3. DIODY. Przyrządy dwukońcówkowe, gdzie obszarem roboczym jest złącze.
|
|
- Magdalena Wilczyńska
- 8 lat temu
- Przeglądów:
Transkrypt
1 3. DODY Przyrządy dwukońcówkowe, gdzie obszarem roboczym jest złącze. Ogólny symbol graficzny Przykładając + do anody wymuszamy prąd przewodzenia (forward direction) odwrotny kierunek daje prąd zaporowy (reverse direction) Obszar roboczy diody: złącza p-n, p-i-n, m-s (Schottky)
2 Symbole różnych typów diod półprzewodnikowych Źródło: Wikipedia 2
3 Wygląd diod półprzewodnikowych Źródło: Wikipedia Źródło: 3
4 OZNACZENA - symbole literowo-cyfrowe ustalane przez producentów OZNACZENA POLSKE Pierwsza litera - rodzaj materiału: B - Si C - GaAs, GaP, GaAsP Druga litera - rodzaj i funkcja: A - diody przyłączające, detekcyjne B - diody pojemnościowe P - fotodiody i fototranzystory Q - diody elektroluminescencyjne ( LED-y) Y - diody prostownicze X - diody mikrofalowe Z - diody Zenera Druga część symbolu: litera i cyfry - oznaczenie producenta i rodzaj zastosowań Trzecia część symbolu: oznaczenie wersji, tolerancje napięcia pracy, maks.nap. wsteczne, itp Przykład: BYP dioda krzemowa, prostownicza, producent P, seria 680, szczytowe napięcie wsteczne 600V 4
5 3. Diody prostownicze Służą do prostowania przebiegów elektrycznych, głównie przemiennych napięć sieciowych (prostowniki). Dla innych zastosowań wytwarza się diody prostownicze o różnych poziomach mocy, różnych napięciach wstecznych oraz różnych prądach przewodzenia. Diody prostownicze można podzielić na następujące grupy: A. Diody ogólnego przeznaczenia Prostowanie przebiegów o częst. akustycznych i ultradźwiękowych. Niewielkie wartości F, R, P, typowe F = A R = 500V P = 0,5 W B. Diody mocy Pracują z dużymi mocami rozpraszanymi w diodzie. Dzielą się ponadto w zal. od dopuszczalnego prądu wyprostowanego, napięcia wstecznego, maksymalnej prędkości przełączania kierunku pracy (t rr - reverse recovery time) t rr < 500 ns - szybkie < 00 ns - super szybkie < 50 ns - ultra szybkie 5
6 C. Diody wysokonapięciowe Praca z napięciami większymi od kilkuset woltów. Stosy prostownicze (szeregowe połączenie diod) mają napięcia do 50 kv. D. Diody lawinowe (ang. avalanche) Pracują w obszarze przebicia lawinowego złącza. Mają zdolność tłumienia przepięć w wyniku stanów przejściowych lub wyładowań statycznych (telekomunikacja). 6
7 Dla diod prostowniczych istotne są: Parametry charakterystyczne: ( F, F ) ( R, R ) Parametry admisyjne : Nap. wsteczne rmax ( RWMmax ) Prąd przewodzenia fmax ( FRMmax ) stały max.wart. szczytowa Charakterystyka prądowo-napięciowa Diody p-n : Dla nominalnej wart. F mają F w granicach, -,7V Diody Schottky`ego : F = 0,55-0,75V 7
8 Charakterystyka przewodzenia w skali półlogarytmicznej pozwala wyznaczyć inne parametry diody: qf F S (exp ) nkt q nkt F dla j j n- współcz. nieidealności złącza s - prąd nasycenia α exp F s q F nkt j V T q kt j 40V dla T j = 300K ln F ln s q nkt F j tg n q kt j F j F r s Charakterystyka wsteczna określa prąd, który dla prostownika jest prądem upływu. Zwykłe diody pracują powyżej napięcia przebicia lawinowego. Diody prostownicze lawinowe pracują poniżej tego napięcia (wartość ujemna!). R BR exp ( R BR ) q kt j BR - napięcie przebicia BR - prąd odpow. przebiciu 8
9 Charakterystyka prądowo-napięciowa R BR exp ( R BR ) q kt j Równanie Schockleya: F S (exp q nkt F j ) 9
10 W obliczeniach inżynierskich stosuje się liniową aproksymację charakt. diody: ) Zakres przewodzenia dla F F F F 0 T T T F r F T - nap.prog. 0.7 V p-n 0.3 V Schottky r F - rez. zastępcza w kier. przew. 2) Zakres wsteczny r A - rez. zastępcza w zakr. lawinowym R BR R BR R R r R BR R R r A BR 0
11 Prostowanie w układzie prostownika jednopołówkowego Wartość średnia prądu wyprostowanego: 0 T T 0 i t dt m FAV Moc admisyjna (dopuszczalna) P max diody jest związana z 0max: 0max 2 P r max F 2 T r i max F T R th C T C R r F th T P - temp. obudowy - rezystancja termiczna - rez. zastępcza w kier. przew.
