Statystyczne metody analizy danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyczne metody analizy danych"

Transkrypt

1 Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezioska

2 Podstawowe pojęcia STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej zbiorowości statystycznej. ZBIOROWOŚD (POPULACJA) STATYSTYCZNA zbiór dowolnych elementów (osób, przedmiotów, faktów) podobnych pod względem określonych cech (ale nie identycznych) poddanych badaniu statystycznemu. JEDNOSTKA STATYSTYCZNA - składowe (elementy) zbiorowości (obiekty badania), które podlegają bezpośredniej obserwacji lub pomiarowi.

3 n - oznaczenie liczby jednostek statystycznych w populacji ZBIOROWOŚD (POPULACJA) GENERALNA wszystkie elementy będące przedmiotem badania, co do których chcemy formułowad wnioski ogólne. ZBIOROWOŚD PRÓBNA (PRÓBA) - podzbiór populacji generalnej; wyniki badao próby są uogólniane na zbiorowośd generalną. Próba musi byd reprezentatywna. Reprezentatywnośd zależy od: sposobu wyboru jednostek (celowy, losowy) oraz liczebności próby. n>30 - duża próba n 30 - mała próba

4 Populacja a próba Z oczywistych powodów nie jesteśmy w stanie opisad całej tej populacji. Musimy się zatem posłużyd podzbiorem populacji generalnej - pobraną wcześniej próbą. Na podstawie analizy tej próby będziemy jednak chcieli wyciągad wnioski na temat całej populacji. Aby to było możliwe należało na wstępie zadbad aby pobrana populacja w sposób możliwie reprezentatywny opisywała populację generalną.

5 Populacja a próba Do oceny i opisu populacji próby można posłużyd się samymi danymi ale jest to niewygodne. Z reguły badacz wykorzystuje różnorodne syntetyczne wskaźniki (statystyki) mające ilustrowad badaną populację. Gdy opisujemy jakąś skooczoną populację np. wzrost uczniów z klasy IIA (populacja generalna o skooczonej liczbie elementów) mówimy o statystykach z populacji. W przypadku gdy opisujemy jedynie wycinek jakiejś większej, najczęściej niepoliczalnej populacji generalnej, mówimy o statystyce z próby.

6 Estymacja, estymator Chcemy zatem wyznaczyd wartośd pewnej charakterystyki danych populacji na podstawie próby. Wyniki obliczane na próbie chcemy rozciągnąd na populację i wnioskowad o populacji. Opisywana zależnośd nosi nazwę estymacji. Poszczególne statystyki obliczane z próby takie jak np. średnia arytmetyczna z próby jest więc tylko przybliżeniem wartości przeciętnej z populacji m. W związku z tym są nazywane estymatorami.

7

8 SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne dzielimy na szeregi: szczegółowe rozdzielcze (punktowe, przedziałowe) czasowe (momentów, okresów)

9 PRZYKŁAD 1 (szereg szczegółowy i szereg rozdzielczy)

10 SZEREG ROZDZIELCZY PUNKTOWY

11 WSKAŹNIK STRUKTURY (w i ) Wskaźnik struktury (inaczej częstośd) nazywany jest też: liczebnością względną, frakcją, odsetkiem. Wylicza się go następująco: Kolumna liczb { wi } nazywana jest rozkładem empirycznym (liczby usterek).

12 SKUMULOWANY WSKAŹNIK STRUKTURY (w i sk ) Skumulowany wskaźnik struktury (inaczej: częstośd skumulowana). Wylicza się go następująco: Kolumna liczb { w i sk } nazywana jest dystrybuantą empiryczną (liczby usterek).

13 ZALECENIA przy grupowaniu w szereg rozdzielczy przedziałowy

14 szereg rozdzielczy przedziałowy - przykład Przedmiotem badania jest czas dojazdu do pracy w dwóch firmach: X i Y.

15 Czas dojazdu pracowników firmy X [w minutach]

16 Czas dojazdu pracowników firmy Y [w minutach]

17 Pogrupuj dane w szeregi rozdzielcze następującej postaci : X Y

18 WSKAŹNIK PODOBIEOSTWA STRUKTUR Wskaźnik podobieostwa struktur (w p ) jest najprostszą miarą statystyczną pozwalającą ocenid podobieostwo kształtowania się badanej cechy w dwóch różnych zbiorowościach. Wyliczamy go następująco:

19 X Y

20 PREZENTACJA GRAFICZNA SZEREGOW STATYSTYCZNYCH HISTOGRAM - wykres słupkowy DIAGRAM - wykres liniowy Oba typy wykresów mogą byd sporządzane w wariantach dla: liczebności liczebności skumulowanej częstości częstości skumulowanej

21 Dla wzrokowego porównania rozkładu badanej cechy w dwóch (lub więcej) zbiorowościach używamy wyłącznie wykresów częstościowych. Dla firmy X wykonad je samodzielnie w domu. O innych typach wykresów poczytad samodzielnie we wskazanych wcześniej rozdziałach.

