q,r typu BOOLEAN. Uzupeªnij j wszystkimi mo»liwymi waluacjami logiki SQL (oczywi±cie nie rób tego r cznie). Nast pnie przy u»yciu komend SQLa sprawd¹, dla jakich

Bardziej szczegółowo

Bazy danych Ćwiczenia z SQL

Bazy danych Ćwiczenia z SQL Bazy danych Ćwiczenia z SQL W ćwiczeniach wykorzystano przyk adowy schemat bazy danych dostarczany z Personal Oracle 8 Definicję schematu i dane tabel zawiera plik bdemobld sql (c) 2001 Katedra Informatyki

Bardziej szczegółowo

Język SQL. Rozdział 3. Funkcje wierszowe

Język SQL. Rozdział 3. Funkcje wierszowe Język SQL. Rozdział 3. Funkcje wierszowe Funkcje wierszowe (funkcje znakowe, funkcje liczbowe, funkcje operujące na datach, funkcje konwersji, funkcje polimorficzne). 1 Funkcje Przekształcają dane, pobrane

Bardziej szczegółowo

Podstawy języka SQL cz. 2

Podstawy języka SQL cz. 2 Podstawy języka SQL cz. 2 1. Operatory zbiorowe a. UNION suma zbiorów z eliminacją powtórzeń, b. EXCEPT różnica zbiorów z eliminacją powtórzeń, c. INTERSECT część wspólna zbiorów z eliminacją powtórzeń.

Bardziej szczegółowo

Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania.

Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Przykładowa RBD o schematach relacji (tzw. płaska postać RBD): N(PRACOWNICY) = {ID_P, IMIĘ,

Bardziej szczegółowo

Podstawy Informatyki Wykład X

Podstawy Informatyki Wykład X Podstawy Informatyki Wykład X Bazy danych Access - cz. II Copyright by Arkadiusz Rzucidło 1 Praca z polami Używanie Maski wprowadzania Własności Rozmiar pola Zmiana porządku pól w tabeli Listy i pola typu

Bardziej szczegółowo

W y k ł a d SELECT. Polecenie wyświetlające zawartość tabeli. Składnia uproszczona: Temat: Polecenie SELECT. Plan wykładu:

W y k ł a d SELECT. Polecenie wyświetlające zawartość tabeli. Składnia uproszczona: Temat: Polecenie SELECT. Plan wykładu: W y k ł a d IV Temat: Polecenie SELECT Plan wykładu: Złączenia Podzapytania Agregaty SUM, AVG, COUNT, MIN, MAX GROUP BY 1 SELECT Polecenie wyświetlające zawartość tabeli. Składnia uproszczona: select atrybut,

Bardziej szczegółowo

Bazy danych 6. SQL funkcje daty i czasu, zmienne tymczasowe, aliasy

Bazy danych 6. SQL funkcje daty i czasu, zmienne tymczasowe, aliasy Bazy danych 6. SQL funkcje daty i czasu, zmienne tymczasowe, aliasy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 MySQL i programowanie wsadowe C:\wyklady\bazy> mysql < nazwa pliku

Bardziej szczegółowo

Microsoft SQL Server Podstawy T-SQL

Microsoft SQL Server Podstawy T-SQL Itzik Ben-Gan Microsoft SQL Server Podstawy T-SQL 2012 przełożył Leszek Biolik APN Promise, Warszawa 2012 Spis treści Przedmowa.... xiii Wprowadzenie... xv Podziękowania... xix 1 Podstawy zapytań i programowania

Bardziej szczegółowo

Zadania z SQLa (MS SQL Server)

Zadania z SQLa (MS SQL Server) Zadania z SQLa (MS SQL Server) Struktura testowej bazy danych (diagram ERD): opracował dr Robert Fidytek SPIS TYPÓW ZADAŃ 1 Projekcja wyników zapytań (SELECT FROM )... 3 2 Sortowanie wyników zapytań (ORDER

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Tabele 9 Klucze 10 Relacje 11 Podstawowe zasady projektowania tabel 16 Rozdział 2. Praca z tabelami 25 Typy danych 25 Tworzenie tabel 29 Atrybuty kolumn

Bardziej szczegółowo

1 Zaznacz poprawne stwierdzenia dotyczące grup plików (filegroup) możemy określić do której grupy plików trafi

1 Zaznacz poprawne stwierdzenia dotyczące grup plików (filegroup) możemy określić do której grupy plików trafi 1 Zaznacz poprawne stwierdzenia dotyczące grup plików (filegroup) Tworząc tabelę nie możemy określić, do którego pliku trafi, lecz możemy określić do której grupy plików trafi Zawsze istnieje grupa zawierająca

Bardziej szczegółowo