Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne."

Transkrypt

1 1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.

2 Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004 J. Jóźwiak i J. Podgórski, Statystyka od podstaw, PWE 1994 lub inne wydania H. Kassyk-Rokicka, Statystyka, zbiór zadań, 2005 lub inne wydania Jaworski S. i in., Zbiór zadań z podstaw statystyki i ekonometrii, Wyd. WSEI, Warszawa W. Krysicki Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, cz. 2. PWN 1998 Bobecka K., Grzegorzewski P., Pusz J., Zadania z rachunku prawdopodobieństwa i statystyki, WSISiZ A.D. Aczel, Statystyka w zarządzaniu, Wydawnictwo Naukowe PWN W. Zieliński Tablice statystyczne.

3 Agata Boratyńska Wykłady ze statystyki 3 Statystyka jest bardziej sposobem myślenia lub wnioskowania niż pęczkiem recept na młócenie danych w celu odsłonięcia odpowiedzi C. R. Rao... statystyka jest nauką o tym, jak wykorzystywać informacje do analizy i wytyczania kierunków działania w warunkach niepewności. V. Barnett Comparative Statistical Inference Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór, który, po dodaniu słownej interpretacji, opisuje badane zjawiska. Jedynym i właściwym uzasadnieniem takiego tworu matematycznego jest oczekiwanie, że sprawdzi się on w działaniu. John von Neumann Kłamstwo, wierutne kłamstwo, statystyka Liczby nie kłamią ale kłamcy liczą Ch. H. Grosvenor Prawa naukowe nie są formułowane na mocy autorytetów ani uzasadniane przez wiarę czy średniowieczną filozofię. Jedynym sądem odwoławczym dla nowej wiedzy jest statystyka P.C. Mahanalobis

4 Agata Boratyńska Wykłady ze statystyki 4 STATYSTYKA - nauka poświęcona metodom badania i analizowania zjawisk masowych; polega na systematyzowaniu obserwowanych cech ilościowych i jakościowych oraz przedstawianiu wyników w postaci zestawień tabelarycznych, wykresów, diagramów itp. Zajmuje się zbieraniem, przetwarzanie, przedstawianiem danych oraz wniskowaniem na ich podstawie. STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa, zajmuje się badaniem zbiorów i wnioskowaniem o pewnych charakterystykach cech (zmiennych losowych) na podstawie znajomości podzbiorów i obserwacji wartości zmiennej losowej w postaci próby losowej.

5 Agata Boratyńska Wykłady ze statystyki 5 STATYSTYKA OPISOWA, WSTĘPNA ANALIZA DANYCH. populacja - zbiór obiektów z wyróżnioną cechą, zbiorowość poddawana badaniu. cecha - wielkość losowa charakteryzująca obiekty danej populacji lub interesująca badacza zmienna losowa, cecha ilościowa (np waga, ocena, wiek, zarobki) i jakościowa (kolor oczu, płeć, wykształcenie) jednostka badania - element populacji poddany badaniu próba - wybrana część populacji poddana badaniu, zbiór jednostek badania jednostka cecha X cecha Y cecha Z... 1 x 1 y 1 z x 2 y 2 z x 3 y 3 z badanie pełne - obejmuje całą populację (np. spis powszechny) badanie reprezentacyjne - obejmuje część populacji Wnioskowanie o całej populacji na podstawie próby losowej wymaga metod rachunku prawdopodobieństwa.