22 Histogram i diagram częstości dla czasu dojazdu pracowników firmy Y

23 Histogram i diagram częstości skumulowanej dla czasu dojazdu pracowników firmy Y

24 Diagramy częstości dla czasu dojazdu pracowników firm X i Y X Y

25 Statystyka opisowa to: Miary można podzielid na kilka podstawowych kategorii: miary położenia, np. kwantyl oraz miary tendencji centralnej (np. średnia arytmetyczna, średnia geometryczna, średnia harmoniczna, średnia kwadratowa, mediana, moda ) miary zróżnicowania np. (odchylenie standardowe, wariancja, rozstęp, rozstęp dwiartkowy, średnie odchylenie bezwzględne, odchylenie dwiartkowe, współczynnik zmienności ) miary asymetrii (np. współczynnik skośności, współczynnik asymetrii, trzeci moment centralny ) miary koncentracji (np. współczynnik Giniego, kurtoza )

26 Średnia arytmetyczna Średnią arytmetyczną - definiuje się jako sumę wartości cechy mierzalnej podzieloną przez liczbę jednostek skooczonej zbiorowości statystycznej. gdzie: n - liczebnośd zbiorowości próbnej (próby), x i - wariant cechy.

27

28

29

30 Y Należy pamiętad, że przy pogrupowaniu danych źródłowych w szereg rozdzielczy przedziałowy następuje pewna utrata informacji. Jeżeli policzymy średnią dla szeregu szczegółowego lub szeregu rozdzielczego punktowego, to wynik będzie dokładny i taki sam. Dla danych w postaci szeregu rozdzielczego przedziałowego średnia będzie już przybliżeniem. Tym większym, im szersze są przedziały klasowe, im jest ich mniej, itd.

31

32 Ważniejsze własności ŚREDNIEJ arytmetycznej

33 Moda Modalna (dominanta D, moda, wartość najczęstsza) - jest to wartośd cechy statystycznej, która w danym rozdziale empirycznym występuje najczęściej. Dla szeregów szczegółowych oraz szeregów rozdzielczych punktowych modalna odpowiada wartości cechy o największej liczebności (częstości). W szeregach rozdzielczych z przedziałami klasowymi bezpośrednio można określid tylko przedział, w którym modalna występuje, jej przybliżoną wartośd wyznacza się graficznie z histogramu liczebności (częstości) lub ze wzoru interpolacyjnego: gdzie: m - numer przedziału (klasy), w którym występuje modalna, - dolna granica przedziału, w którym występuje modalna, n m - liczebność przedziału modalnej, tzn. klasy o numerze m, n m-1 ; n m+1 - liczebność klas poprzedzającej i następnej, o numerach m -1 i m + 1, h m - rozpiętość przedziału klasowego, w którym występuje modalna.

34 Modalna (Mo) zwana też dominantą (D) jest to wartośd cechy, która występuje najczęściej w badanej zbiorowości.

35 Y Y

36 Y Y

37 Y

38 Modalna możemy wyznaczyd graficznie tak jak to pokazano na rysunku

39 Modalną wyznaczamy i sensownie interpretujemy tylko wtedy, gdy dane są pogrupowane w szereg rozdzielczy (punktowy lub przedziałowy). 2. Liczebnośd populacji powinna byd dostatecznie duża. 3. Diagram lub histogram liczebności (częstości) ma wyraźnie zaznaczone jedno maksimum (rozkład jednomodalny). 4. Dla danych pogrupowanych w szereg rozdzielczy przedziałowy modalna nie występuje w skrajnych przedziałach (pierwszym lub ostatnim) - przypadek skrajnej asymetrii. Nie da się w takim przypadku analitycznie wyznaczyd modalnej. 5. Dla danych pogrupowanych w szereg rozdzielczy przedziałowy przedział modalnej oraz dwa sąsiednie przedziały (poprzedzający i następujący po przedziale modalnej) powinny mied taką samą rozpiętośd.

40 Miary pozycyjne Kwantyle - definiuje się jako wartości cechy badanej zbiorowości, przedstawionej w postaci szeregu statystycznego, które dzielą zbiorowośd na określone części pod względem liczby jednostek, części te pozostają do siebie w określonych proporcjach. Kwartyl pierwszy Q 1 dzieli zbiorowośd na dwie części w ten sposób, że 25% jednostek zbiorowości ma wartości cechy niższe bądź równe kwartylowi pierwszemu Q 1, a 75% równe bądź wyższe od tego kwartyla. Kwartyl drugi (mediana Me) dzieli zbiorowośd na dwie równe części; połowa jednostek ma wartości cechy mniejsze lub równe medianie, a połowa wartości cechy równe lub większe od Me; stąd nazwa wartość środkowa. Kwartyl trzeci Q 3 dzieli zbiorowośd na dwie części w ten sposób, że 75% jednostek zbiorowości ma wartości cechy niższe bądź równe kwartylowi pierwszemu Q 3, a 25% równe bądź wyższe od tego kwartyla. Decyle np. decyl pierwszy oznacza, że 10% jednostek ma wartości cechy mniejsze bądź równe od decyla pierwszego, a 90% jednostek wartości cechy równe lub większe od decyla pierwszego.

