DIODY PÓŁPRZEWODNIKOWE

Wielkość: px
Rozpocząć pokaz od strony:

Download "DIODY PÓŁPRZEWODNIKOWE"

Transkrypt

1 Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym w szczególności, rozumienie schematów układów pomiarowych. 2. Charakterystyki prądowo-napięciowe diody prostowniczej (złącze p-n), diody Schottky ego (złącze m-s), diody Zenera, transila, LED (w zależności od barwy świecenia). 3. Podstawowe parametry elektryczne badanych w ćwiczeniu elementów półprzewodnikowych (wybrane z informacji umieszczonych w kartach katalogowych). 4. Wpływ temperatury na parametry elektryczne diod półprzewodnikowych. 5. Zastosowania diod półprzewodnikowych, diod Zenera i transili, a w szczególności rozwiązania układowe prostowników napięcia, prostych stabilizatorów napięcia i układów zabezpieczeń napięciowych. 6. Umiejętność doboru rezystora szeregowego w obwodzie z diodą LED przy danym napięciu zasilania. Literatura: 1. Wykład i instrukcja do ćwiczenia. 2. Tietze U., Schenk Ch.: Układy półprzewodnikowe, WNT, Warszawa Filipkowski A.: Układy elektroniczne analogowe i cyfrowe, WNT, Warszawa Filipkowski A. (red.): Elementy i układy elektroniczne. Projekt i laboratorium, Oficyna wydawnicza Politechniki Warszawskiej, Warszawa Karty katalogowe badanych w ćwiczeniu diod.

2 PRZEBIEG ĆWICZENIA LABORATORYJNEGO Wszystkie badania i pomiary zostaną przeprowadzone przy użyciu płytki laboratoryjnej o nazwie «DIODES». Wykorzystane będą także dwa multimetry, regulowane źródło napięciowe oraz generator i oscyloskop. LED 1 LED 2 Rys. 1. Widok płytki pomiarowej przeznaczonej do wyznaczania charakterystyk prądowo-napięciowych diod. Wszystkie gniazda na płytce dostosowane są do wtyków o średnicy 2 mm. CZĘŚĆ PIERWSZA: BADANIE PARAMETRÓW STATYCZNYCH DIOD PÓŁPRZEWODNIKOWYCH Na płytce laboratoryjnej znajduje się sześć badanych elementów półprzewodnikowych D1-D6: D1 dioda prostownicza typu 1N4007, MAX = 1 A, U RMAX = 1000 V, D2 dioda prostownicza Schottky ego typu 1N5817, MAX = 1A, U RMAX = 20 V, D3 dioda Zenera typu BZXC4V7, P D = 0,5 W, D4 dioda transil, dwukierunkowa, typu BZW06-6V4B, P D = 600 W (w impulsie), D5 LED, kolor świecenia czerwony, typu WW05G3SRP4-W, MAX = 20 ma, U RMAX = 5 V, D6 LED, kolor świecenia biały, typu WW05G3SWT4-W, MAX = 20 ma, U RMAX = 5 V. Objaśnienie: litera F w indeksie prądów i napięć oznacza kierunek przewodzenia (ang. Forward), litera R w indeksie prądów i napięć oznacza kierunek zaporowy (ang. Reverse). Ponadto zostanie wykorzystany rezystor ograniczający wartość prądu płynącego przez diody, 680 Ω, 5%, 0,5 W. 2