6 Agata Boratyńska Wykłady ze statystyki 6 PREZENTACJA DANYCH Szereg rozdzielczy punktowy (tablica kontyngencji) wartości cechy liczności (liczba jednostek) x 1 n 1 x 2 n x k n k PRZYKŁAD 1. W grupie 20 studentów oceny z egzaminu ze statystyki były następujące: Dane w szeregu ocena liczba studentów Razem 20 Przejrzystym sposobem prezentacji jest wykres słupkowy

7 Agata Boratyńska Wykłady ze statystyki 7 Szereg rozdzielczy przedziałowy Uwagi: c i = c i 1+c i 2 przedział środek przedziału liczności częstości (c 0, c 1 ] c 1 n 1 f 1 = n 1 n (c 1, c 2 ] c 2 n 2 f 2 = n 2 n (c k 1, c k ] c k n k f k = n k n Najczęściej klasy o jednakowej szerokości lub o zbliżonej liczności Liczba klas k spełnia 3 4 n k n liczbę klas można też dobierać ustalając szerokość, jedna z reguł to b 2, 64 IQR n 1 3 gdzie IQR - rozstęp międzykwartylowy Jeżeli liczba klas jest równa k i klasy są jednakowej długości, to długość b spełnia b X n:n X 1:n k gdzie X 1:n - najmniejsza obserwacja X n:n - największa obserwacja

8 Agata Boratyńska Wykłady ze statystyki 8 PRZYKŁAD 2. Powierzchnię mieszkań w pewnym osiedlu podaje tabela 32,45 33,21 34,36 35,78 37,79 38,54 38,91 38,96 39,50 39,67 39,80 41,45 41,55 42,27 42,40 42,45 44,25 44,50 44,70 44,83 44,90 45,10 45,90 46,52 47,65 48,10 48,55 48,90 49,00 49,24 49,55 49,65 49,70 49,90 50,90 51,40 51,50 51,65 51,70 51,80 51,98 52,00 52,10 52,30 53,65 53,89 53,90 54,00 54,10 55,20 55,30 55,56 55,62 56,00 56,70 56,80 56,90 56,95 57,13 57,45 57,70 57,90 58,00 58,50 58,67 58,80 59,23 63,40 63,70 64,20 64,30 64,60 65,00 66,29 66,78 67,80 68,90 69,00 69,50 73,20 76,80 77,10 77,80 78,90 79,50 82,70 83,40 84,50 84,90 85,00 86,00 89,10 89,60 93,00 96,70 98,78 103,00 107,90 112,70 118,90 przedział środek liczba mieszkań częstości razem 100 1

9 Agata Boratyńska Wykłady ze statystyki 9 Histogram - jest to wykres słupkowy, którego podstawę stanowią przedziały klasowe, a wysokości słupków sa proporcjonalne do liczności n i poszczególnych klas. Jeżeli wysokości są równe licznościom klas to mamy histogram liczności, jeżeli są równe częstościom to histogram częstości. W sytuacji, gdy klasy nie mają równej długości wysokość słupków określa się wg wzoru h i = f i b i gdzie f i - to częstość, a b i - szerokość klasy. (porównaj histogramy - przykład 1,2,3) Łącząc punkty o współrzędnych ( c i, n i ) otrzymujemy łamaną liczności, a łącząc punkty o współrzędnych ( c i, f i ) albo ( c i, h i ) łamaną częstości. W szeregu rozdzielczym możemy również podawać liczności i częstości skumulowane. przedział liczności częstości skumulowane cn i skumulowane cf i (c 0, c 1 ] n 1 f 1 = n 1 n (c 1, c 2 ] n 1 + n 2 f 1 + f (c k 1, c k ] n 1 + n n k = n f 1 + f f k = 1

10 Agata Boratyńska Wykłady ze statystyki 10 Jeżeli wysokości słupków histogramu są równe licznościom (częstościom) skumulowanym to otrzymujemy histogram liczności (częstości) skumulowanych. Łącząc punkty o współrzędnych (c i, cn i ) otrzymujemy łamaną liczności skumulowanych, a łącząc punkty o współrzędnych (c i, cf i ) otrzymujemy łamaną częstości skumulowanych.