41 Kwartyle to takie wartości cechy X, które dzielą zbiorowośd na cztery równe części pod względem liczebności (lub częstości). Części te pozostają w określonych proporcjach do siebie. Aby dokonywad takiego podziału zbiorowośd musi byd uporządkowana według rosnących wartości cechy X. Każdy kwartyl dzieli zbiorowośd na dwie części, które pozostają do siebie w następujących proporcjach. I tak: kwartyl 1 (QI) - 25% z lewej i 75% populacji z prawej strony kwartyla, kwartyl 2 (QII) - 50% z lewej i 50% populacji z prawej strony kwartyla, kwartyl 3 (QIII) - 75% z lewej i 25% populacji z prawej strony kwartyla.

42 Mediana Mediana (Me) - wartośd środkowa, inaczej: kwartyl 2 (QII). Jest to taka wartośd cechy X, która dzieli zbiorowośd na dwie równe części, tj. połowa zbiorowości charakteryzuje się wartością cechy X mniejszą lub równą medianie, a druga połowa większą lub równą. Mediana dla szeregu szczegółowego Szereg musi byd posortowany rosnąco!!! Wartośd mediany wyznacza się inaczej gdy liczebnośd populacji (n) jest nieparzysta, a inaczej gdy jest parzysta.

43

44

45

46

47 Y Y

48 Y Y

49 Kwartyl pierwszy i trzeci Dla szeregu szczegółowego kwartyl pierwszy i trzeci wyznacza się w ten sposób, że w dwóch częściach zbiorowości, które powstały po wyznaczeniu mediany, ponownie wyznacza się medianę; mediana w pierwszej części odpowiada kwartylowi pierwszemu, a w drugiej kwartylowi trzeciemu. Dla szeregu rozdzielczego wyznaczenie kwartyli poprzedza się ustaleniem ich pozycji:

50 gdzie: m - numer przedziału (klasy), w którym występuje odpowiadający mu kwartyl, - dolna granica tego przedziału, n m - liczebnośd przedziału, w którym występuje odpowiedni kwartyl, - liczebnośd skumulowana do przedziału poprzedzającego kwartyl, h m - rozpiętośd przedziału klasowego, w którym jest odpowiedni kwartyl.

51 Miary zmienności (rozproszenia, dyspersji) Miary klasyczne wariancja odchylenie standardowe odchylenie przeciętne współczynnik zmienności Miary pozycyjne rozstęp odchylenie dwiartkowe współczynnik zmienności

52 Miary KLASYCZNE Wariancja, odchylenie standardowe, odchylenie przeciętne, współczynnik zmienności (klasyczny) Wariancję (s 2 ) definiuje się jako średnią arytmetyczną kwadratów odchyleo wartości cechy od średniej arytmetycznej zbiorowości. Wariancja jest wielkością mianowaną w kwadracie miana badanej cechy i nie interpretujemy jej. Odchylenie standardowe (s) jest pierwiastkiem kwadratowym z wariancji. Jest ono wielkością mianowaną tak samo jak badana cecha. Odchylenie standardowe określa przeciętne zróżnicowanie badanej cechy od średniej arytmetycznej. Odchylenie przeciętne (d) jest średnią arytmetyczną bezwzględnych odchyleo wartości cechy od jej średniej arytmetycznej. Jest ono wielkością mianowaną tak samo jak badana cecha. Odchylenie przeciętne interpretujemy podobnie jak odchylenie standardowe. Współczynnik zmienności (klasyczny) (Vs lub Vd) jest to iloraz odchylenia standardowego (lub przeciętnego) przez średnia arytmetyczną. Jest to wielkośd niemianowana. Używamy go do porównao zmienności w dwu lub więcej zbiorowościach.

53 Ocena rozproszenia na podstawie obserwacji diagramów Na rysunku pokazano dwa diagramy częstości (1) i (2). Dla uproszczenia miary położenia (średnia, mediana i modalna) są sobie równe i identyczne dla obu zbiorowości. Mniejsze rozproszenie wokół średniej występuje w zbiorowości (1). Diagram jest smuklejszy i wyższy. Większe rozproszenie wokół średniej występuje w zbiorowości (2). Diagram jest bardziej rozłożysty i niższy. Odchylenie standardowe w zbiorowości (1) jest mniejsze niż w zbiorowości (2) s1 < s2

54 Przedział TYPOWYCH wartości cechy (miary klasyczne) Przedział taki ma tą własnośd, że około70% jednostek badanej zbiorowości charakteryzuje się wartością cechy należącą do tego przedziału.