3 Zadanie I Przyłączyć napięcie z regulowanego źródła napięciowego, tak żeby spolaryzować wybraną diodę w kierunku przewodzenia. Zmierzyć zależność prądu od napięcia dla wszystkich badanych elementów D1-D6. Napięcie regulowane zmieniać od zera woltów do 20 V. Dobrać liczbę punktów pomiarowych stosownie do kształtu mierzonej charakterystyki (rys. 2). [ma] Fragment charakterystyki wymagający większej liczby punktów pomiarowych [V] 0 Rys. 2. Przykład charakterystyki prądowo napięciowej. Liniowe odcinki charakterystyki nie wymagają dużej liczby punktów pomiarowych. Uwagę należy skoncentrować na te fragmenty charakterystyki, których prawidłowe wykreślenie wymaga znajomości wielu punktów pomiarowych. Do prawidłowego doboru liczby punktów pomiarowych przydaje się teoretyczna znajomość charakterystyki lub wstępny pomiar (obserwacja zmian wartości prądu w funkcji szybko zmienianego napięcia). Zadanie II Przyłączyć napięcie z regulowanego źródła napięciowego, tak żeby spolaryzować wybraną diodę w kierunku zaporowym. Napięcie regulowane zmieniać od zera woltów do 20 V (D1-D4) i maksymalnie do 5 V dla diod świecących (D5-D6). Prądy niektórych diod, płynące w kierunku zaporowym, będą niewielkich wartości i do ich pomiaru należy użyć mikroamperomierza. Sprawozdanie w części dotyczącej badania parametrów statycznych Należy przyjąć następujący porządek: Badanie diody D1: a. schemat układu pomiarowego w kierunku przewodzenia, b. tabela wyników pomiarów w kierunku przewodzenia, c. schemat układu pomiarowego w kierunku zaporowym, d. tabela wyników pomiarów w kierunku zaporowym, e. wykres charakterystyki prądowo napięciowej (kierunek przewodzenia i kierunek zaporowy na jednym układzie współrzędnych), f. konkretne wnioski (porównanie wyników z danymi z karty katalogowej elementu). Analogicznie opracować wyniki dla pozostałych diod. Dla diody Zenera D3 i transila D4 podać także napięcie Zenera U Z i napięć przebicia (ang. breakdown voltage) transila U BR. Na rys. 3 i rys. 4 przedstawiono prawidłowo narysowane, przykładowe dwa schematy układów pomiarowych. 3

4 U REG + _ ma V D1 Rys. 3. Schemat układu do pomiaru charakterystyki prądowo-napięciowej w kierunku przewodzenia diody prostowniczej D1 _ ma U REG V D3 + Rys. 4. Schemat układu do pomiaru charakterystyki prądowo-napięciowej w kierunku zaporowym diody Zenera D3 15,0 [ma] 10,0 Kierunek przewodzenia U R [V] -20,0-16,0-12,0-8,0-4,0 5,0 0 0,20 0,40 0,60 0,80 1,00 [V] Kierunek zaporowy I R [μa] -5,0 Rys. 5. Przykładowy wykres charakterystyki prądowo-napięciowej diody. Skale wykresu muszą być dostosowane do zebranych w tabeli wyników. Rysunek ilustruje zasady poprawnej konstrukcji wykresu i nie odzwierciedla żadnego konkretnego wyniku pomiarów przeprowadzanych w ćwiczeniu. Na wykresie charakterystyki należy zaznaczyć punkty pomiarowe (zgodne z tabelą pomiarów) 4

5 CZĘŚĆ DRUGA: BADANIE PARAMETRÓW DYNAMICZNYCH DIOD PROSTOWNICZYCH W ćwiczeniu będą badane dwie diody prostownicze: D1 dioda prostownicza typu 1N4007, MAX = 1 A, U RMAX = 1000 V, D2 dioda prostownicza Schottky ego typu 1N5817, MAX = 1A, U RMAX = 20 V, Zadanie III Celem tego zadania jest wyznaczenie przebiegów czasowych napięć i prądów w diodach prostowniczych podczas skokowej zmiany kierunku polaryzacji. Do obserwacji przebiegów czasowych posłuży dwukanałowy oscyloskop cyfrowy DSO (ang. Digital Storage Oscilloscope). Przygotować układ połączeń przedstawiony na rys. 6. Wykorzystany będzie dodatkowy rezystor R2. Napięcie na rezystorze R2 będzie proporcjonalne do prądu płynącego przez diodę: U R2 = I R2 R2 43 om, 5%, 0,25 W +5V -5V GF D I R2 I U R2 I(t) DSO CH2 U(t) DSO CH1 Rys. 6. Schemat układu do pomiaru parametrów dynamicznych diod D1 i D2 Przyłączyć wyjście generatora funkcyjnego GF do oscyloskopu i ustawić przebieg prostokątny o poziomach amplitud -5V i +5V oraz częstotliwości 10 khz. Następnie przyłączyć generator do badanego układu. Zaobserwować i skopiować przebiegi czasowe obserwowane na oscyloskopie przy zmianach kierunku polaryzacji diody (dostosować częstotliwość generatora, żeby uwydatnić szczegółowy obraz przebiegów czasowych). Sprawozdanie w części dotyczącej badania parametrów dynamicznych a. schemat układu pomiarowego, b. wykresy przebiegów czasowych napięcia i prądu w diodzie D1, c. wyznaczenie wartości czasu odzyskiwania zdolności zaporowych (ang. reverse recovery time) przez diodę D1, należy zaznaczyć odpowiedni odcinek czasu na przebiegach czasowych, d. przebiegi czasowe napięcia i prądu w diodzie D2, e. wyznaczenie wartości czasu odzyskiwania zdolności zaporowych (ang. reverse recovery time) przez diodę D2, należy zaznaczyć odpowiedni odcinek czasu na przebiegach czasowych, f. porównanie otrzymanych wyników dla diod D1 i D2, g. wyjaśnić związek między czasem odzyskiwania zdolności zaporowych diody a maksymalną częstotliwością prostowanego przez diodę prądu. 5

TRANZYSTORY BIPOLARNE

TRANZYSTORY BIPOLARNE Instrukcja do ćwiczenia laboratoryjnego TRANZYSTORY BIPOLARNE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Tranzystory bipolarne rodzaje, typowe parametry i charakterystyki,

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIK ENS1C300 022 WYBRNE ZSTOSOWNI DIOD PÓŁPRZEWODNIKOWYCH BIŁYSTOK

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C

ELEMENTY ELEKTRONICZNE TS1C Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Laboratorum 4 Dioda półprzewodnikowa

Laboratorum 4 Dioda półprzewodnikowa Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 1.2 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 2.0 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne

Bardziej szczegółowo

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ POLITECHNIKI ŁÓDZKIEJ WYDZIAŁ: KIERUNEK: ROK AKADEMICKI: SEMESTR: NR. GRUPY LAB: SPRAWOZDANIE Z ĆWICZEŃ W LABORATORIUM METROLOGII ELEKTRYCZNEJ I ELEKTRONICZNEJ

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI DIODY

LABORATORIUM PODSTAW ELEKTRONIKI DIODY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 2 DIODY DO UŻYTKU

Bardziej szczegółowo

ELEKTRONIKA ANALOGOWA I CYFROWA 1

ELEKTRONIKA ANALOGOWA I CYFROWA 1 WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki dr inż. JERZY SAWICKI mgr inż. ANDRZEJ BIEDKA dr inż. JOANNA GÓRECKA ELEKTRONIKA ANALOGOWA I CYFROWA 1 Laboratorium dla studentów

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami

Bardziej szczegółowo

Liniowe stabilizatory napięcia

Liniowe stabilizatory napięcia . Cel ćwiczenia. Liniowe stabilizatory napięcia Celem ćwiczenia jest praktyczne poznanie właściwości stabilizatora napięcia zbudowanego na popularnym układzie scalonym. Zakres ćwiczenia obejmuje projektowanie

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W UKŁADY PROSTOWNICZE. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem

Bardziej szczegółowo

Elektronika. Wzmacniacz tranzystorowy

Elektronika. Wzmacniacz tranzystorowy LABORATORIUM Elektronika Wzmacniacz tranzystorowy Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych i charakterystyk graficznych tranzystorów bipolarnych.

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h)

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) ĆWICZENIE LABORATORYJNE TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

Elektronika. Wzmacniacz operacyjny

Elektronika. Wzmacniacz operacyjny LABORATORIUM Elektronika Wzmacniacz operacyjny Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych wzmacniaczy operacyjnych. 2. Układów pracy wzmacniacza

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

Własności i zastosowania diod półprzewodnikowych

Własności i zastosowania diod półprzewodnikowych Instytut Fizyki oświadczalnej UG Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu.

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu. Prostowniki. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem transformatora

Bardziej szczegółowo

Stabilizacja napięcia. Prostowanie i Filtracja Zasilania. Stabilizator scalony µa723

Stabilizacja napięcia. Prostowanie i Filtracja Zasilania. Stabilizator scalony µa723 LABORATORIUM Stabilizacja napięcia Prostowanie i Filtracja Zasilania Stabilizator scalony µa723 Opracował: mgr inż. Andrzej Biedka Wymagania: - Układy prostowników półokresowych i pełnookresowych. - Filtracja

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego ĆWICZENIE LABORATORYJNE TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się ze wzmacniaczem różnicowym, który

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów

ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów ĆWICZENIE LBORTORYJNE TEMT: Wyznaczanie parametrów diod i tranzystorów 1. WPROWDZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych rodzajów diod półprzewodnikowych

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI DIODA

LABORATORIUM PODSTAW ELEKTRONIKI DIODA ZESPÓŁ LABORATORÓW TELEMATYK TRANSPORT ZAKŁAD TELEKOMNKACJ W TRANSPORCE WYDZAŁ TRANSPORT POLTECHNK WARSZAWSKEJ LABORATORM PODSTAW ELEKTRONK NSTRKCJA DO ĆWCZENA NR 2 DODA DO ŻYTK WEWNĘTRZNEGO WARSZAWA 2016

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Przyrządy i Układy Półprzewodnikowe

Przyrządy i Układy Półprzewodnikowe VI. Prostownik jedno i dwupołówkowy Cel ćwiczenia: Poznanie zasady działania układu prostownika jedno i dwupołówkowego. A) Wstęp teoretyczny Prostownik jest układem elektrycznym stosowanym do zamiany prądu

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Obwody nieliniowe.

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Obwody nieliniowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Obwody nieliniowe. (E 3) Opracował: dr inż. Leszek Remiorz Sprawdził: dr

Bardziej szczegółowo

Własności i zastosowania diod półprzewodnikowych

Własności i zastosowania diod półprzewodnikowych Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż i badanie wybranych układów,

Bardziej szczegółowo

Ćwiczenie nr 123: Dioda półprzewodnikowa

Ćwiczenie nr 123: Dioda półprzewodnikowa Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Ćw. 8 Bramki logiczne

Ćw. 8 Bramki logiczne Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEA ELEKTONIKI AGH L A B O A T O I U M ELEMENTY ELEKTONICZNE ZASTOSOWANIE IO EV. 1.2 Laboratorium Elementów Elektronicznych: ZASTOSOWANIE IO 1. CEL ĆWICZENIA - praktyczna weryfikacja działania diodowych:

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego

Instrukcja do ćwiczenia laboratoryjnego Instrukcja do ćwiczenia laboratoryjnego adanie parametrów statycznych i dynamicznych ramek Logicznych Opracował: mgr inż. ndrzej iedka Wymagania, znajomość zagadnień: 1. Parametry statyczne bramek logicznych

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Cel ćwiczenia: Zapoznanie się z własnościami warstwowych złącz półprzewodnikowych p-n. Wyznaczanie charakterystyk stałoprądowych

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Krzysztof Makles Sprzęt i architektura komputerów Laboratorium Temat: Elementy i układy półprzewodnikowe Katedra Architektury Komputerów i Telekomunikacji Zakład Systemów i Sieci Komputerowych SPIS TREŚCI

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 3 A

Instrukcja do ćwiczenia laboratoryjnego nr 3 A Instrkcja do ćwiczenia laboratoryjnego nr 3 A Temat: Pomiar rezystancji dynamicznej wybranych diod Cel ćwiczenia. Celem ćwiczenia jest poznanie metod wyznaczania oraz pomiar rezystancji dynamicznej (róŝniczkowej)

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH

Bardziej szczegółowo

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ OPERACYJNY

LABORATORIUM ELEKTRONIKI WZMACNIACZ OPERACYJNY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 8 WZMACNIACZ OPERACYJNY DO

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 11

Instrukcja do ćwiczenia laboratoryjnego nr 11 Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział

Bardziej szczegółowo

Zastosowania nieliniowe wzmacniaczy operacyjnych

Zastosowania nieliniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

Ćwiczenie 1. Parametry statyczne diod LED

Ćwiczenie 1. Parametry statyczne diod LED Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 2 PRWO OHM. BDNIE DWÓJNIKÓW LINIOWYCH I NIELINIOWYCH . Cel ćwiczenia. - Zapoznanie się z właściwościami

Bardziej szczegółowo

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6b

Instrukcja do ćwiczenia laboratoryjnego nr 6b Instrukcja do ćwiczenia laboratoryjnego nr 6b Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 9

Instrukcja do ćwiczenia laboratoryjnego nr 9 Instrukcja do ćwiczenia laboratoryjnego nr 9 Temat: Charakterystyki i parametry tranzystorów PNFET Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych oraz parametrów tranzystorów PNFET.

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

spis urządzeń użytych dnia moduł O-01

spis urządzeń użytych dnia moduł O-01 Cel ćwiczenia Celem ćwiczenia jest poznanie wybranych reprezentatywnych elementów optoelektronicznych nadajników światła (fotoemiterów), odbiorników światła (fotodetektorów) i transoptorów oraz zapoznanie

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne

Bardziej szczegółowo

Zbiór zadań z elektroniki - obwody prądu stałego.

Zbiór zadań z elektroniki - obwody prądu stałego. Zbiór zadań z elektroniki - obwody prądu stałego. Zadanie 1 Na rysunku 1 przedstawiono schemat sterownika dwukolorowej diody LED. Należy obliczyć wartość natężenia prądu płynącego przez diody D 2 i D 3

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 17 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego -

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

LABORATORIUM Miernictwa elementów optoelektronicznych

LABORATORIUM Miernictwa elementów optoelektronicznych Ćw. 4. Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM Miernictwa elementów optoelektronicznych Pomiary częstotliwościowe detektorów opis ćwiczenia Opracował zespół: pod kierunkiem Damiana Radziewicza

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI TYRYSTOR I TRIAK

LABORATORIUM PODSTAW ELEKTRONIKI TYRYSTOR I TRIAK ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 4 TYRYSTOR I TRIAK

Bardziej szczegółowo

UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora

UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie studentów z jednym

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 2 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE - DIODY Rok studiów Grupa Imię i nazwisko Data Podpis Ocena

Bardziej szczegółowo

Zworka amp. C 1 470uF. C2 100pF. Masa. R pom Rysunek 1. Schemat połączenia diod LED. Rysunek 2. Widok płytki drukowanej z diodami LED.

Zworka amp. C 1 470uF. C2 100pF. Masa. R pom Rysunek 1. Schemat połączenia diod LED. Rysunek 2. Widok płytki drukowanej z diodami LED. Ćwiczenie. Parametry dynamiczne detektorów i diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami dynamicznymi diod LED oraz detektorów. Poznanie możliwych do uzyskania

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES

Bardziej szczegółowo

Ćw. 1: Badanie diod i prostowników

Ćw. 1: Badanie diod i prostowników Ćw. 1: Badanie diod i prostowników Wstęp Celem ćwiczenia jest badanie diod i opartych na nich prostownikach stosowanych w zasilaczach. Dioda jest to elektroniczny element półprzewodnikowy zawierający jedno

Bardziej szczegółowo

Badanie dławikowej przetwornicy podwyŝszającej napięcie

Badanie dławikowej przetwornicy podwyŝszającej napięcie LABORATORIUM ZASILANIE URZĄDZEŃ ELETRONICZNYCH Badanie dławikowej przetwornicy podwyŝszającej napięcie Opracował: Tomasz Miłosławski Wymagania, znajomość zagadnień: 1. Budowa, parametry i zasada działania

Bardziej szczegółowo

Układy i Systemy Elektromedyczne

Układy i Systemy Elektromedyczne UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 2 Elektroniczny stetoskop - głowica i przewód akustyczny. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 10

Instrukcja do ćwiczenia laboratoryjnego nr 10 Instrukcja do ćwiczenia laboratoryjnego nr 10 Temat: Charakterystyki i parametry tranzystorów MIS Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych i parametrów tranzystorów MOS oraz

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Temat: Własności diody p-n Cel ćwiczenia Ćwiczenie 30 Zrozumienie właściwości diod ze złączem p-n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI TYRYSTOR I TRIAK

LABORATORIUM PODSTAW ELEKTRONIKI TYRYSTOR I TRIAK ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 4 TYRYSTOR I TRIAK

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja

Bardziej szczegółowo

GENERATORY KWARCOWE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego

GENERATORY KWARCOWE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego Politechnika Wrocławska Instytut Telekomunikacji, Teleinformatyki i Akustyki Zakład Układów Elektronicznych Instrukcja do ćwiczenia laboratoryjnego GENERATORY KWARCOWE 1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Ćwiczenie - 2 DIODA - PARAMETRY, CHARAKTERYSTYKI I JEJ ZASTOSOWANIE

Ćwiczenie - 2 DIODA - PARAMETRY, CHARAKTERYSTYKI I JEJ ZASTOSOWANIE Ćwiczenie - 2 DIODA - PARAMETRY, CHARAKTERYSTYKI I JEJ ZASTOSOWANIE Spis treści 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe rodzaje diod półprzewodnikowych................... 3 2.1.1 Dioda

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI

LABORATORIUM ELEKTRONIKI LABOATOIM ELEKTONIKI ĆWICENIE 1 DIODY STABILIACYJNE K A T E D A S Y S T E M Ó W M I K O E L E K T O N I C N Y C H 21 CEL ĆWICENIA Celem ćwiczenia jest praktyczne zapoznanie się z charakterystykami statycznymi

Bardziej szczegółowo

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h)

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h) ĆWICZENIE LABORATORYJNE TEMAT: Badanie generatorów sinusoidalnych (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych typów generatorów sinusoidalnych.

Bardziej szczegółowo

ZŁĄCZOWY TRANZYSTOR POLOWY

ZŁĄCZOWY TRANZYSTOR POLOWY L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWY TRANZYSTOR POLOWY RE. 2.0 1. CEL ĆWICZENIA - Pomiary charakterystyk prądowo-napięciowych tranzystora. - Wyznaczenie podstawowych parametrów tranzystora

Bardziej szczegółowo

Ćwiczenie - 9. Wzmacniacz operacyjny - zastosowanie nieliniowe

Ćwiczenie - 9. Wzmacniacz operacyjny - zastosowanie nieliniowe Ćwiczenie - 9 Wzmacniacz operacyjny - zastosowanie nieliniowe Spis treści 1 Cel ćwiczenia 1 2 Przebieg ćwiczenia 2 2.1 Wyznaczanie charakterystyki przejściowej U wy = f(u we ) dla ogranicznika napięcia

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza

Bardziej szczegółowo

TRANZYSTOR UNIPOLARNY MOS

TRANZYSTOR UNIPOLARNY MOS L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE TRANZYSTOR UNIPOLARNY MOS RE. 1.0 1. CEL ĆWICZENIA - zapoznanie się z działaniem tranzystora unipolarnego MOS, - wykreślenie charakterystyk napięciowo-prądowych

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 Zastosowania wzmacniaczy operacyjnych w układach

Bardziej szczegółowo