11 Agata Boratyńska Wykłady ze statystyki 11 CHARAKTERYSTYKI PRÓBKOWE MIARY POŁOŻENIA Średnia arytmetyczna X z próby losowej X 1, X 2,..., X n (dane surowe) X = X 1 + X X n n dane z szeregu rozdzielczego punktowego X = 1 n k i=1 x i n i dane z szeregu rozdzielczego przedziałowego X 1 n k i=1 c i n i PRZYKŁAD 1 cd X = = PRZYKŁAD 2 cd. dla danych z szeregu rozdzielczego X = 1 ( ) = Uwaga: jeżeli dostępne są dane surowe zaleca się korzystanie ze wzoru pierwszego.

12 Agata Boratyńska Wykłady ze statystyki 12 Mediana Med z próby losowej jest to liczba, taka że co najmniej 50% obserwacji przyjmuje wartość nie większą od niej i co najmniej 50% obserwacji wartość nie mniejszą od niej. Wyliczamy ją w następujący sposób: dane surowe: ustawiamy rosnąco, i-tą obserwację w ciągu ustawionym rosnąco oznaczamy symbolem X i:n i nazywamy i-tą statystyką pozycyjną PRZYKŁAD 3. Dla danych 1, 7, 3, 12, 9 X 1:5 = 1 X 2:5 = 3 X 3:5 = 7 X 4:5 = 9 X 5:5 = 12 Med = 1 Xn+1 2 :n gdy n nieparzyste 2 (X n 2 :n + Xn+2 2 :n) gdy n parzyste dane z szeregu rozdzielczego przedziałowego Med c L + b n M gdzie c L - dolna granica klasy mediany b - szerokość klasy mediany n M - liczność klasy mediany M - numer klasy n 2 M 1 i=1 n i

13 Agata Boratyńska Wykłady ze statystyki 13 PRZYKŁAD 1 cd. Med = X 10:20+X 11:20 2 = 3,5+3,5 2 = 3, 5 PRZYKŁAD 2 cd. dla danych z szeregu rozdzielczego M = 3, n 3 = 33, c L = 50, b = 10 Med (50 34) = 54, Moda (dominanta) M o - wartość najczęściej powtarzająca się w próbie (często zakłada się, że nie może być to wartość największa ani najmniejsza) Przy danych z szeregu rozdzielczego n Mo n Mo 1 Mo c L + (n Mo n Mo 1 ) + (n Mo n Mo+1 ) b gdzie n Mo - liczność najliczniejszej klasy zwanej klasą mody, c L - lewy koniec klasy mody PRZYKŁAD 1 cd. Mo = 3 PRZYKŁAD 2 cd. Mo = 53, 2 PRZYKŁAD 3 cd. 0, , Mo 250+ = 354, , , ,

14 Agata Boratyńska Wykłady ze statystyki 14 PRZYKŁAD 4. Miesięczne zarobki zasadnicze pracowników z wyższym wykształceniem w pewnej firmie zarobki liczba osób Razem 31 X = 3506 Med = X 16:31 = 3100 Mo = 3000 Uwaga: średnia jest nieodporna na obserwacje odstające

15 Agata Boratyńska Wykłady ze statystyki 15 Kwartyle Pierwszy kwartyl (dolny kwartyl) Q 1 - to taka wartość cechy, że co najmniej 25% obserwacji przyjmuje wartość nie większą od niej i co najmniej 75% obserwacji wartość nie mniejszą od niej. Drugi kwartyl = Mediana Trzeci kwartyl (kwartyl górny) Q 3 - to taka wartość cechy, że co najmniej 75% obserwacji przyjmuje wartość nie większą od niej i co najmniej 25% obserwacji wartość nie mniejszą od niej. W praktyce dolny kwartyl wyznacza się jako medianę podpróby złożonej z obserwacji o wartościach nie większych od mediany, a górny kwartyl jako medianę z podpróby złożonej z obserwacji nie mniejszych od mediany. PRZYKŁAD 1 cd. Q 1 = X 5:20 + X 6:20 2 Q 3 = X 15:20 + X 16:20 2 = 3 = 4