55 Reguła 3 sigma

56 Dla szeregów szczegółowych

57 przykład Weźmy dane o liczbie braków: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4 Jak pamiętamy: n=50

58

59 Dla szeregów rozdzielczych punktowych

60

61 Dla szeregów rozdzielczych przedziałowych

62 czas dojazdu pracowników firmy Y

63 Rozstęp Najprostszą i najbardziej intuicyjną miarą zmienności przypadków w populacji próby jest rozstęp. Rozstęp - różnica pomiędzy wartością maksymalną, a minimalną cechy - jest miarą charakteryzującą empiryczny obszar zmienności badanej cechy. W związku z tym, że przy jego obliczeniu ignoruje się wszystkie dane (za wyjątkiem dwóch wartości - minimalnej i maksymalnej), nie daje on jednak informacji o zróżnicowaniu poszczególnych wartości cechy w zbiorowości.

64 Dla szeregów szczegółowych Weźmy dane z (liczba braków): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,2, 2, 2, 2, 3, 3, 3, 3, 4, 4

65 Inny przykład Weźmy dane z innego przykładu 10, 10, 10, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 15, 15, 15

66 Dla szeregów rozdzielczych punktowych

67 Dla szeregów rozdzielczych przedziałowych

68 Wariancja Rozstęp możemy uznad jedynie za wstępną miarę zmienności w populacji próby. Zresztą przyjrzyjmy się takiemu przykładowi: Dwa obszary charakteryzują się identycznymi wartościami średnimi badanego parametru i identycznymi wartościami minimalnymi i maksymalnymi, a co za tym idzie identycznymi rozstępami. Jednak już na pierwszy rzut oka widad, że rozrzuty danych wokół wartości przeciętnej w obu przypadkach są skrajnie różne. W obszarze A dane są znacznie bardziej skumulowane przy wartości średniej niż w obszarze B.

69 Wariancja Wariancja - jest to średnia arytmetyczna kwadratów odchyleo poszczególnych wartości cechy od średniej arytmetycznej zbiorowości. szereg szczegółowy szereg rozdzielczy punktowy szereg rozdzielczy z przedziałami klasowymi Wykonując proste przekształcenia algebraiczne, otrzymamy: szereg szczegółowy szereg rozdzielczy

70 Odchylenie standardowe Odchylenie standardowe s - jest to pierwiastek kwadratowy z wariancji. Stanowi miarę zróżnicowania o mianie zgodnym z mianem badanej cechy, określa przeciętne zróżnicowanie poszczególnych wartości cechy od średniej arytmetycznej. Typowy obszar zmienności cechy - około 2/3 wszystkich jednostek badanej zbiorowości statystycznej posiada wartości cechy w tym przedziale:

71 Odchylenie przeciętne Odchylenie przeciętne d - jest to średnia arytmetyczna bezwzględnych odchyleo wartości cechy od średniej arytmetycznej. Określa o ile jednostki danej zbiorowości różnią się średnio, ze względu na wartośd cechy, od średniej arytmetycznej. Pomiędzy odchyleniem przeciętnym i standardowym, dla tego samego szeregu, zachodzi relacja: d < s.

72 Odchylenie ćwiartkowe Q jest to parametr określający odchylenie wartości cechy od mediany. Mierzy poziom zróżnicowania tylko części jednostek; po odrzuceniu 25% jednostek o wartościach najmniejszych i 25% jednostek o wartościach największych. Typowy obszar zmienności cechy:

73 Miary asymetrii wskaźnik skośności współczynnik skośności

74 Rozkłady różnią się między sobą kierunkiem i siła asymetrii (miary klasyczne): dla szeregów symetrycznych jeżeli asymetria prawostronna jeżeli asymetria lewostronna. Wskaźnik skośności - jest to wielkośd bezwzględna wyrażona jako różnica między średnią arytmetyczną, a modalną.

75 Współczynniki skośności (asymetrii) są stosowane w porównaniach, do określenia siły oraz kierunku asymetrii, są to liczby niemianowane, im większa ich wartośd tym silniejsza asymetria. Pozycyjny współczynnik asymetrii określa kierunek i siłę asymetrii jednostek znajdujących się miedzy pierwszym z trzecim kwartylem.

76 Miary koncentracji współczynnik skupienia (koncentracji)(kurtoza) współczynnik koncentracji Lorenza

77 kurtoza Współczynnik skupienia (koncentracji) (kurtoza) K- jest miarą skupienia poszczególnych obserwacji wokół średniej. Im wyższa wartośd współczynnika tym bardziej wysmukła krzywa liczebności, większa koncentracja wartości cech wokół średniej.

