Wykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe
|
|
- Jolanta Karpińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład 7 Złącza półprzewodnikowe - przyrządy półprzewodnikowe
2 Złącze p-n Złącze p-n Tworzy się złącze p-n E Złącze po utworzeniu Pole elektryczne na styku dwóch półprzewodników powoduje, że prąd łatwo płynie w jednym kierunku a przepływ w drugim kierunku jest utrudniony.
3 Tworzenie się złącza p-n - diagram pasmowy złącza W stanie równowagi gradient poziomu Fermiego jest równy zeru! de F dx 0
4
5 A Dioda półprzewodnikowa Charakterystyka I-V - nieliniowa V I Polaryzacja w kier. przewodzenia Polaryzacja zaporowa n p A
6 Równanie Schockley a Potencjał wbudowany i I s ( e qv / nkt 1) 6
7 Prostownik Jest to układ, który zamienia prąd przemienny na prąd stały a) jednopołówkowy b) dwupołówkowy I t
8 Dioda Zenera Prawdopodobieństwo tunelowania T = Ce kw Efekt Zenera: (a) złącze p-n silnie domieszkowane w równowadze; (b) spolaryzowane napięciem w kierunku zaporowym c) efekt tunelowy z p do n. 8
9 Dioda Zenera 10 8 V/m (a) Silnie domieszkowane złącze w stanie równowagi; (b) złącze spolaryzowane w kierunku zaporowym : tunelowanie elektronów z p do n; (c) charakterystyka I V. W silnie domieszkowanym złączu p-n szerokość obszaru ładunku przestrzennego jest niewielka. Jeśli napięcie polaryzacji wstecznej takiego złącza będzie większe od napięcia Zenera (napięcia przy którym następuję gwałtowny wzrost prądu na skutek jonizacji atomów w obszarze zubożonym), to krawędź pasma walencyjnego obszaru typu p znajdzie się wyżej niż krawędź pasma przewodnictwa obszaru typu n. Dlatego jeśli elektron znajdujący się w paśmie walencyjnym w obszarze typu p przejdzie przez obszar ładunku przestrzennego do obszaru typu n, to bez zmiany energii stanie się tam swobodnym nośnikiem elektronem znajdującym się w paśmie przewodzenia półprzewodnika typu n. Takie przejście nazywane jest przejściem tunelowym. Efekt tunelowy (dominuje w złaczach p-n: Si, Ge gdy V przebicia < 4 Eg/e)
10 Dioda Zenera - charakterystyka I V. Współczynnik stabilizacji S = I z I z U z U z U F 0. 7V (Si) Rezystancja statyczna R s = U z I z Rezystancja dynamiczna R D = U z I z 10
11 Dioda lawinowa p - elektrony uzyskują energię - aby kreować pary elektron-dziura przez zderzenie nieelastyczne + n Powielanie lawinowe (V przebicia > 6 Eg/e) Jeśli napięcie polaryzujące jest odpowiednio duże (a więc obszar zubożony szeroki), to nośniki przechodzące przez obszar zubożony uzyskują dużą energię. Zderzając się z węzłami sieci krystalicznej (z atomami) przekazują im część swojej energii, co powoduje przejście elektronów do pasma przewodnictwa, a co za tym idzie również "utworzenie" dziur - innymi słowy ma miejsce jonizacja. Pojawiają się w ten sposób nowe nośniki, które również są przyspieszane, zderzają się z węzłami sieci, itd. Proces ten nabiera charakteru lawinowego i nazywany jest przebiciem lawinowym.