16 Agata Boratyńska Wykłady ze statystyki 16 Przy danych z szeregu rozdzielczego Q 1 c L + b n M1 gdzie c L - dolna granica klasy kwartyla b - szerokość klasy kwartyla n M1 - liczność klasy kwartyla M 1 - numer klasy Q 3 c L + b n M3 gdzie c L - dolna granica klasy kwartyla b - szerokość klasy kwartyla n M3 - liczność klasy kwartyla M 3 - numer klasy n 4 M1 1 i=1 3n 4 M3 1 i=1 n i n i PRZYKŁAD 2 cd. Za Q 1 odpowiada obserwacja o numerze n 4 = 25, stąd klasa kwartyla jest klasa druga M = 2 Q (25 11) = Za Q 3 odpowiada obserwacja o numerze 3 4n = 75, stąd klasą kwartyla jest klasa czwarta M = 4 Q (75 65) =

17 Agata Boratyńska Wykłady ze statystyki 17 Kwartyle dzielą próbę na cztery równe części (ze względu na liczność), w każdej jest w przybliżeniu 25% obserwacji. Porównanie wskaźników dla danych surowych i szeregu rozdzielczego miara dane surowe szereg rozdzielczy średnia 59,58 58,70 mediana 55,25 54,85 Q 1 48,33 46,09 Q 3 67,29 66,67 Kwantyl próbkowy rzędu p Q p = X np:n +X np+1:n 2 gdy np Z X [np]+1:n w pp lub Q p = X [np]+1:n

18 Agata Boratyńska Wykłady ze statystyki 18 MIARY ROZPROSZENIA Rozstęp czyli odległość między największą i najmniejszą obserwacją r = X n:n X 1:n Rozstęp międzykwartylowy IQR = Q 3 Q 1 podaje długość odcinka, na którym leży 50% środkowych wartości w uporządkowanej niemalejąco próbie. Uwaga: rozstęp jest funkcją tylko krańcowych obserwacji, jest nieodporny na obserwacje odstające, tej wady pozbawiony jest rozstęp międzykwartylowy Wariancją z próby losowej X 1, X 2,..., X n (dane surowe) nazywamy liczbę Ŝ 2 = 1 n = 1 n n i=1 n i=1 (X i X) 2 Xi 2 n X 2 Dla danych pogrupowanych w szeregu rozdzielczym otrzymujemy Ŝ 2 1 n k i=1 n i ( c i X) 2

19 Agata Boratyńska Wykłady ze statystyki 19 Odchylenie standardowe Ŝ = Ŝ 2 lub S = S2 Odchylenie przeciętne d = 1 n n i=1 X i X W sytuacji gdy chcemy porównać rozrzut dwóch lub więcej prób korzystamy ze współczynnika zmienności PRZYKŁAD 1 cd. V = Ŝ X 100% r = 5 2 = 3 IQR = 4 3 = 1 Ŝ 2 = 1 { 2(2 3, 5) 2 + 6(3 3, 5) 2 + 5(3, 5 3, 5) (4 3, 5) 2 + 1(4, 5 3, 5) 2 + 2(5 3, 5) 2} = 0, 63 Ŝ = 0, 658 = 0, 79 d = 1 {2 2 3, , , 5 3, , , 5 3, , 5 } = 0, 6 PRZYKŁAD 2 cd. Dla danych z szeregu rozdzielczego r = 90 IQR 66, 67 46, 09 = 20, 58 Ŝ 2 331, 31 Ŝ 18, 20 d 13, 96

20 Agata Boratyńska Wykłady ze statystyki 20 WYKRES RAMKOWY, PUDEŁKO Z WĄSAMI Pozwala na jednym rysunku przedstawić wiadomości dotyczące położenia, rozproszenia i kształtu rozkładu empirycznego badanej cechy. Na wykresie zaznacza się kwartyle, średnią, medianę, największą i najmniejszą obserwację, obserwacje odstające. Obserwacje odstające są to obserwacje o wartościach x < x lub x > x gdzie x = min{x i : X i [Q IQR, Q 1]} x = max{x i : X i [Q 3, Q IQR]}