78 Jeżeli przyjmiemy, że zbiorowośd ma: rozkład normalny, to: K = 3, rozkład bardziej spłaszczony od normalnego, to: K < 3, rozkład bardziej wysmukły od normalnego, to: K > 3. Stąd:

79 Analiza korelacji

80 Zależności korelacyjne Badając różnego rodzaju zjawiska, np. społeczne, ekonomiczne, psychologiczne, przyrodniczne itp. stwierdzamy niemal zawsze, że każde z nich jest uwarunkowane działaniem innych zjawisk Istnienie związków pomiędzy zjawiskami charakteryzującymi badane zbiorowości bywa często przedmiotem dociekao i eksperymentów naukowych. Przykład: David Buss w publikacji z 2001 roku pt. Psychologia ewolucyjna. Jak wytłumaczyd społeczne zachowania człowieka?, opisał badanie, w którym sprawdzał, czy istnieje związek między szybkością chodzenia a pozycją społeczną. Okazało się, że związek ten jest dośd wyraźny wśród mężczyzn, natomiast w mniejszym stopniu wśród kobiet.

81 Inny przykład: Allison i Cicchetti w pracy Sleep in mammals (Science, 194, 1976) opisali badania przeprowadzone wśród przedstawicieli 62 gatunkach ssaków. Przedmiotem obserwacji (pomiarów) były m.in. następujące charakterystyki: długośd snu w ciągu doby (godz/dobę), maksymalna długości życia (lata), masa ciała (kg), masa mózgu (g), czas trwania ciąży (dni). Cel badania: Ustalenie, czy istnieją jakiekolwiek zależności pomiędzy wymienionymi charakterystykami, a jeśli tak, to jaka jest siła tych zależności.

82 Kolejny przykład: Związek pomiędzy wagą a wzrostem człowieka próbuje się wyrazid za pomocą tzw. wskaźnika BMI (Body Mass Index): Przyjmuje się, że wartośd BMI dla osób z prawidłową masą ciała zawiera się mniej więcej w przedziale 18; 5 BMI < 25. Jednak BMI kształtuje się na poziomie indywidualnym dla konkretnych osób i może znacznie przekraczad wartośd 25. Przykład ten wskazuje, że zależnośd między wagą a wzrostem nie jest ściśle funkcyjna. Podana formuła opisuje tylko w przybliżeniu te zależności.

83 Przy analizie współzależności pomiędzy wzrostem i wagą, nie oczekujemy, aby zależnośd ta była ściśle funkcyjna, tzn. aby istniała jednoznacznie określona funkcja matematyczna y = f (x), podająca wagę y konkretnej osoby z ustalonym wzrostem x. Mimo tego wydaje się, że jakaś zależnośd pomiędzy wagą i wzrostem istnieje. Obserwując obie cechy w dużej zbiorowości osób, dojdziemy do przekonania, że średnia waga jest większa w grupie osób wyższych i na odwrót. Związek między wagą i wzrostem jest przykładem tzw. związku korelacyjnego, w skrócie korelacji. Z korelacją mamy do czynienia wtedy, gdy wraz ze zmianą wartości jednej cechy zmienia się średnia wartośd drugiej cechy.

84

85

86

87 Związek korelacyjny można odkryd obserwując dużą liczbę przypadków. Nie ujawnia się w pojedynczych obserwacjach. Zależnośd korelacyjna może byd prostoliniowa (w skrócie liniowa) lub krzywoliniowa, silna lub słaba. Na podstawie obserwacji wykresu rozproszenia możemy w przybliżeniu ocenid charakter zależności i jej siłę. Potrzebujemy miary, która pomogłaby wyrazid siłę zależności w sposób liczbowy.

88 Załóżmy, że między cechami X i Y występuje zależnośd korelacyjna o charakterze liniowym. Współczynnikiem służącym do pomiaru siły tego związku jest współczynnik korelacji liniowej Pearsona określony wzorem gdzie x; y oznaczają średnie arytmetyczne, natomiast sx ; sy odchylenia standardowe zmiennych odpowiednio X i Y.

89 Współczynnik r korelacji liniowej Pearsona Współczynnik r korelacji liniowej Pearsona przyjmuje zawsze wartości z przedziału [-1; 1]. Znak współczynnika informuje o kierunku korelacji (liniowa ujemna lub liniowa dodatnia). Wartośd bezwzględna r informuje o sile korelacji liniowej. W szczególnym przypadku, gdy r =1, wówczas mamy do czynienia z korelacją funkcyjną (tzn. zależnośd Y od X można wyrazid za pomocą funkcji Y = ax + b, gdzie a; b są pewnymi stałymi). Współczynnik r mierzy tylko korelację o charakterze prostoliniowym. Gdy r = 0, wówczas mówimy, że nie ma korelacji liniowej (ale może byd krzywoliniowa).