12 Bateria słoneczna i fotodioda Ogniwo słoneczne i fotodioda działają w oparciu o efekt fotowoltaiczny: światło jest absorbowane dla h E g tworzą się pary elektron-dziura, które są separowane przez pole w złączu i transportowane przez złącze
13 Złącze p-n E C I ni I ng elektrony E F E C E V Hole dziury s qv bi E V Półprzewodnik p - typu p I pi n Półprzewodnik - type typu n W stanie równowagi termodynamicznej przez złącze zawsze płynie pewien prąd nośników większościowych, zwanych prądami wstrzykiwania elektronów I ni i dziur I pi które są w stanie pokonać barierę potencjału na złączu. W stronę przeciwną płynie prąd generacji termicznej nośników mniejszościowych: elektronów I ng i dziur I pg. W stanie równowagi obydwa prądy równoważą się i wypadkowy prąd jest równy zeru. I pg
14 Efekt fotowoltaiczny hν E g Światło jest absorbowane, tworzą się pary elektron-dziura, które są separowane przez pole w złączu i transportowane przez złącze gdy złącze jest zwarte - płynie prąd zwarcia, I sc.
15 Złącze jest zwarte Efekt fotowoltaiczny Złącze p-n przed oświetleniem I D (A) V D (V) Bariera potencjału na złączu nie zmienia się. Gęstości prądów wstrzykiwania są takie same jak w złączu nieoświetlonym. Prądy te równoważą prądy generacji termicznej ale pozostają niezrównoważone prądy fotogeneracji. Stanowią je: strumień elektronów z obszaru p do n i dziur z n do p. I sc = qn ph E g = qp/h ν~p Prąd zwarcia jest proporcjonalny do strumienia padającego promieniowania. I sc
16 Złącze jest rozwarte Efekt fotowoltaiczny Złącze p-n przed oświetleniem Wygenerowane światłem elektrony płyną do obszaru n a dziury do obszaru p. W wyniku tego obszar typu n ładuje się ujemnie a typu p dodatnio. Taka polaryzacja obszarów złącza jest równoważna polaryzacji w kierunku przewodzenia. Wartość tego napięcia polaryzacji nazywa się fotonapięciem rozwarcia V oc. Obniżenie bariery potencjału w złączu p-n powoduje, że rośnie prąd wstrzykiwania. W stanie równowagi, ten prąd wstrzykiwania jest równoważony prądami fotogeneracji. I sc I d = 0
17 Efekt fotowoltaiczny Prąd ciemny płynący przez złącze p-n spolaryzowane napięciem V oc, wyraża się równaniem: I d = I 0 [exp( qv oc kt ) 1)] Ten prąd równoważy w rozwartym oświetlonym złączu p-n maksymalny prąd fotogeneracji, czyli I sc : Po przekształceniu: V I sc = I d = I 0 [exp( qv oc kt ) 1)] oc kt Isc kt I ln( 1) ln q I q I o sc o Ponieważ I sc ~ P, to V oc ~ ln P
18 Urządzenie, które zamienia energię słoneczną w energie elektryczną. P = I U=I 2 R= U 2 /R Jest podobne do baterii, bo dostarcza mocy prądu stałego. Różni się od baterii, bo napięcie które wytwarza zależy od oporności obciążenia. Bateria słoneczna
19 Promieniowanie słoneczne Atmosfera może pochłaniać więcej niż 50% światła słonecznego AM - ilość masy powietrza, przez którą przechodzi światło AMO - stała słoneczna 1.37 KW/m 2
20 Widmo promieniowania i energie wzbronione Bandgap - przerwa wzbroniona, lattice constant stała sieciowa
21 Dioda elektroluminescencyjna (LED)
22 LED diagram pasmowy Diagram pasmowy diody LED bez polaryzacji i po spolaryzowaniu w kierunku przewodzenia. Napięcie polaryzujące diodę zmniejsza barierę potencjału Vo i nośniki większościowe dyfundują do odpowiednich obszarów złącza, rekombinując w obszarze złącza.
23 Dioda GaAs (1-x) P x Przerwa prosta Przejście prosta - skośna Przerwa skośna E Poziom N Poziom N k x = 0.4 LED świecą na czerwono, x = 0.65 na pomarańczowo, x = 0.85 na żółto i x = 1 na zielono. GaAs 1-x P x dla składów molowych x<0.42 jest półprzewodnikiem z prostą przerwą wzbronioną. Dlatego prawdopodobieństwo rekombinacji promienistej jest duże. Natomiast dla większych składów półprzewodnikiem o skośnej przerwie wzbronionej. Stąd czysty GaP nie nadaje się na diody LED. Aby umożliwić rekombinację promienistą w tym krysztale, wprowadza się do niego tzw. domieszkę zlokalizowaną - azot.
24 Widmo LED GaAsP / GaAs 655nm / czerwone GaP 568nm / żółto-zielone GaP 700nm / jasno czerowne GaAsP / Gap 610nm / bursztynowe GaP 555nm / czysta zieleń GaAsP / GaP 655nm / czerwone o wysokiej wydajności GaP 568nm / żółto-zielone GaAlAs / GaAs 660nm / czerwone InGaAlP 574nm / zielone InGaAlP 574nm/zielone InGaAlP 620nm / pomarańczowe InGaAlP 595nm / żółte
25 Sposoby otrzymywania białych emiterów LED poprzez mieszanie trzech barw podstawowych przez konwersję promieni UV w luminoforze RGB przez częściową konwersję promieni niebieskich w luminoforze żółtym
26 Laser półprzewodnikowy a) Dioda laserująca bez polaryzacji i b) spolaryzowana napięciem równym energii wzbronionej półprzewodnika. Warunek wystąpienia akcji laserowej: półprzewodniki zdegenerowane E FC E FV 0 napięcie polaryzujące równe ~ przerwie wzbronionej
27
28 Tranzystor polowy Trzy elektrody: źródło, dren i bramka. Bramka jest odizolowana od kanału źródło-dren JFET : bramkę stanowi złącze p-n spolaryzowane w kierunku zaporowym. Tranzystory JFET pracują przy V GS = 0. MESFET : bramką jest metalowa elektroda, która jest tak dobrana aby tworzyła z kanałem barierę Schottk yego. MOSFET: bramkę stanowi metalowa elektroda odizolowana od kanału warstwą izolatora tlenku.
29 TRANZYSTOR POLOWY UNIPOLARNY Obszary pracy tranzystora JFET: - obszar odcięcia: Tranzystor jest wyłączony. Nie ma przepływu prądu (I D = 0) przez kanał. Dzieje się to gdy napięcie bramka-źródło spełnia warunek: V GS > V P - obszar aktywny, lub nasycenia: Tranzystor jest włączony. Prąd drenu jest kontrolowany przez V GS ; niezależny od V DS. W tym obszarze tranzystor może pracować jako wzmacniacz: I D I DSS GS 1 - obszar omowy: tranzystor jest włączony ale pracuje jak rezystor o oporności kontrolowanej napięciem. Dzieje się to wówczas, gdy napięcie V DS jest mniejsze niż w obszarze aktywnym. Prąd drenu jest proporcjonalny do napięcia V DS i jest kontrolowany prze napięcie bramki V GS. V V P 2
30 Tranzystor polowy złączowy JFET
31 Idea tranzystora bipolarnego
32 Tranzystor pracujący w układzie wzmacniacza. Złącze kolektor-baza jest spolaryzowane zaporowo (bateria E C ), natomiast złącze baza-emiter w kierunku przewodzenia (bateria E B ). Rozpływ prądu w tranzystorze npn. Ponieważ złącze baza-emiter jest spolaryzowane w kierunku przewodzenia to istnieje przepływ dziur z obszaru p do obszaru n I B1 oraz przepływ elektronów z obszaru n do obszaru p I B2.
33 Elektrony wprowadzane z emitera do bazy stają się tam nośnikami mniejszościowymi i drogą dyfuzji oddalają się od złącza emiterowego (złącze E). Część tych elektronów łączy się z dziurami, których w bazie jest bardzo dużo (obszar p). Wszystkie elektrony, które dotrą w pobliże złącza kolektor-baza (złącze C) są unoszone do obszaru kolektora. Dla niedużej szerokości obszaru p (bazy) praktycznie wszystkie elektrony wstrzykiwane przez emiter do bazy dotrą do kolektora. Bardzo ważnym jest aby strata elektronów w bazie była jak najmniejsza.
34 Rodziny charakterystyk statycznych tranzystora w układzie OE
IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
Bardziej szczegółowoWykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy
Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o
Bardziej szczegółowoRównanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
Bardziej szczegółowo1 Źródła i detektory. V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED.
1 V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym
Bardziej szczegółowoWykład VIII TRANZYSTOR BIPOLARNY
Wykład VIII TRANZYSTOR BIPOLARNY Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu
Bardziej szczegółowoWykład VIII. Detektory fotonowe
Wykład VIII Detektory fotonowe Półprzewodnik w polu elektrycznym dep F dx dv e ( x) ( e) dx dv ( x) dx ( x) const c V cx E p cex Detektory fotoprzewodzące ( t) q[ n( t) p( t) ] n p n p g op n ( t) qg op
Bardziej szczegółowoV. Fotodioda i diody LED
1 V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod elektroluminescencyjnych. Wyznaczenie zależności prądu zwarcia i napięcia rozwarcia fotodiody od
Bardziej szczegółowoZłącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET
Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują
Bardziej szczegółowoIV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
Bardziej szczegółowoRepeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoI. DIODA ELEKTROLUMINESCENCYJNA
1 I. DIODA LKTROLUMINSCNCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: misja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej
Bardziej szczegółowoWykład V Złącze P-N 1
Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n
Bardziej szczegółowoAleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
Bardziej szczegółowo3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony
Bardziej szczegółowoWykład X TRANZYSTOR BIPOLARNY
Wykład X TRANZYSTOR BIPOLARNY Tranzystor Trójkoocówkowy półprzewodnikowy element elektroniczny, posiadający zdolnośd wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer
Bardziej szczegółowoUrządzenia półprzewodnikowe
Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor
Bardziej szczegółowoTeoria pasmowa ciał stałych Zastosowanie półprzewodników
Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa
Bardziej szczegółowoPodstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Bardziej szczegółowoIII. TRANZYSTOR BIPOLARNY
1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka
Bardziej szczegółowoWykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Bardziej szczegółowoEFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(V) ogniwa słonecznego przed i po oświetleniu światłem widzialnym; prądu zwarcia, napięcia
Bardziej szczegółowoCiała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Bardziej szczegółowoZłącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy
Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów
Bardziej szczegółowoBudowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Bardziej szczegółowoZłącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe
Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej
Bardziej szczegółowoCzęść 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
Bardziej szczegółowoTRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.
12 Ć wiczenie 2 TRANZYSTORY MOCY Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 1. Wiadomości wstępne Tranzystory są to trójelektrodowe przyrządy
Bardziej szczegółowoStruktura pasmowa ciał stałych
Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................
Bardziej szczegółowoElektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Bardziej szczegółowoSYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis
SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.
Bardziej szczegółowoWYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
Bardziej szczegółowoDioda półprzewodnikowa
mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw
Bardziej szczegółowoCzęść 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których
Bardziej szczegółowoUkłady nieliniowe - przypomnienie
Układy nieliniowe - przypomnienie Generacja-rekombinacja E γ Na bazie półprzewodników γ E (Si)= 1.14 ev g w.8, p.1 Domieszkowanie n (As): Większościowe elektrony pasmo przewodnictwa swobodne elektrony
Bardziej szczegółowoV. DIODA ELEKTROLUMINESCENCYJNA
1 V. DIODA ELEKTROLUMINESCENCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: Emisja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej
Bardziej szczegółowoKatedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:
Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium
Bardziej szczegółowoPółprzewodniki. złącza p n oraz m s
złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii
Bardziej szczegółowoZygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak
Bardziej szczegółowoZasada działania tranzystora bipolarnego
Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego
Bardziej szczegółowoWSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część V Elementy półprzewodnikowe diody, tranzystory Janusz Brzychczyk IF UJ [ m ] 10 24 10 20 10 16 10 12 10 8 10 4 Przewodnictwo elektryczne ciał stałych Teflon Parafina Izolatory
Bardziej szczegółowoRekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Bardziej szczegółowo6. TRANZYSTORY UNIPOLARNE
6. TRANZYSTORY UNIPOLARNE 6.1. WSTĘP Tranzystory unipolarne, inaczej polowe, są przyrządami półprzewodnikowymi, których działanie polega na sterowaniu za pomocą pola elektrycznego wielkością prądu przez
Bardziej szczegółowoELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W W4 Unoszenie Dyfuzja 2 Półprzewodnik w stanie nierównowagi termodynamicznej np n 2 i n = n0 + n' p = p0 + p ' Półprzewodnik w stanie nierównowagi termodynamicznej Generacja i rekombinacja
Bardziej szczegółowo3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
Bardziej szczegółowo4. Diody DIODY PROSTOWNICZE. Są to diody przeznaczone do prostowania prądu przemiennego.
4. Diody 1 DIODY PROSTOWNICE Są to diody przeznaczone do prostowania prądu przemiennego. jawisko prostowania: przepuszczanie przez diodę prądu w jednym kierunku, wtedy gdy chwilowa polaryzacja diody jest
Bardziej szczegółowoCzęść 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Bardziej szczegółowoWydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia
Bardziej szczegółowoĆwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo
Bardziej szczegółowoDiody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy)
Diody i tranzystory - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) bipolarne (NPN i PNP) i polowe (PNFET i MOSFET), Fototranzystory i IGBT (Insulated
Bardziej szczegółowoRepeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Bardziej szczegółowoDiody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.
Diody, tranzystory, tyrystory Materiały pomocnicze do zajęć. Złącze PN stanowi podstawę diod półprzewodnikowych. Rozpatrzmy właściwości złącza poddanego napięciu. Na poniŝszym rysunku pokazano złącze PN,
Bardziej szczegółowoWYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 2 Charakterystyki tranzystora polowego POJĘCIA
Bardziej szczegółowo1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza
Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,
Bardziej szczegółowoElementy optoelektroniczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elementy optoelektroniczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Półprzewodnikowe elementy optoelektroniczne Są one elementami sterowanymi natężeniem
Bardziej szczegółowoTranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana
Bardziej szczegółowoĆwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
Bardziej szczegółowoRys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)
Ćwiczenie E11 UKŁADY PROSTOWNIKOWE Elementy półprzewodnikowe złączowe 1. Złącze p-n Złącze p-n nazywamy układ dwóch półprzewodników.jednego typu p w którym nośnikami większościowymi są dziury obdarzone
Bardziej szczegółowoIX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
Bardziej szczegółowoĆwiczenie 123. Dioda półprzewodnikowa
Ćwiczenie 123 Ćwiczenie 123. Dioda półprzewodnikowa Cel ćwiczenia Poznanie własności warstwowych złącz półprzewodnikowych typu p-n. Wyznaczenie i analiza charakterystyk stałoprądowych dla różnych typów
Bardziej szczegółowoSTRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Bardziej szczegółowoElementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości
Bardziej szczegółowoBadanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
Bardziej szczegółowoTeoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
Bardziej szczegółowoPrzyrządy i Układy Półprzewodnikowe
VI. Prostownik jedno i dwupołówkowy Cel ćwiczenia: Poznanie zasady działania układu prostownika jedno i dwupołówkowego. A) Wstęp teoretyczny Prostownik jest układem elektrycznym stosowanym do zamiany prądu
Bardziej szczegółowoPrzyrządy półprzewodnikowe część 3
Przyrządy półprzewodnikowe część 3 Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 110 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA
Bardziej szczegółowoLABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
Bardziej szczegółowoW książce tej przedstawiono:
Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,
Bardziej szczegółowoUkłady nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
Bardziej szczegółowoPółprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
Bardziej szczegółowoPrzyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Bardziej szczegółowoPrzyrządy półprzewodnikowe część 5 FET
Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
Bardziej szczegółowoPrzewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Bardziej szczegółowoRyszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Bardziej szczegółowoWybrane elementy optoelektroniczne. 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5.
Wybrane elementy optoelektroniczne 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5. Podsumowanie a) b) Light Emitting Diode Diody elektrolumiscencyjne Light
Bardziej szczegółowoW1. Właściwości elektryczne ciał stałych
W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3
Bardziej szczegółowo1 Źródła i detektory VI. FOTOTRANZYSTOR
1 Wprowadzenie. VI. FOTOTRANZYSTOR Nazwa tranzystor pochodzi z języka angielskiego: transistor - transferring an electrical signal across a resistor. (transfer sygnału elektrycznego przez rezystancję).
Bardziej szczegółowoWidmo promieniowania elektromagnetycznego Czułość oka człowieka
dealna charakterystyka prądowonapięciowa złącza p-n ev ( V ) = 0 exp 1 kbt Przebicie złącza przy polaryzacji zaporowej Przebicie Zenera tunelowanie elektronów przez wąską warstwę zaporową w złączu silnie
Bardziej szczegółowo1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne
Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki
Bardziej szczegółowoBadanie charakterystyki diody
Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,
Bardziej szczegółowoElektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci
Bardziej szczegółowoElektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7).
114 PRZYPOMNIJ SOBIE! Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7). 9. Elektroniczne elementy przełączające Elementami
Bardziej szczegółowoPrzewodnictwo elektryczne ciał stałych
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Bardziej szczegółowo(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 170013 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 297079 (22) Data zgłoszenia: 17.12.1992 (51) IntCl6: H01L 29/792 (
Bardziej szczegółowoRepeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoFotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał
FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury
Bardziej szczegółowoTranzystory polowe JFET, MOSFET
Tranzystory polowe JFET, MOSFET Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy JFET Zasada
Bardziej szczegółowoKatedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:
Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium
Bardziej szczegółowo5. Tranzystor bipolarny
5. Tranzystor bipolarny Tranzystor jest to trójkońcówkowy element półprzewodnikowy zdolny do wzmacniania sygnałów prądu stałego i zmiennego. Każdy tranzystor jest zatem wzmacniaczem. Definicja wzmacniacza:
Bardziej szczegółowoUkłady nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
Bardziej szczegółowoTranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy
Bardziej szczegółowoFizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Bardziej szczegółowoĆwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie
Bardziej szczegółowoWydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 5 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n. Zagadnienia
Bardziej szczegółowoUkłady nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
Bardziej szczegółowoZJAWISKA FOTOELEKTRYCZNE
ZJAWISKA FOTOELEKTRYCZNE ZEWNĘTRZNE, WEWNETRZNE I ICH RÓŻNE ZASTOSOWANIA ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Światło padając na powierzchnię materiału wybija z niej elektron 1 ZJAWISKO FOTOELEKTRYCZNE
Bardziej szczegółowoTRANZYSTORY BIPOLARNE ZŁĄCZOWE
TRANZYSTORY IPOLARN ZŁĄCZO ipolar Junction Transistor - JT Tranzystor bipolarny to odpowiednie połączenie dwóch złącz pn p n p n p n kolektor baza emiter kolektor baza emiter udowa tranzystora w technologii
Bardziej szczegółowoEL08s_w03: Diody półprzewodnikowe
EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez
Bardziej szczegółowoBase. Paul Sherz Practical Electronic for Inventors McGraw-Hill 2000
Złącze p-n Base Paul Sherz Practical Electronic for Inventors McGraw-Hill 2000 Dyfuzja aż do stanu równowagi 6n+3p+6D Dipol ładunku elektrycznego 6p+3n+6A Pole elektryczne Nadmiarowe nośniki mniejszościowe
Bardziej szczegółowoRepeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Bardziej szczegółowo