21 Agata Boratyńska Wykłady ze statystyki 21 WSKAŹNIKI ASYMETRII Współczynnik asymetrii (klasyczny) A = M 3 S 3 gdzie M 3 jest trzecim momentem centralnym równym dla danych surowych n M 3 = 1 (X i n X) 3, i=1 dla danych pogrupowanych w szeregu rozdzielczym otrzymujemy M 3 1 n i ( c i n X) 3 i=1 Pozycyjny miernik asymetrii A 2 = Q 3 2Med + Q 1 Q 3 Q 1 Współczynnik skośności k A 1 = X Mo S Asymetria dodatnia (prawostronna) - wskaźniki asymetrii dodatnie Asymetria ujemna (lewostronna) - wskaźniki asymetrii ujemne PRZYKŁAD 1 cd. A = 0, 08, PRZYKŁAD 2cd. A = 1, 10 PRZYKŁAD 3cd. A 1 = ,57 = 0, 3 A 1 = 3,5 3,5 0,79 = 0 A 1 = 58,70 53,20 18,20 = 0, 3

22 Agata Boratyńska Wykłady ze statystyki 22 INDEKSY STATYSTYCZNE Zbiór wartości danej cechy lub wartości określonego zjawiska zaobserwowany w różnych (ale chronologicznych) momentach czasu nazywamy szeregiem czasowym. PRZYKŁAD. cena akcji w kolejnych dniach stycznia, zarobki w pewnej gałęzi przemysłu w kolejnych latach, wielkość produkcji w kolejnych miesiącach Indeksy statystyczne służą do badania dynamiki zjawiska na podstawie danych z kolejnych okresów czasowych (na podstawie szeregu czasowego). y t - poziom zjawiska (wartość cechy) w chwili (okresie) t, t {0, 1, 2,..., n} t = y t y t 1 - przyrost absolutny δ t = y t y t y t - przyrost względny względem wartości w chwili t. INDEKSY PROSTE - mierniki tempa zmian zjawiska Indeks łańcuchowy dynamiki i t t 1 = y t y t 1 Tempo zmian wartości zjawiska w okresie t w stosunku do okresu t 1 jest równe (i t t 1 1)100% Indeks jednopodstawowy dynamiki i t t = y t y t, gdzie t jest ustaloną chwilą (ustalonym okresem) czasu.

23 Agata Boratyńska Wykłady ze statystyki 23 Tempo zmian wartości zjawiska w okresie t w stosunku do okresu t jest równe (i t t 1)100% Związki między indeksami: i t t 1 = i t t i t 1 t, jeśli t > t to jeśli t < t to i t t = t i t t = t=t +1 t t=t +1 i t t 1, 1 i t t 1. Średnie tempo zmian wartości zjawiska r = ī g 1 = 1 n i t t 1 t=1 n 1 = y 1 n y 0 n 1 = ( in 0 ) 1 n 1 Średnie tempo zmian wartości zjawiska określa tempo zmian zjawiska jakie powinno występować przez cały okres (0, n), aby przyrost z okresu (0, n) rozłożyć równomiernie w czasie. Zatem y n = y 0 (r + 1) n.