90

91 Wyniki badao ssaków Kilka wybranych uwag podsumowania: wszystkie cechy są ze sobą wzajemnie powiązane (w mniejszym lub większym stopniu), można zauważyd silną, dodatnią korelację liniową między masą mózgu i ciała, umiarkowana, ujemna korelacja liniowa między czasem snu a czasem życia, dośd silna korelacja (dodatnia lub ujemna) czasu ciąży z innymi zmiennymi, Pytanie: Jak opisad zależnośd np. czasu ciąży od wszystkich pozostałych zmiennych jednocześnie? Odpowiedzi dostarcza analiza regresji.

92 współczynnik korelacji rang Spearmana Jednym ze współczynników korelacji obliczanych dla danych rangowych jest, określony wzorem gdzie Własności: Współczynnik r S przyjmuje wartości z przedziału [-1; 1]. Wartośd r S = 1 oznacza, że istnieje całkowita zgodnośd uporządkowao wg rang a i i b i. Wartośd r S = -1 oznacza z kolei pełną przeciwstawnośd uporządkowao między rangami. Wartośd r S = 0 oznacza brak korelacji rang.

93 przykład Przypuśdmy, że porządkujemy 4 studentów w zależności od stopnia ich zdolności matematycznych, zaczynając od studenta najlepszego, któremu przydzielamy numer 1, a koocząc na studencie najsłabszym, któremu przydzielamy numer 4 (ocenę zdolności powierzamy np. ekspertowi) Mówimy wówczas, że studenci zostali uporządkowani w kolejności rang, a numer studenta jest jego rangą. Oznaczmy rangi poszczególnych studentów przez a i. Przykładowo, niech: a1 = 4; a2 = 2; a3 = 3; a4 = 1; co oznacza, że w badanej grupie, ustawionej w kolejności alfabetycznej, pierwszy student (oznaczmy go umownie literą A) jest najsłabszy, student B dobry, student C słaby, a student D najlepszy.

94 Załóżmy, że w podobny sposób uporządkowaliśmy tych samych studentów z punktu widzenia ich zdolności muzycznych. Niech b i będą rangami poszczególnych studentów: b1 = 2; b2 = 1; b3 = 3; b4 = 4 W ten sposób każdemu studentowi przyporządkowaliśmy po dwie rangi a i oraz b i. Pytanie: Jak na tej podstawie możemy ocenid, czy istnieje zależnośd między zdolnościami matematycznymi oraz muzycznymi w badanej grupie. Innymi słowy, jak ocenid stopie o zgodności (lub niezgodności) rang a i ; b i? Uwaga: W przypadku danych rangowych nie możemy zastosowad współczynnika korelacji Pearsona

95

96 korelacyjny wykres rozrzutu (korelogram) rodzaje zależności (brak, nieliniowa, liniowa) pomiar siły zależności liniowej (współczynnik korelacji Pearsona, współczynnik korelacji rang Spearmana) liniowa funkcja regresji

97 Badamy jednostki statystyczne pod katem dwóch różnych cech - cechy X oraz cechy Y. Pytanie jakie sobie stawiamy to: czy istnieje zależnośd pomiędzy cecha X i cecha Y? Jeżeli taka zależnośd istnieje, to poszukujemy odpowiedzi na kolejne pytania: jaki jest charakter tej zależności oraz jaka jest jej siła?

98 Zależnośd korelacyjna pomiędzy cechami X i Y charakteryzuje sie tym, że wartościom jednej cechy są przyporządkowane ściśle określone wartości średnie drugiej cechy.

99 Jeżeli otrzymamy bezładny zbiór punktów, który nie przypomina kształtem wykresu znanego związku funkcyjnego, to powiemy że pomiędzy cechami X i Y nie ma zależności. Gdy smuga punktów układa sie w kształt paraboli, powiemy, że istnieje zależnośd pomiędzy cechami X i Y i jest to związek nieliniowy; zależnośd nieliniowa. Gdy smuga punktów układa sie wzdłuż linii prostej, powiemy, że istnieje zależnośd pomiędzy cechami X i Y i jest to związek liniowy; zależnośd liniowa.

100 Pomiar KIERUNKU i SIŁY zależności liniowej. Szeregi szczegółowe Współczynnik korelacji (Pearsona) r xy obliczamy dla cech ilościowych wg następującego wzoru: gdzie: C(X,Y) kowariancja pomiędzy cechami X i Y s x (s y ) odchylenie standardowe cechy X (cechy Y)

101 INTERPRETACJA współczynnika korelacji r xy Znak współczynnika r xy mówi nam o kierunku zależności. I tak: znak plus zależnośd liniowa dodatnia, tzn. wraz ze wzrostem wartości jednej cechy rosną średnie wartości drugiej z cech, znak minus zależnośd liniowa ujemna, tzn. wraz ze wzrostem wartości jednej cechy maleją średnie wartości drugiej z cech.

102 Siła zależności Wartośd bezwzględna współczynnika korelacji, czyli r xy, mówi nam o sile zależności. Jeżeli wartośd bezwzględna r xy : jest mniejsza od 0,2, to praktycznie brak związku liniowego pomiędzy badanymi cechami, 0,2 0,4 - zależnośd liniowa wyraźna, lecz niska, 0,4 0,7 - zależnośd liniowa umiarkowana, 0,7 0,9 - zależnośd liniowa znacząca, powyżej 0,9 - zależnośd liniowa bardzo silna

103 przykład W grupie 7 studentów badano zależnośd pomiędzy ocena z egzaminu ze statystyki (Y), a liczba dni poświęconych na naukę (X).

104 Widad tutaj wyraźną zależnośd liniową (dodatnia). Obliczamy współczynnik korelacji (Pearsona). UWAGA! Liczebnośd populacji jest mała (n=7). Użyjemy tak małego przykładu tylko dlatego, aby sprawnie zilustrowad procedurę liczenia.

105

106

107 Współczynnik korelacji rang (Spearmana) Współczynnik korelacji rang (Spearmana) używamy w przypadku gdy: r S 1. chod jedna z badanych cech jest cecha jakościowa (niemierzalna), ale istnieje możliwośd uporządkowania (ponumerowania) wariantów każdej z cech; 2. cechy maja charakter ilościowy (mierzalny), ale liczebnośd zbiorowości jest mała (n<30). Numery jakie nadajemy wariantom cech noszą nazwę rang.

108 uwagi UWAGA! W procesie nadawania rang stymulanty porządkujemy malejąco, a destymulanty rosnąco. UWAGA! W procesie nadawania rang może zdarzyd się więcej niż 1 jednostka o takiej samej wartości cechy (np. k jednostek). Wówczas należy na chwile nadad tym jednostkom kolejne rangi. Następnie należy zsumowad takie rangi i podzielid przez k (otrzymamy w ten sposób średnią rangę dla tej grupy k jednostek). W ostateczności każda jednostka z tych k jednostek otrzyma identyczna rangę (średnia dla danej grupy k jednostek).

109 Współczynnik korelacji rang (Spearmana) r S wyznaczamy wg następującego wzoru: di różnica pomiędzy rangami dla cechy X i cechy Y Współczynnik korelacji rang (Spearmana) r S spełnia zawsze warunek: INTERPRETACJA Analogiczna jak dla współczynnika korelacji (Pearsona).

110 Wartośd współczynnika korelacji rang (Spearmana) potwierdza bardzo silna, dodatnia (znak plus) zależnośd pomiędzy czasem nauki (X), a uzyskana ocena (Y). przykład Dla danych z przykładu 1 obliczenia współczynnika korelacji rang (Spearmana) są następujące:

111 Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem związków i zależności pomiędzy rozkładami dwu lub więcej badanych cech w populacji generalnej. Termin regresja dotyczy kształtu zależności pomiędzy cechami. Dzieli się na analizę regresji liniowej i nieliniowej. W przypadku analizy nieliniowej, graficzną reprezentacją współzależności są krzywe wyższego rzędu np. parabola. Pojęcie korelacji dotyczy siły badanej współzależności. Analiza regresji i korelacji może dotyczyd dwóch i większej ilości zmiennych (analiza wieloraka). W tym miejscu zajmowad się będziemy jedynie najprostszym przypadkiem regresji prostoliniowej dwóch zmiennych.

112 Zapamiętad Co to jest korelacja, jakie są jej własności? Kiedy stosowad korelację rang Spearmana a kiedy Pearsona? Kiedy korelacja jest dodatnia / ujemna? Jak opisywad dany zbiór danych (jakie wskaźniki)? Jak zrobid wykres częstości?

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

4.2. Statystyczne opracowanie zebranego materiału

4.2. Statystyczne opracowanie zebranego materiału 4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. 1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi.

Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz siłę. Korelacyjne wykresy

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi. ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2014 roku. Warszawa 2014 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2015 roku. Warszawa 2015 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

Plan wynikowy i przedmiotowy system oceniania

Plan wynikowy i przedmiotowy system oceniania Plan wynikowy i przedmiotowy system oceniania Przedmiot: Pracownia ekonomiczna Klasa II Technikum Ekonomiczne Nr programu nauczania: 341[02]/MEN/2008.05.20 (technik ekonomista) Podręcznik: R. Seidel, S.

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statystyka Katarzyna Chudy Laskowska http://kc.sd.prz.edu.pl/ 1. ORGANIZACJA ZAJĘĆ 15 h WYKŁADÓW 15 h LABORATORIÓW Program komputerowy: Statistica PL 8.1 (wydział posiada licencję, która uprawnia studentów

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/01 Wydział Prawa, Administracji i Stosunków Miedzynarodowych Kierunek

Bardziej szczegółowo

metoda momentów, Wartość oczekiwana (pierwszy moment) dla zmiennej o rozkładzie γ(α, λ) to E(X) = αλ, drugi moment (wariancja) to

metoda momentów, Wartość oczekiwana (pierwszy moment) dla zmiennej o rozkładzie γ(α, λ) to E(X) = αλ, drugi moment (wariancja) to 3.1 Wprowadzenie do estymacji Ile mamy czerwonych krwinek w krwi? Ile karpi żyje w odrze? Ile ton trzody chlewnej będzie wyprodukowane w przyszłym roku? Ile białych samochodów jeździ ulicami Warszawy?