12 3.2. Diody Zenera Przebicie złącza nap. zaporowym może być odwracalne lub nieodwracalne (niszczące). W diodach Zenera proces ten jest odwracalny i celowy. W cienkich złączach (o grubości śr. drogi swob.) pole E powoduje jonizację elektrostatyczną - zjawisko Zenera. Silnie domieszkowane złącze skokowe p + /n + spolaryzowane zaporowo Elektrony wyrwane z wiązań kowalencyjnych tunelują przez barierę potencjału bez zmiany energii Z A exp B E A,B - param. materiałowe E - pole elektr. > 0 6 V/cm 2
13 Charakterystyka diody Zenera w obszarze przebicia posiada duże nachylenie. Zastosowanie: stabilizatory napięcia, ograniczniki napięcia odniesienia itp. Własności diod określają zbiory parametrów: F, F R, R C( R ) param. admisyjne fmax, P max, T jmax Z,, Z (nap. Zenera przy określonym prądzie wstecznym) r z (rez. dynamiczna w zakr. rob.) r Z temp. współcz. napięcia Zenera: Z Z Z T Z Z 3
14 Współczynnik Z zależy od prądu, tj. określa, w jakim stopniu wzrost jest spowodowany zjawiskiem Zenera ( ujemne), a w jakim zjawiskiem jonizacji lawinowej ( dodatnie ). Przebiegi dla dwu diod o różnych napięciach z w różnych temp. otoczenia 4
15 kład pracy diody Zenera kład działa jak dzielnik napięcia out in r Z r Z R Zależy istotnie od α Z r Z - rezystancja dynamiczna diody 5
16 3.3. Diody pojemnościowe Diody p-n wytwarzane pod kątem wykorzystania pojemności barierowej złącza. Dwie grupy: warikapy (zmienne pojemności) waraktory (zmienne reaktancje - w zakr. mikrofal ) Warikapy : przestrajanie obwodów LC we wzm. selekt., generatorach, diody krzemowe Waraktory : diody z GaAs, większa częstotliwość graniczna pracy. 6
17 Pojemność barierowa zależy od zaporowego napięcia polaryzacji ( 0 ) C C 0 V j m V j - napięcie wbudowane m = /2 - złącze skokowe /3 - złącze liniowe 7
18 Schemat zastępczy małosygnałowy diody pojemnościowej zależy od częstości sygnału: ( a) (b) (c) niskie częstości średnie częstości b.w.cz.(mikrofale) C 0 - poj. obudowy, r - rez. szeregowa, L - indukcyjność doprowadzeń g - kondukt. zastępcza (nachylenie () w obszarze pracy) 8
19 Dobroć diody Q Dla schematu (b) Q R m e Z Z my R Y e Y Z Z zastępcza impedancja Y zast. admitancja Q zależy od częstotliwości Dwie różne pojemności wygenerowane napięciem C( ) C2( ) f f d g g 2πC( ) 2πrC( ) częst. graniczne Q f f d f f g Diody pojemnościowe charakteryzują się bardzo niskim poziomem szumów 9
20 Podstawowy układ pracy warikapu Zmiana częstotliwości rezonansowej obwodu: Dla C >>C() f rez 2 LC( ) 20
21 Zastosowanie waraktorów Wzmacniacz parametryczny - w systemach łączności satelitarnej ( 3,7 4,2 GHz) Napięcie pompujące zmienia pojemność waraktora z częstotliwością f p C o poj. średnia V=Q/C Gdy pojemność maleje napięcie sygnału s rośnie f s f p 2 Gdy ładunek osiąga wart. ekstremalną pojemność maleje, gdy q = 0, poj. rośnie Pompowanie powoduje wzrost amplitudy nap. sygnału S czyli wzmocnienie. Po pewnym czasie ustala się równowaga (moc przyrostu = mocy strat). Minimalny poziom szumów (temp. szumowa = temp.otoczenia). 2
22 3.4 Diody p-i-n Są to w istocie struktury typu p + - n - n + lub p + - p - n +, w których materiał n lub p zawiera śladową ilość domieszek (w istocie typ i). Dyfuzja powoduje powstanie wew. pola elektrycznego i zjawisko ustala się V j kt q ln p p p n kt q n ln n n p 22
23 Charakterystyka prądowo - napięciowa diody PN jak dla złącza p-n: S q exp nkt n= 2 duży prąd rekombinacyjny w warstwie, przeważający nad dyfuzyjnym Grubość warstwy przejściowej jest duża d pin = w + d pn grubość obsz. p + + n + Dzięki temu pojemność barierowa jest mała i nie zależy od napięcia. Na częst. mikrofalowych jest to więc zmienna rezystancja, używana do szybkiego kluczowania sygnałów, tłumienia i modulacji. 23
24 Polaryzacja zaporowa Polaryzacja w kier. przewodzenia Zmiana polaryzacji powoduje zmianę dużej imp. wstecznej na zwarcie w kierunku przewodzenia R F = r S + R i R i ~ / F L 0 - indukcyjność doprowadzeń C 0 - pojemność obudowy el.pasożytnicze Zaletą tych diod jest również duże napięcie przebicia. 24
25 3.5 DODA TNELOWA Wynalazca: Leo ESAK (958) NAGRODA NOBLA (973) za odkrycie tunelowania w półprzewodnikach Zjawisko tunelowe Zjawisko kwantowe przejście elektronu przez barierę w przypadku, gdy posiada on energię niższą niż wysokość bariery V 0. V(x) energia potencjalna (x) funkcja falowa elektronu Współczynnik przejścia przez barierę prostokątną: T ~ exp 2a 2m( V 0 W ) 2 Dla niskich (małe V 25 0 ) i wąskich (małe a) barier, współczynnik T może być istotny.
26 Dioda tunelowa (Esakiego) Złącze p/n, gdzie obszary p oraz n są silnie domieszkowane (degeneracja). Poziomy Fermiego leżą w obszarach odpowiednich pasm (walencyjnego w p oraz przewodnictwa w n ). Obszar ładunku przestrzennego jest bardzo cienki, nie przekracza 0 nm. Bariera jest wysoka. Czas tunelowego przejścia nośników jest rzędu 0 3 s. Diody tego typu wykorzystuje się do wytwarzania, wzmacniania i detekcji słabych drgań wysokich częstości (rzędu kilkuset gigaherców), w układach impulsowych (np. cyfrowych) oraz jako elementy aktywne generatorów. 26
27 Aby elektrony mogły tunelować przez barierę muszą być spełnione następujące warunki:. zachowana musi być energia elektronu (trajektoria tunelowania musi być pozioma na Diagramie pasmowym). 2. emiter elektronów musi posiadać stany zapełnione 3. stany, do których tunelują elektrony muszą być puste 4. bariera potencjału musi być odpowiednio niska, a jej szerokość mała, aby tunelowanie zachodziło Prąd tunelujący z pasma przewodnictwa półprz. n do pasma walencyjnego półprz. p jest równy: c v A fc( W ) Nc( W ) fv( W) Nv( W) Tt dw, f c (W), f v (W) - funkcje Fermiego Diraca w odp. pasmach N c (W), N v (W) - gęstości stanów T t prawdop. tunelowania Po uwzględnieniu prądu przeciwnego otrzymuje się ostatecznie: c v v c A Tt fc( w) - fv( W) Nv( W) Nc( W) dw Przy zerowym napięciu ten wypadkowy prąd jest równy zero (prąd elektronów z n do p oraz z p do n) gdzie poziom Fermiego jest jeden. 27
28 Opis jakościowy zmian prądu tunelującego po przyłożeniu do diody napięcia w kierunku przewodzenia brak prądu tunelującego max prądu tunelującego 28
29 zanik prądu tunelującego prąd dyfuzyjny złącza 29
30 Przy wzroście napięcia od P do V prąd maleje. Średnia wartość ujemnej rezystancji w tym zakresie wynosi: r md V V P P Dla diod krzemowych Dla diod wykonanych z arsenku galu Typowe wartości prądu P są rzędu kilku-kilkunastu miliamperów. Rezystancja dynamiczna dla napięć p, v jest nieskończenie wielka, natomiast w punkcie przegięcia R, R osiąga minimalną wartość ujemną r min R R 2 p p 30
31 Diody tunelowe znajdują zastosowanie w obszarze mikrofalowym, gdzie należy stosować nast.schemat zastępczy: C j pojemność złączowa r s rezystancja doprowadzeń L s indukcyjność doprowadzeń Dąży się do minimalizacji L s stosując taśmy, membrany, płytki zamiast drutów. W zależności od wielkości napięcia polaryzacji, obciążenia oraz parametrów własnych diody, dioda tunelowa może pracować jako: Wzmacniacz (wymagane duże częst. krytyczne i mały poziom szumów) Generator (wymagana duża moc przekazywana do obciążenia) Przełącznik (duży skok napięcia v p ) 3
32 Generator LC z rezystancją ujemną Obwody LC mają zawsze właściwości rezonansowe. Trzeba jedynie uzupełniać straty energii. Może do tego służyć sprzężenie zwrotne albo rezystancja ujemna. Rezystancja ujemna uzależniona prądowo jest w stanie pobudzić do drgań obwód rezonansu szeregowego. Warunkiem istnienia drgań jest spełnienie równania: R r j( L ) 0 C Jeżeli 0, to musi zachodzić: R r j L 0 C Z równania powyższego wynikają dwa warunki, które musza być równocześnie spełnione:. Warunek amplitudy -R + r = 0 r = -R 2. Warunek fazy L 0 0 C Warunki te wzmacniają wartość rezystancji ujemnej potrzebnej do podtrzymania drgań 32 oraz częstotliwość tych drgań. LC
33 Dioda tunelowa jest elementem wykazującym rezystancję ujemną, a jej charakterystyka jest uzależniona napięciowo. Taki element jest w stanie pobudzić do drgań obwód rezonansu równoległego. Warunek istnienia drgań: (-R + Z ) = 0 Z impedancja obwodu LC -R - ujemna rezystancja Jeżeli 0, to : -R + Z = 0, przy czym: ( rl j L)( rc ) j C Z R jx rl rc j( L ) C Wstawiając za Z do warunku istnienia drgań otrzymuje się, że część rzeczywista oraz niezależnie część urojona muszą się zerować.. Z zerowania części rzeczywistej otrzymuje się warunek amplitudy określający rezystancję ujemną do wzbudzenia drgań: R r L r r L C L C r C C( r L L r C ) Z 0 Z 0 - _ impedancja rezonansowa obwodu równoległego 33
34 2. Warunek fazy określający częstotliwość drgań otrzymuje się z zerowania części urojonej: 2 LC gdzie: 2 0 Q Q L C LC Q L Q 2 L r 0 L Q L 2 C dobroć cewki Q C 0 r C 0 dobroć kondensatora 34
35 Zastosowania diod prostowniczych prostownik jednopołówkowy prostownik dwupołówkowy 35
36 Zastosowania diod prostowniczych prostownik w układzie mostka Graetza 36
37 Zastosowania diod prostowniczych ogranicznik napięcia 37
38 Zastosowania diod prostowniczych podwajacz napięcia 38
39 Zastosowania diod prostowniczych powielacz napięcia (x4) Zasada działania 39
Równanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
Bardziej szczegółowoDiody półprzewodnikowe cz II
Diody półprzewodnikowe cz II pojemnościowe Zenera tunelowe PIN Schottky'ego Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku
Bardziej szczegółowoEL08s_w03: Diody półprzewodnikowe
EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez
Bardziej szczegółowo4. Diody DIODY PROSTOWNICZE. Są to diody przeznaczone do prostowania prądu przemiennego.
4. Diody 1 DIODY PROSTOWNICE Są to diody przeznaczone do prostowania prądu przemiennego. jawisko prostowania: przepuszczanie przez diodę prądu w jednym kierunku, wtedy gdy chwilowa polaryzacja diody jest
Bardziej szczegółowoDiody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki
Bardziej szczegółowoZłącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe
Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej
Bardziej szczegółowoDiody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki
Bardziej szczegółowoElementy elektroniczne Wykłady 4: Diody półprzewodnikowe
Elementy elektroniczne Wykłady 4: Diody półprzewodnikowe Część pierwsza Diody - wprowadzenie Diody półprzewodnikowe - wprowadzenie Podstawowe równanie: AK R exp 1 mt proszczenia w zakresie przewodzenia
Bardziej szczegółowoSYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis
SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.
Bardziej szczegółowoMiłosz Andrzejewski IE
Miłosz Andrzejewski IE Diody Diody przepuszczają prąd tylko w jednym kierunku; służą do prostowania. W tym celu używa się ich w: prostownikach wchodzących w skład zasilaczy. Ogólnie rozpowszechnione są
Bardziej szczegółowoBase. Paul Sherz Practical Electronic for Inventors McGraw-Hill 2000
Złącze p-n Base Paul Sherz Practical Electronic for Inventors McGraw-Hill 2000 Dyfuzja aż do stanu równowagi 6n+3p+6D Dipol ładunku elektrycznego 6p+3n+6A Pole elektryczne Nadmiarowe nośniki mniejszościowe
Bardziej szczegółowoDiody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Bardziej szczegółowoDIODY SMK WYK. 7 W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987
DIODY SMK WYK. 7 W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987 DIODY IMPULSOWE - diody przeznaczone do zastosowań w układach impulsowych, w których najczęściej spełniają one
Bardziej szczegółowoUrządzenia półprzewodnikowe
Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor
Bardziej szczegółowoElementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości
Bardziej szczegółowo1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne
Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki
Bardziej szczegółowoWykład V Złącze P-N 1
Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n
Bardziej szczegółowoRepeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoBadanie diod półprzewodnikowych
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie diod półprzewodnikowych (E 7) Opracował: Dr inż. Włodzimierz OGULEWICZ
Bardziej szczegółowo3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony
Bardziej szczegółowoSpis treści 3. Spis treści
Spis treści 3 Spis treści Przedmowa 11 1. Pomiary wielkości elektrycznych 13 1.1. Przyrządy pomiarowe 16 1.2. Woltomierze elektromagnetyczne 18 1.3. Amperomierze elektromagnetyczne 19 1.4. Watomierze prądu
Bardziej szczegółowoElementy przełącznikowe
Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia
Bardziej szczegółowoĆwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie
Bardziej szczegółowoWłaściwości tranzystora MOSFET jako przyrządu (klucza) mocy
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Zalety sterowanie polowe niska moc sterowania wyłącznie nośniki większościowe krótki czas przełączania wysoka maksymalna częstotliwość pracy
Bardziej szczegółowoDiody półprzewodnikowe. Model diody półprzewodnikowej Shockley a. Dioda półprzewodnikowa U D >0 model podstawowy
iody półprzewodnikowe Model diody półprzewodnikowej Shockley a U U + U gr0 exp 1 0 exp 1 2ϕT ϕt gr0 prąd generacyjno-rekombinacyjny 0 prąd nasycenia φ T potencjał termiczny elektronów kt/e26mv dla T300K
Bardziej szczegółowoIX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
Bardziej szczegółowoCzęść 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Bardziej szczegółowoDiody prostownicze. częstotliwo. ową 50 Hz) przy znacznych lub zgoła a duŝych mocach wydzielanych w obciąŝ
Diody 1 Diody prostownicze Ogólna charakterystyka Diodami prostowniczymi nazywa się diody przeznaczone do prostowania prądu przemiennego. W domyśle rozumie się prostowanie prądu o małej częstotliwo stotliwości
Bardziej szczegółowoĆwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji
Bardziej szczegółowoDioda półprzewodnikowa
mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw
Bardziej szczegółowoBudowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Bardziej szczegółowoCzęść 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
Bardziej szczegółowoElektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci
Bardziej szczegółowoZłącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy
Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów
Bardziej szczegółowo7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)
7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej
Bardziej szczegółowoRys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)
Ćwiczenie E11 UKŁADY PROSTOWNIKOWE Elementy półprzewodnikowe złączowe 1. Złącze p-n Złącze p-n nazywamy układ dwóch półprzewodników.jednego typu p w którym nośnikami większościowymi są dziury obdarzone
Bardziej szczegółowoWykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe
Wykład 7 Złącza półprzewodnikowe - przyrządy półprzewodnikowe Złącze p-n Złącze p-n Tworzy się złącze p-n E Złącze po utworzeniu Pole elektryczne na styku dwóch półprzewodników powoduje, że prąd łatwo
Bardziej szczegółowoWARYSTORY, TERMISTORY, DIODY.
WARYSTORY, TERMISTORY, DIODY. 1. Warystory. Warystor jest rezystorem, którego wartośd rezystancji zmniejsza się silnie wraz ze wzrostem napięcia. Warystory produkuje się obecnie najczęściej z granulowanego
Bardziej szczegółowoProstowniki. Prostownik jednopołówkowy
Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego
Bardziej szczegółowoIII. TRANZYSTOR BIPOLARNY
1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka
Bardziej szczegółowoLasery półprzewodnikowe. przewodnikowe. Bernard Ziętek
Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe
Bardziej szczegółowoBADANIE DIOD PÓŁPRZEWODNIKOWYCH
BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie
Bardziej szczegółowoDioda półprzewodnikowa
COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie
Bardziej szczegółowoElementy elektroniczne Wykłady 5,6: Tranzystory bipolarne
lementy elektroniczne Wykłady 5,6: Tranzystory bipolarne Wprowadzenie Złacze PN spolaryzowane zaporowo: P N U - + S S U SAT =0.1...0.2V U S q D p L p p n D n n L n p gdzie: D p,n współczynniki dyfuzji
Bardziej szczegółowoĆwiczenie - 2 DIODA - PARAMETRY, CHARAKTERYSTYKI I JEJ ZASTOSOWANIE
Ćwiczenie - 2 DIODA - PARAMETRY, CHARAKTERYSTYKI I JEJ ZASTOSOWANIE Spis treści 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe rodzaje diod półprzewodnikowych................... 3 2.1.1 Dioda
Bardziej szczegółowoZłożone struktury diod Schottky ego mocy
Złożone struktury diod Schottky ego mocy Diody JBS (Junction Barrier Schottky) złącze blokujące na powierzchni krzemu obniżenie krytycznego natężenia pola (Ubr 50 V) Diody MPS (Merged PINSchottky) struktura
Bardziej szczegółowoBadanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
Bardziej szczegółowo1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza
Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,
Bardziej szczegółowo4. DIODY 4.1. WSTĘP 4.2. DIODY PROSTOWNICZE
4. DIODY 4.1. WSTĘP Diodą nazywamy element dwukońcówkowy składający się z bryły półprzewodnika mającego złącze p-n, zamknięty w obudowie z wyprowadzeniami elektrycznymi osobno z obszaru typu p i obszaru
Bardziej szczegółowoĆwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
Bardziej szczegółowoZadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):
Zadania z podstaw elektroniki Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Układ stanowi szeregowe połączenie pojemności C1 z zastępczą pojemnością równoległego połączenia
Bardziej szczegółowoDiody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy)
Diody i tranzystory - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) bipolarne (NPN i PNP) i polowe (PNFET i MOSFET), Fototranzystory i IGBT (Insulated
Bardziej szczegółowoUkłady nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
Bardziej szczegółowoPodstawy działania elementów półprzewodnikowych - diody
Podstawy działania elementów półprzewodnikowych - diody Wrocław 2010 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych).
Bardziej szczegółowoDioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK
Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Budowa diody Dioda zbudowana jest z dwóch warstw półprzewodników: półprzewodnika typu n (nośnikami prądu elektrycznego są elektrony) i półprzewodnika
Bardziej szczegółowoLABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
Bardziej szczegółowoCzęść 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których
Bardziej szczegółowoPółprzewodniki. złącza p n oraz m s
złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii
Bardziej szczegółowo5. Tranzystor bipolarny
5. Tranzystor bipolarny Tranzystor jest to trójkońcówkowy element półprzewodnikowy zdolny do wzmacniania sygnałów prądu stałego i zmiennego. Każdy tranzystor jest zatem wzmacniaczem. Definicja wzmacniacza:
Bardziej szczegółowoDIODY PÓŁPRZEWODNIKOWE
Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym
Bardziej szczegółowoZasada działania tranzystora bipolarnego
Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego
Bardziej szczegółowoPytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Bardziej szczegółowoWłasności i zastosowania diod półprzewodnikowych
Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż i badanie wybranych układów,
Bardziej szczegółowoBadanie diod półprzewodnikowych
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie diod półprzewodnikowych (E - 7) www.imiue.polsl.pl/~wwwzmiape Opracował:
Bardziej szczegółowoA-6. Wzmacniacze operacyjne w układach nieliniowych (diody)
A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz
Bardziej szczegółowoKatedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2
Ćwiczenie 2 Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji parametrów odpowiadających im modeli małosygnałowych, poznanie metod
Bardziej szczegółowoTRANZYSTORY BIPOLARNE ZŁĄCZOWE
TRANZYSTORY IPOLARN ZŁĄCZO ipolar Junction Transistor - JT Tranzystor bipolarny to odpowiednie połączenie dwóch złącz pn p n p n p n kolektor baza emiter kolektor baza emiter udowa tranzystora w technologii
Bardziej szczegółowoĆwiczenie nr 4 Charakterystyki I= f(u) złącza p-n.
Wydział Elektroniki Mikrosystemów i otoniki Politechniki Wrocławskiej TUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 4 Charakterystyki = f(u) złącza p-n.. Zagadnienia do samodzielnego
Bardziej szczegółowoLABORATORIUM ELEKTRONIKI
LABOATOIM ELEKTONIKI ĆWICENIE 1 DIODY STABILIACYJNE K A T E D A S Y S T E M Ó W M I K O E L E K T O N I C N Y C H 21 CEL ĆWICENIA Celem ćwiczenia jest praktyczne zapoznanie się z charakterystykami statycznymi
Bardziej szczegółowoPodstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Bardziej szczegółowoNazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Cel ćwiczenia: Zapoznanie się z własnościami warstwowych złącz półprzewodnikowych p-n. Wyznaczanie charakterystyk stałoprądowych
Bardziej szczegółowoModelowanie diod półprzewodnikowych
Modelowanie diod półprzewodnikowych Programie PSPICE wbudowane są modele wielu elementów półprzewodnikowych takich jak diody, tranzystory bipolarne, tranzystory dipolowe złączowe, tranzystory MOSFET, tranzystory
Bardziej szczegółowoELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność
Bardziej szczegółowoPaństwowa WyŜsza Szkoła Zawodowa w Pile Studia Stacjonarne i niestacjonarne PODSTAWY ELEKTRONIKI rok akademicki 2008/2009
Państwowa WyŜsza Szkoła Zawodowa w Pile Studia Stacjonarne i niestacjonarne PODSTAWY ELEKTRONIKI rok akademicki 008/009 St. Stacjonarne: Semestr III - 45 h wykłady, 5h ćwicz. audytor., 5h ćwicz. lab. St.
Bardziej szczegółowo3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
Bardziej szczegółowoMATERIAŁY PÓŁPRZEWODNIKOWE
MATERIAŁY PÓŁPRZEWODNIKOWE Półprzewodniki obejmują obszerną grupę materiałów, które ze względu na przewodnictwo elektryczne zajmują pośrednie miejsce pomiędzy metalami a izolatorami. Półprzewodniki stanowią
Bardziej szczegółowoFotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał
FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury
Bardziej szczegółowoLiniowe układy scalone
Liniowe układy scalone Układy wzmacniaczy operacyjnych z elementami nieliniowymi: prostownik liniowy, ograniczniki napięcia, diodowe generatory funkcyjne układy logarytmujące i alogarytmujące, układy mnożące
Bardziej szczegółowoTEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne
TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem
Bardziej szczegółowoWykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Bardziej szczegółowoTranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny
POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający
Bardziej szczegółowoWzmacniacz jako generator. Warunki generacji
Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego
Bardziej szczegółowoELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH
Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor
Bardziej szczegółowoWykład VIII TRANZYSTOR BIPOLARNY
Wykład VIII TRANZYSTOR BIPOLARNY Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu
Bardziej szczegółowoĆwiczenie nr 2 Charakterystyki I= f(u) złącza p-n.
Wydział Elektroniki Mikrosystemów i otoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, wona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław ynowiec, Bogusław
Bardziej szczegółowoLaboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia
Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów
Bardziej szczegółowoWłasności i zastosowania diod półprzewodnikowych
Instytut Fizyki oświadczalnej UG Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż
Bardziej szczegółowoZłącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET
Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują
Bardziej szczegółowoOptyczne elementy aktywne
Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Odbiorniki optyczne Fotodioda PIN Fotodioda APD Generowanie światła kontakt metalowy typ n GaAs podłoże typ n typ n
Bardziej szczegółowoDIODY WYK. VI SMK W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987
DIODY WYK. VI SMK W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, W-wa 1987 Nadając konkretny kształt konstrukcyjny bryle półprzewodnika, będącej złączem p-n, czyli definiując jej rozmiary,
Bardziej szczegółowoRepeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Bardziej szczegółowoUkłady nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
Bardziej szczegółowoPÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową.
PÓŁPRZEWODNIKI W ELEKTRONICE Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową. 1 Półprzewodniki Półprzewodniki to ciała stałe nieorganiczne lub organiczne o przewodnictwie
Bardziej szczegółowoCEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Bardziej szczegółowoPodstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Bardziej szczegółowoPrzyrządy półprzewodnikowe część 3
Przyrządy półprzewodnikowe część 3 Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 110 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA
Bardziej szczegółowoW książce tej przedstawiono:
Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,
Bardziej szczegółowoUkłady nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
Bardziej szczegółowoLiniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie
Bardziej szczegółowoI. DIODA ELEKTROLUMINESCENCYJNA
1 I. DIODA LKTROLUMINSCNCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: misja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej
Bardziej szczegółowo