24 Agata Boratyńska Wykłady ze statystyki 24 AGREGATOWE INDEKSY WARTOŚCI, ILOŚCI I CEN. Indeksy agragatowe oceniają dynamikę zjawiska w niejednorodnej zbiorowości (np. dynamika cen różnych artykułów, dynamika spożycia różnych produktów, dynamika sprzedaży, produkcji kilku dóbr). Dane z dwóch okresów (momentów) czasowych: t = 0 - okres podstawowy i t = 1 okres badany produkt cena jednostki ilość wartość t = 0 t = 1 t = 0 t = 1 t = 0 t = 1 1 p 10 p 11 q 10 q 11 w 10 = p 10 q 10 w 11 = p 11 q 11 2 p 20 p 21 q 20 q 21 w 20 = p 20 q 20 w 21 = p 21 q j p j0 p j1 q j0 q j1 w j0 = p j0 q j0 w j1 = p j1 q j k p k0 p k1 q k0 q k1 w k0 = p k0 q k0 w k1 = p k1 q k1 Agregatowy indeks wartości I w = k j=1 w j1 k j=1 w j0 informuje o łącznej zmianie wartości wszystkich produktów w momencie badanym do momentu podstawowego

25 Agata Boratyńska Wykłady ze statystyki 25 Agregatowy indeks cen określa wpływ zmian cen na dynamikę wartości (gdyby ilości w obu momentach czasu były niezmienione), mówi o przeciętnych zmianach cen wszystkich rozważanych produktów Agregatowy indeks cen Laspeyresa LI p = k j=1 p j1 q j0 k j=1 p j0 q j0 = Agregatowy indeks cen Paaschego k j=1 p j1 p j0 p j0 q j0 k j=1 p j0 q j0 PI p = k j=1 p j1 q j1 k j=1 p j0 q j1 Agregatowy indeks cen Fishera FI p = LI pp I p Agregatowy indeks ilości określa wpływ zmian ilości na dynamikę wartości (gdyby w obu momentach ceny były niezmienione), informuje o przeciętnych zmianach ilości poszczególnych produktów w obu porównywanych momentach czasu Agregatowy indeks ilości Laspeyresa LI q = k j=1 p j0 q j1 k j=1 p j0 q j0 = Agregatowy indeks ilości Paaschego k PI q = j=1 p j1 q j1 k j=1 p j1 q j0 k j=1 q j1 q j0 p j0 q j0 k j=1 p j0 q j0

26 Agata Boratyńska Wykłady ze statystyki 26 Agregatowy indeks ilości Fishera FI q = LI qp I q Związki między indeksami I w = L I pp I q = L I qp I p = F I pf I q

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata

Bardziej szczegółowo

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba 2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39

Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39 Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/

Bardziej szczegółowo

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia

Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa. Robert Pietrzykowski. Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:

Bardziej szczegółowo

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X) STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. [1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.

Bardziej szczegółowo

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Ćwiczenia 1-2 Analiza rozkładu empirycznego Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu

Bardziej szczegółowo

Analiza szeregów czasowych

Analiza szeregów czasowych Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie

Bardziej szczegółowo

Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii

Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą

Bardziej szczegółowo

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Opisowa analiza zjawisk masowych Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im

Bardziej szczegółowo

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.

Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Agata Boratyńska. WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2014

Agata Boratyńska. WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2014 1 Agata Boratyńska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2014 Agata Boratyńska Wykłady ze statystyki matematycznej 2 Literatura W. Niemiro Rachunek prawdopodobieństwa i statystyka matematyczna,

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Statystyka. Wykład 1. Magdalena Alama-Bućko. 20 lutego Magdalena Alama-Bućko Statystyka 20 lutego / 19

Statystyka. Wykład 1. Magdalena Alama-Bućko. 20 lutego Magdalena Alama-Bućko Statystyka 20 lutego / 19 Statystyka Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka 20 lutego 2017 1 / 19 Wykład : 30h Laboratoria : 30h (grupa B : 14:00, grupa C : 10:30, grupa E : 12:15) obowiazek

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

Wydział Nauki o Zdrowiu. Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska

Wydział Nauki o Zdrowiu. Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska Podstawy Biostatystyki Wydział Nauki o Zdrowiu Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska Treść wykładu W1-W Statystyka opisowa. Podstawowe pojęcia statystyki. Prezentacja

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIPN-004 Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 0/04 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów

Bardziej szczegółowo

Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Statystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR

Statystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR Statystyka Opisowa WK1.2017 Andrzej Pawlak Intended Audience: PWR POJĘCIA STATYSTYKI 1. Zbiór danych liczbowych pokazujących kształtowanie się określonych zjawisk i procesów (roczniki statystyczne). 2.

Bardziej szczegółowo

ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności STATYSTYKA OPISOWA wstępna analiza danych I. Miary położenia: Mediana Moda

ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności STATYSTYKA OPISOWA wstępna analiza danych I. Miary położenia: Mediana Moda ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności Przedmiotem statystyki jest zbieranie, prezentacja oraz analiza danych opisujących zjawiska losowe. Badaniu statystycznemu podlega próbka losowa pobrana

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować? 1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Stacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/ Specjalność Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok

Bardziej szczegółowo

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia

Bardziej szczegółowo

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości)

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum/Liceum Handlowe dla Dorosłych Klasa I Wymiar godzin: 1 godz. w tygodniu w sem. I i II. (bloki tematyczne:

Bardziej szczegółowo

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod

Bardziej szczegółowo

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II Podział zmiennych Zmienne zależne zmienne, które są przedmiotem badania, których związki z innymi zmiennymi chcemy określić Zmienne

Bardziej szczegółowo

Analiza Danych. Jerzy Stefanowski. Wykład dla kierunku Informatyka (1wsze spotkanie) Poznań, 2006/7

Analiza Danych. Jerzy Stefanowski. Wykład dla kierunku Informatyka (1wsze spotkanie) Poznań, 2006/7 Analiza Danych Jerzy Stefanowski Instytut Informatyki Politechniki Poznańskiej Tel. 6652933 CW - 8 Wykład dla kierunku Informatyka (1wsze spotkanie) Poznań, 2006/7 Wykład nr 1 Wprowadzenie do Analizy Danych

Bardziej szczegółowo

Literatura. Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010.

Literatura. Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010. Metody statystyczne Literatura Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010. Stąpor K. Wykłady z metod statystycznych dla informatyków z przykładami w języku R. Wydawnictwo Politechniki

Bardziej szczegółowo

4.2. Statystyczne opracowanie zebranego materiału

4.2. Statystyczne opracowanie zebranego materiału 4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

MATEMATYKA3 Mathematics3. Elektrotechnika. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Zdzisław Piasta

MATEMATYKA3 Mathematics3. Elektrotechnika. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Zdzisław Piasta KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 MATEMATYKA3 Mathematics3 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii. Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka

Bardziej szczegółowo

przedmiot podstawowy obowiązkowy polski drugi

przedmiot podstawowy obowiązkowy polski drugi KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering

Bardziej szczegółowo

Badania marketingowe 2016_12. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2016_12. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2016_12 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. Formułowanie oraz wyjaśnianie tematyki badań 2. Identyfikacja

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

STATYSTYKA. Na egzamin należy przynieść:

STATYSTYKA. Na egzamin należy przynieść: [1] STATYSTYKA Na egzamin należy przynieść: 1. kalkulator 2. wzory na kartce (bez komentarzy!!!) UWAGA!!! wzory muszą być napisane odręcznie (kserokopie będą zabierane) Na kolejnych stronach zamieszczono

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 WydziałPrawa, Administracji i Stosunków Miedzynarodowych

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku.

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Zakład Ubezpieczeń Społecznych Departament Statystyki Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Warszawa 2010 I. Badana populacja. W marcu 2010 r. emerytury

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Statystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba

Statystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba Statystyka Opisowa Wstępna analiza danych Rodzaje prezentacji danych Miary tendencji centralnej Miary zmienności (zróżnicowania) Miara asymetrii (skośności) Miara spłaszczenia Statystyka to nauka o metodach

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo