3.4 Badanie charakterystyk tranzystora(e17)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "3.4 Badanie charakterystyk tranzystora(e17)"

Transkrypt

1 152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki, złącze pn; budowa i zasada działania tranzystora; charakterystyki tranzystora w układzie WE; układy pracy tranzystora. Literaturapodstawowa:[2],[4],[19] Podstawowe pojęcia i definicje Półprzewodniki Półprzewodniki są to ciała stałe charakteryzujące się tym, że ich przewodność elektryczna rośnie w szerokim zakresie wraz z temperaturą i wykazuje wrażliwość na niezmiernie małe ilości niektórych domieszek. Grupa tych materiałów ze względu na przewodnictwo elektryczne znajduje się pomiędzy metalami a dielektrykami(izolatorami). Półprzewodniki czyste chemicznie nazywamy samoistnymi. Pierwiastki czwartej grupy układu okresowego, np. german i krzem są półprzewodnikami samoistnymi. Mają one strukturę krystaliczną typu diamentu. Każdy atom otoczony jest czterema najbliższymi sąsiadami, a para elektronów po jednym z dwu sąsiadujących atomów wytwarza wiązanie kowalencyjne. Zjawiska zachodzące w metalach, półprzewodnikach i izolatorach tłumaczy się w sposób uproszczony za pomocą modelu pasmowego ciał stałych. Dokładny opis jest możliwy tylko na podstawie kwantowej teorii ciała stałego. W półprzewodnikach samoistnych w temperaturze zera bezwzględnego jest całkowicie zapełnione, a całkowicie puste(rysunek 3.4.1a). Oba pasma rozdziela przerwa energetyczna rzędu 1 ev. Pod wpływem wzbudzeń termicznych, naświetlania lub przyłożenia silnego pola elektrycznego elektrony z pasma walencyjnego mogą uzyskać dodatkową energię, wystarczającą do przekroczenia przerwy. Stają się wtedy swobodnymi nośnikami prądu. Jednocześnie w paśmie walencyjnym pojawiają się stany nieobsadzone(dziury) po elektronach, które również mogą powodować przepływ prądu. Liczba dziur jest równa liczbie elektronów w paśmie przewodnictwa. W ten sposób półprzewodnik samoistny może przewodzić prąd elektryczny, który składa się z prądu elektronowego w paśmie przewodnictwa i prądu dziurowego w paśmie walencyjnym. Przez cały czas zachodzi rekombinacja, dzięki której elektrony z pasma przewodnictwa oddają nadmiar energii i zapełniają dziury w paśmie walencyjnym. W związku z tym definiuje się średni czas życia nośników prądu elektrycznego. W półprzewodnikach domieszkowych istnieją domieszki pierwiastków z trzeciej lub piątej grupy układu okresowego. Jeżeli w sieci germanu zamiast jednego z jego atomówznajdziesięatomztrzeciejgrupy(ind,bor),tojednozwiązańatomugermanu pozostanie niewysycone, gdyż atom domieszki ma o jeden elektron mniej niż atom

2 Badanie charakterystyk tranzystora(e17) 153 In As przerwa energetyczna poziom akceptorowy poziom donorowy a) b) c) Rys : Wiązania elektronowe w półprzewodniku samoistnym(a), typu p(b) oraz typu n(c). Przedstawione są także pasma walencyjne i przewodzenia oraz stany energetyczne akceptorowe idonorowe. germanu(rysunek 3.4.1b). Wiązanie to może być uzupełnione dowolnym elektronem z innego atomu germanu. Ten nowy elektron zajmie wtedy stan zlokalizowany przy atomie domieszki, a jednocześnie pojawi się dziura w paśmie walencyjnym. Domieszki powodujące tego typu efekty nazywają się akceptorami, a półprzewodnik domieszkowy jest typu p(positive). Jeżeli w sieci germanu znajdzie się atom z piątej grupy(arsen, antymon), cztery z jego elektronów walencyjnych tworzą wiązania z sąsiednimi atomami germanu, a piąty jest bardzo słabo związany(rysunek 3.4.1c). Nieduża energia wystarcza, aby przenieść ten elektron do pasma przewodnictwa. Domieszki tego rodzaju nazywają się donorami, a półprzewodnik jest typu n(negative). Złącze pn Złączem pn nazywamy granicę istniejącą w półprzewodniku między dwoma obszarami typu p i typu n. Można go utworzyć nawet z jednego półprzewodnika przez odpowiednie domieszkowanie. W temperaturach wyższych od zera bezwzględnego znaczna część poziomów domieszkowych jest zjonizowana. W paśmie podstawowym części p istnieją więc dziury, a w paśmie przewodnictwa części n elektrony. Są to nośniki większościowe. W każdym półprzewodniku istnieją również nośniki mniejszościowe: elektrony w p i dziury w n. Liczba nośników mniejszościowych zależy jedynie od temperatury i szerokości pasma zabronionego i ustala się w wyniku równowagi dynamicznej między procesami tworzenia oraz rekombinacji nośników.

3 154 Elektryczność p n Rys : Złącze pn. Na skutek zetknięcia obu części półprzewodnika zaczyna wyrównywać się stężenie nośników większościowych w każdym z pasm. W paśmie przewodnictwaelektronypłynązndop,awpaśmiewalencyjnymdziuryzpdon.postronieppojawiasięwarstwa ładunku ujemnego, a po stronie n dodatniego (rysunek 3.4.2). Między tymi warstwami powstaje próg potencjału, przeciwdziałajacy dalszemu przechodzeniu tych nośników. Przechodzenie dziur z obszarutypupdoobszarutypunorazelektronów wkierunkuodwrotnym,awięcdoobszarów,wktórych stają się one nośnikami mniejszościowymi, nazywa się wstrzykiwaniem nośników. Jeżeli do półprzewodnika typu n przyłożymy dodatni(w stosunku do półprzewodnika typu p) potencjał elektrostatyczny, to bariera potencjału w złączu powiększy się. Mówimy wtedy, że półprzewodnik został spolaryzowany w kierunku zaporowym. Prąd płynący przez złącze jest mały i ze wzrostem napięcia szybko osiąga nasycenie. Odmiennie zachowuje się złącze przy polaryzacji odwrotnej, gdy potencjał dodatni jest przyłożony do półprzewodnika typu p. Teraz bariera potencjału obniża się, co sprzyja znacznemu(wykładniczemu) wzrostowi prądu wraz ze wzrostem napięcia. Mówimy wtedy, że półprzewodnik został spolaryzowany w kierunku przewodzenia. Tranzystory Tranzystory są grupą elementów elektronicznych o regulowanym(sterowanym) przepływie ładunków elektrycznych. Ze względu na zasadę działania tranzystory dzieli się na dwie grupy: tranzystory bipolarne i tranzystory unipolarne(polowe). Tranzystorem bipolarnym nazywamy układ złożony z trzech warstw półprzewodnika, ułożonych w kolejności pnp lub npn. Poszczególne warstwy tranzystora nazywamy emiterem E, bazą Bikolektorem K. Złącze EB polaryzujemy w kierunku przewodzenia, a złącze BK w kierunku zaporowym. W obszarze emitera prąd jest głównie przenoszony przez nośniki większościowe. Przechodzą one do bazy, gdzie jako nośniki mniejszościowe dyfundują do kolektora. Jeżeli grubość bazy jest dużo mniejsza niż średnia droga dyfuzji tych nośników, to prawie wszystkie nośniki wstrzykiwane z emitera do bazy osiągają kolektor. Tam znowu stają się nośnikami większościowymi, znacznie zwiększając płynący tam prąd wsteczny. Układy pracy tranzystora Tranzystor może pracować w różnych układach połączeń, w których cechą charakterystyczną jest wspólna jedna z elektrod. Możliwa jest praca w układzie ze wspólnym emiterem WE,zewspólnąbazą WBorazzewspólnymkolektorem WK.Przydatność tranzystora do celów praktycznych określa się za pomocą parametrów, takich

4 Badanie charakterystyk tranzystora(e17) 155 jakwspółczynnikwzmocnieniaprądowego β,opórwejściowy r wej,czyopórwyjściowy r wyj : ( ) IK β =, (3.4.1) I B U KE ( ) UBE r wej =, (3.4.2) I B U KE ( ) UKE r wyj =. (3.4.3) I K I B Charakterystyki tranzystora w układzie W E Charakterystyki tranzystorów podają wzajemne zależności pomiędzy prądami przepływającymi przez tranzystor a napięciami występującymi między jego elektrodami. Dostarczają one wielu informacji dotyczących własności i możliwości zastosowania tych elementów półprzewodnikowych w układach elektronicznych. Wybrane charakterystyki tranzystora w układzie W E: charakterystykawejściowa I B = f (U BE )przy U KE = constkrzywajestcharakterystyką diody utworzonej przez złącze EB. Z charakterystyki obliczamy parametr r wej dlaokreślonegopunktu(przedziału)pracy; charakterystykaprzejściowa I K = f (I B )przy U KE = constzależnośćjestna całejdługościprawieliniąprostą,więcmożnaprzyjąć,żeprądkolektora I K jest proporcjonalnydoprądubazy I B.Zcharakterystykiobliczamyparametr β; charakterystykawyjściowa I K = f (U KE )przy I B = constprąd I K szybko osiąga swoją stałą wartość. Jest to spowodowane zjawiskiem nasycenia, gdyż powyżejpewnegonapięcia U KE wszystkienośnikiładunkuelektrycznego,pobudzonenapięciem U KE,biorąudziałwtworzeniuprądukolektora.Zcharakterystyki obliczamyparametr r wyj dlaokreślonegopunktu(przedziału)pracy. Typowe wartości parametrów tranzystorów pracujących w układzie WE wynoszą: rezystancja wejściowa Ω, rezystancja wyjściowa kω, wzmocnienie prądowe Przebiegpomiarów Układ doświadczalny Przyrządy: tranzystor krzemowy npn, dwa zasilacze, cztery mierniki uniwersalne, przewody, dodatkowy opór. Schemat układu doświadczalnego w układzie wspólnego emitera przedstawiony jest narysunku3.4.3.dodatkowyopornik Rpozwalanalepszesterowanieprądembazy I B. Należy również zdawać sobie sprawę z istniejących oporów wewnętrznych mierników uniwersalnych.

5 156 Elektryczność zasilacz A I B K B A I K R U BE V E U KE V zasilacz Rys : Schemat układu doświadczalnego. Przebieg doświadczenia Zapoznać się z przyrządami i zmontować układ według schematu, a następnie sprawdzić układ przed jego włączeniem. Zmierzyć jednocześnie charakterystykę wejściową i przejściową. W tym celu należy ustawićnapięciekolektoremiter U EK przykładowona 3 V.Następniewykonaćpomiaryprądówbazy I B ikolektora I K orazkolejnoustawianychnapięć U BE.Abyotrzymać prawidłowąwartośćoporuwejściowego r wej należywykonaćpomiarygęściejwokolicy szybkiegowzrostuprądubazy,tj.powyżej U BE = 0.6 V.Zbadaćwpływdodatkowego oporu na układ. Zmierzyćkilkacharakterystykwyjściowych.Wtymceluustawićprądbazy I B przykładowona 1 ma.wykonaćpomiaryprądukolektora I k ikolejnoustawianych napięć U KE.Ewentualnewahania I B należyskorygowaćnapięciemnazasilaczupo stroniebazy.abyotrzymaćprawidłowąwartośćoporuwyjściowego r wyj należywykonać pomiary większej ilości punktów w obszarze słabego wzrostu prądu kolektora I K.Analogicznepomiarywykonaćdlainnejwartościprądubazy I B,przykładowodla 0.5 malub 1.5 ma Opracowaniewyników Wykonać wykresy czterech charakterystyk tranzystora. Osie wykresów powinny być opisane wraz z jednostkami. Na wszystkich wykresach zaznaczyć obszary, które pozwolą wyznaczyć interesujące nas parametry. Korzystając z regresji liniowej wyznaczyć: opór wejściowy(charakterystyka wejściowa), wzmocnienie prądowe(charakterystyka przejściowa) i dwie wartości oporu wyjściowego(z obu charakterystyk wyjściowych). Obliczyć niepewności wyznaczonych parametrów. Otrzymane wartości porównać z wartościami podanymi w katalogu tranzystorów. Przeprowadzić dyskusję otrzymanych wyników.

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

Badanie charakterystyki diody

Badanie charakterystyki diody Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

III. TRANZYSTOR BIPOLARNY

III. TRANZYSTOR BIPOLARNY 1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków. 2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały

Bardziej szczegółowo

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA 3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują

Bardziej szczegółowo

Półprzewodniki samoistne. Struktura krystaliczna

Półprzewodniki samoistne. Struktura krystaliczna Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie

Bardziej szczegółowo

Zasada działania tranzystora bipolarnego

Zasada działania tranzystora bipolarnego Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE Laboratorium z Fizyki Materiałów 00 Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY.WIADOMOŚCI OGÓLNE Przewodnictwo elektryczne ciał stałych można opisać korzystając

Bardziej szczegółowo

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie

Bardziej szczegółowo

Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka

Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka Zakład Inżynierii Materiałowej i Systemów Pomiarowych Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka LABORATORIUM INŻYNIERII

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

Ćwiczenie 2 BADANIE DIODY PÓŁPRZEWODNIKOWEJ I TRANZYSTORA

Ćwiczenie 2 BADANIE DIODY PÓŁPRZEWODNIKOWEJ I TRANZYSTORA II pracownia fizyczna dr Wiaczesław Szamow Ćwiczenie 2 BADANIE DIODY PÓŁPRZEWODNIKOWEJ I TRANZYSTORA opr. tech. Mirosław Maś Krystyna Ługowska Siedlce 2004 1. Wstęp Zasadniczym celem ćwiczenia jest zbadanie

Bardziej szczegółowo

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr Tranzystor Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz1.cmr C:\Program Files (x86)\cma\coach6\full.en\cma

Bardziej szczegółowo

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b) Ćwiczenie E11 UKŁADY PROSTOWNIKOWE Elementy półprzewodnikowe złączowe 1. Złącze p-n Złącze p-n nazywamy układ dwóch półprzewodników.jednego typu p w którym nośnikami większościowymi są dziury obdarzone

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(V) ogniwa słonecznego przed i po oświetleniu światłem widzialnym; prądu zwarcia, napięcia

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Ćwiczenie 241. Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) .. Ω.

Ćwiczenie 241. Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) .. Ω. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 241 Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) Opór opornika

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

ĆWICZENIE 39 WYZNACZANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ

ĆWICZENIE 39 WYZNACZANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ Piotr Janas Zakład Fizyki, Uniwersytet Rolniczy Do użytku wewnętrznego ĆWICZENIE 39 WYZNACZANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ Kraków 2015 SPIS TREŚCI I. CZĘŚĆ TEORETYCZNA... 2 1. ELEMENTY PASMOWEJ

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.1 Model pasmowy przewodników, półprzewodników i dielektryków.

WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.1 Model pasmowy przewodników, półprzewodników i dielektryków. Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 1 str.1/10 ĆWICZENIE 1 WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.CEL ĆWICZENIA: Zapoznanie się z podstawowymi

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej

Bardziej szczegółowo

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Tabela I. Metal Nazwa próbki:

Bardziej szczegółowo

Podstawy krystalografii

Podstawy krystalografii Podstawy krystalografii Kryształy Pojęcie kryształu znane było już w starożytności. Nazywano tak ciała o regularnych kształtach i gładkich ścianach. Już wtedy podejrzewano, że te cechy związane są ze szczególną

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

Ćwiczenie E5 WYZNACZANIE CHARAKTERYSTYK TRANZYSTORA WARSTWOWEGO

Ćwiczenie E5 WYZNACZANIE CHARAKTERYSTYK TRANZYSTORA WARSTWOWEGO Laboratorium Podstaw Elektroniki Wiaczesław Szamow Ćwiczenie E5 WYZNACZANIE CHARAKTERYSTYK TRANZYSTORA WARSTWOWEGO opr. tech. Mirosław Maś Krystyna Ługowska Uniwersytet Przyrodniczo - Humanistyczny Siedlce

Bardziej szczegółowo

IV. TRANZYSTOR POLOWY

IV. TRANZYSTOR POLOWY 1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których

Bardziej szczegółowo

Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza)

Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza) Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel i program ćwiczenia. Celem ćwiczenia jest: zapoznanie się z budową diody półprzewodnikowej

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak

Bardziej szczegółowo

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć. Diody, tranzystory, tyrystory Materiały pomocnicze do zajęć. Złącze PN stanowi podstawę diod półprzewodnikowych. Rozpatrzmy właściwości złącza poddanego napięciu. Na poniŝszym rysunku pokazano złącze PN,

Bardziej szczegółowo

35 KATEDRA FIZYKI STOSOWANEJ

35 KATEDRA FIZYKI STOSOWANEJ 35 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 35. Wyznaczanie charakterystyk diod półprzewodnikowych Wprowadzenie Substancje w przyrodzie mają dużą rozpiętość wartości oporu właściwego od najmniejszej

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Wykład X TRANZYSTOR BIPOLARNY

Wykład X TRANZYSTOR BIPOLARNY Wykład X TRANZYSTOR BIPOLARNY Tranzystor Trójkoocówkowy półprzewodnikowy element elektroniczny, posiadający zdolnośd wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer

Bardziej szczegółowo

ĆWICZENIE 4 CHARAKTERYSTYKI STATYCZNE TRANZYSTORA BIPOLARNEGO

ĆWICZENIE 4 CHARAKTERYSTYKI STATYCZNE TRANZYSTORA BIPOLARNEGO LAORATORIUM LKTRONIKI ĆWIZNI 4 HARAKTRYSTYKI STATYZN TRANZYSTORA IPOLARNGO K A T D R A S Y S T M Ó W M I K R O L K T R O N I Z N Y H 1. L ĆWIZNIA elem ćwiczenia jest zapoznanie się z podstawowymi charakterystykami

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,

Bardziej szczegółowo

Urządzenia półprzewodnikowe

Urządzenia półprzewodnikowe Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor

Bardziej szczegółowo

10 K AT E D R A F I Z Y K I S T O S OWA N E J

10 K AT E D R A F I Z Y K I S T O S OWA N E J 10 K AT E D R A F I Z Y K I S T O S OWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 10. Wyznaczanie charakterystyk diod półprzewodnikowych Wprowadzenie

Bardziej szczegółowo

5. Tranzystor bipolarny

5. Tranzystor bipolarny 5. Tranzystor bipolarny Tranzystor jest to trójkońcówkowy element półprzewodnikowy zdolny do wzmacniania sygnałów prądu stałego i zmiennego. Każdy tranzystor jest zatem wzmacniaczem. Definicja wzmacniacza:

Bardziej szczegółowo

Półprzewodniki. złącza p n oraz m s

Półprzewodniki. złącza p n oraz m s złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii

Bardziej szczegółowo

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 12 Ć wiczenie 2 TRANZYSTORY MOCY Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 1. Wiadomości wstępne Tranzystory są to trójelektrodowe przyrządy

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4..--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Oporność właściwa (Ωm) 1 VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: pomiar zależności oporności elektrycznej (rezystancji) metalu i półprzewodnika od temperatury,

Bardziej szczegółowo

Przyrządy i układy półprzewodnikowe

Przyrządy i układy półprzewodnikowe Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15

Bardziej szczegółowo

Wiadomości podstawowe

Wiadomości podstawowe Wiadomości podstawowe Tranzystory są urządzeniami półprzewodnikowymi umożliwiającymi sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Wykorzystuje się je do wzmacniania małych sygnałów

Bardziej szczegółowo

Ćwiczenie 6 WYBRANE ELEMENTY PÓŁPRZEWODNIKOWE. 1. Cel ćwiczenia. 2. Wprowadzenie

Ćwiczenie 6 WYBRANE ELEMENTY PÓŁPRZEWODNIKOWE. 1. Cel ćwiczenia. 2. Wprowadzenie Ćwiczenie 6 WYRANE ELEMENTY PÓŁPRZEWODNIKOWE 1. el ćwiczenia Większość z dostępnych na rynku urządzeń elektronicznych wymaga zasilania napięciem i prądem stałym. Jak wiadomo, napięcie i prąd w gniazdkach

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Przewodniki, półprzewodniki i izolatory

Przewodniki, półprzewodniki i izolatory Przewodniki, półprzewodniki i izolatory Według współczesnego poglądu na budowę materii zawiera ona w stanie normalnym albo inaczej - obojętnym, równe ilości elektryczności dodatniej i ujemnej. JeŜeli takie

Bardziej szczegółowo

Wykład FIZYKA II. 14. Fizyka ciała stałego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 14. Fizyka ciała stałego.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 14. Fizyka ciała stałego Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MATERIA SKONDENSOWANA Każdy pierwiastek bądź

Bardziej szczegółowo

Rozmaite dziwne i specjalne

Rozmaite dziwne i specjalne Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

WYZNACZANIE CHARAKTERYSTYK DIÓD PÓŁPRZEWODNIKOWYCH

WYZNACZANIE CHARAKTERYSTYK DIÓD PÓŁPRZEWODNIKOWYCH Laboratorium Podstaw Elektroniki Wiaczesław Szamow Ćwiczenie E4 WYZNACZANIE CHARAKTERYSTYK DIÓD PÓŁPRZEWODNIKOWYCH opr. tech. Mirosław Maś Krystyna Ługowska Uniwersytet Przyrodniczo - Humanistyczny Siedlce

Bardziej szczegółowo

Model energetyczny pojedynczego atomu. Model energetyczny ciała stałego. Półprzewodniki

Model energetyczny pojedynczego atomu. Model energetyczny ciała stałego. Półprzewodniki Model energetyczny pojedynczego atomu Półprzewodniki Pojedynczy atom może znajdować się w jednym z wielu stanów o różnych energiach, gdyż elektrony znajdujące się w przestrzeni wokół jądra atomowego zajmują

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 2 Charakterystyki tranzystora polowego POJĘCIA

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

6. TRANZYSTORY UNIPOLARNE

6. TRANZYSTORY UNIPOLARNE 6. TRANZYSTORY UNIPOLARNE 6.1. WSTĘP Tranzystory unipolarne, inaczej polowe, są przyrządami półprzewodnikowymi, których działanie polega na sterowaniu za pomocą pola elektrycznego wielkością prądu przez

Bardziej szczegółowo

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

O złączu p-n możliwie najprościej

O złączu p-n możliwie najprościej O złączu p-n możliwie najprościej strona 1/10 Robert Pełka Złącze p-n, warstwa graniczna między półprzewodnikami typu p i typu n, jest bez wątpienia jednym z najważniejszych obiektów badanych przez fizyków.

Bardziej szczegółowo

Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN

Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN Budowa i właściwości elektryczne ciał stałych - wprowadzenie Budowa atomu: a) model starożytny b) model J.J. Thompsona c) model E. Rutherforda

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

Rys. 1. Oznaczenia tranzystorów bipolarnych pnp oraz npn

Rys. 1. Oznaczenia tranzystorów bipolarnych pnp oraz npn Ćwiczenie 4. harakterystyki statyczne tranzystora bipolarnego 1. L ĆWIZNI elem ćwiczenia jest zapoznanie się z podstawowymi charakterystykami statycznymi oraz z najwaŝniejszymi parametrami i modelami tranzystora

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

Podstawy działania elementów półprzewodnikowych - diody

Podstawy działania elementów półprzewodnikowych - diody Podstawy działania elementów półprzewodnikowych - diody Wrocław 2010 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych).

Bardziej szczegółowo

Ćwiczenie 4- tranzystor bipolarny npn, pnp

Ćwiczenie 4- tranzystor bipolarny npn, pnp Ćwiczenie 4- tranzystor bipolarny npn, pnp Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

BADANIE TRANZYSTORA BIPOLARNEGO

BADANIE TRANZYSTORA BIPOLARNEGO BADANIE TRANZYSTORA BIPOLARNEGO CEL poznanie charakterystyk tranzystora bipolarnego w układzie WE poznanie wybranych parametrów statycznych tranzystora bipolarnego w układzie WE PRZEBIEG ĆWICZENIA: 1.

Bardziej szczegółowo

Ćwiczenie 1 ZŁĄCZE PN I TRANZYSTOR BIPOLARNY

Ćwiczenie 1 ZŁĄCZE PN I TRANZYSTOR BIPOLARNY WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA Ćwiczenie 1 ZŁĄCZE PN I TRANZYSTOR BIPOLARNY POJĘCIA I

Bardziej szczegółowo

1. PÓŁPRZEWODNIKI 1.1. PODSTAWOWE WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW

1. PÓŁPRZEWODNIKI 1.1. PODSTAWOWE WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW 1. PÓŁPRZEWODNIKI 1.1. PODSTAWOWE WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW Najprostsza definicja półprzewodników brzmi: "Półprzewodniki są materiałami, których rezystywność 1 jest większa niż rezystywność przewodników

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw

Bardziej szczegółowo

BADANIE CHARAKTERYSTYK DIODY I TRANZYSTORA METODĄ OSCYLOSKOPOWĄ

BADANIE CHARAKTERYSTYK DIODY I TRANZYSTORA METODĄ OSCYLOSKOPOWĄ Ćwiczenie -3A ADANI HAAKTYSTYK DIODY I TANZYSTOA MTODĄ OSYLOSKOPOWĄ I el ćwiczenia: wyznaczenie charakterystyki diody Zenera, charakterystyk tranzystora p-n-p oraz n-p-n w układzie W, zapoznanie się z

Bardziej szczegółowo

Ćwiczenie 123. Dioda półprzewodnikowa

Ćwiczenie 123. Dioda półprzewodnikowa Ćwiczenie 123 Ćwiczenie 123. Dioda półprzewodnikowa Cel ćwiczenia Poznanie własności warstwowych złącz półprzewodnikowych typu p-n. Wyznaczenie i analiza charakterystyk stałoprądowych dla różnych typów

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4 MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79

Bardziej szczegółowo

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Pomiar parametrów tranzystorów

Pomiar parametrów tranzystorów Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin Pracownia Elektroniki Pomiar parametrów tranzystorów (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: zasada działania tranzystora

Bardziej szczegółowo

1 Źródła i detektory. V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED.

1 Źródła i detektory. V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED. 1 V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Wykład 39 Elementy fizyki ciała stałego

Wykład 39 Elementy fizyki ciała stałego Wykład 39 Elementy fizyki ciała stałego Kiedy pierwiastek lub związek chemiczny, będący w stanie gazowym lub ciekłym, zostanie dostatecznie ochłodzony to kondensuje czyli przechodzi do stanu stałego. Większość

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia

Bardziej szczegółowo