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2012 roku. Warszawa 2012 I. Badana populacja

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 1 Statystyka Nazwa pochodząca o łac. słowa status stan, państwo i statisticus

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba 2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Rozdział 1. Analiza Struktury. Jan Żółtowski. Problem 1.1. Lp. Pytanie Odpowiedź

Rozdział 1. Analiza Struktury. Jan Żółtowski. Problem 1.1. Lp. Pytanie Odpowiedź Rozdział 1 Analiza Struktury Jan Żółtowski Problem 1.1 Kuratorium w Łodzi postanowiło ocenić wpływ warunków szkolnych i pozaszkolnych na wyniki uczniów piszących próbną EMaturę z matematyki 1. W badaniu

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM PODRĘCZNIK: MATEMATYKA WOKÓŁ NAS KLASA 2 NAUCZYCIEL: BARBARA MIKA Ocena dopuszczająca:

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - struktura

ANALIZA SPRZEDAŻY: - struktura KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - struktura - koncentracja - kompleksowa analiza - dynamika Spis treści Wstęp 3 Analiza struktury 4 Analiza koncentracji 7 Kompleksowa

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista)

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24

Bardziej szczegółowo

I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy

I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy 1.1.1 Statystyka opisowa I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE STATYSTYKA OPISOWA Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: P6 Wydział Zamiejscowy w Ostrowie Wielkopolskim

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu Statystyka w analizie i planowaniu eksperymentu Wprowadzenie Prowadzący zajęcia: dr Janusz Piechota Zakład Biofizyki Kierownik zajęć: dr Paweł Błażej Zakład Genomiki Na zajęciach przydają się: dobre chęci,

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

ELEMENTY STATYSTYKI 1. DANE

ELEMENTY STATYSTYKI 1. DANE ELEMENTY STATYSTYKI 1. DANE W badaniach statystycznych populacją nazywamy grupę osób, zwierząt, roślin lub przedmiotów badanych. Interesują nas przy tym pewne wybrane cechy tych populacji. Takie cechy

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Statystyka opisowa. dr inż. Aleksandra Czupryna-Nowak 1

Statystyka opisowa. dr inż. Aleksandra Czupryna-Nowak 1 Statystyka opisowa Zad 1 Obliczyć średnią wydajność robotnika, jeżeli wiadomo że: a) pracował 40 minut z wydajnością 90 szt/h oraz 20 minut z wydajnością 120 szt/h, b) wyprodukował 30 detali z wydajnością

Bardziej szczegółowo

Budowa pionowa drzewostanu w świetle przestrzennego rozkładu punktów lotniczego skanowania laserowego

Budowa pionowa drzewostanu w świetle przestrzennego rozkładu punktów lotniczego skanowania laserowego Budowa pionowa drzewostanu w świetle przestrzennego rozkładu punktów lotniczego skanowania laserowego Marcin Myszkowski Marek Ksepko Biuro Urządzania Lasu i Geodezji Leśnej Oddział w Białymstoku PLAN PREZENTACJI

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Raport Testy Trenerskie. Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów

Raport Testy Trenerskie. Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów Raport Testy Trenerskie Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów W trakcie zgrupowań Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów, poddano zawodników Testom Trenerskim.

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009

XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 Alex.Celinski@gmail.com Rozkład wyników Przedziały 30-minutowe Lp. Przedział Liczebność Częstość czasowy Liczebność Częstość skumulowana skumulowana 1 2:00-2:30

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - rozproszenia

ANALIZA SPRZEDAŻY: - rozproszenia KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012 WYNIKI ZESTAWU W CZĘŚCI matematycznej Dane statystyczne o uczniach (słuchaczach) przystępujących do egzaminu gimnazjalnego Liczbę uczniów

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Projekt graficzny okładki i zdjęcie Barbara Widłak. Wydawca Michał Krawczyk. Redaktor prowadzący Janina Burek. Opracowanie redakcyjne Renata Włodek

Projekt graficzny okładki i zdjęcie Barbara Widłak. Wydawca Michał Krawczyk. Redaktor prowadzący Janina Burek. Opracowanie redakcyjne Renata Włodek Projekt graficzny okładki i zdjęcie Barbara Widłak Wydawca Michał Krawczyk Redaktor prowadzący Janina Burek Opracowanie redakcyjne Renata Włodek Redakcja, korekty i łamanie www.wydawnictwojak.pl Copyright

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2016 roku. Warszawa 2016 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Stacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/ Specjalność Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH

STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Dane bibliograiczne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Mieczysław Połoński 1 1. Metodyka statystycznego opracowania

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo