Jerzy Nawrocki, Wprowadzenie do informatyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jerzy Nawrocki, Wprowadzenie do informatyki"

Transkrypt

1 Magistrala systmowa Jrzy Nawrocki, Jrzy Nawrocki Wydział Informatyki Politchnika Poznańska Organizacja komputra IBM PC Pamięć Od algbry Bool a do komputra Jrzy. Nawrocki, 2 Mikroprocsor Urządzni wjścia-wyjścia Urządzni wjścia-wyjścia Od algbry Bool a do komputra (2) rchitktura typowgo procsora Cl wykładu Układ strowania Licznik instr. Jdnostka arytmtycznologiczna jstr jstr jstr jstr łowo stanu Przdstawić zasady działania podstawowych układów komputra. Od algbry Bool a do komputra (3) Od algbry Bool a do komputra (4) Plan wykładu Gorg Bool lgbra Bool a Bramki jstry Opracj boolowski w C Gorg Bool XI.85 Narodziny w rodzini szwca. 829 Tłumaczni z grckigo (wirsz Mlagra) 844 On a Gnral Mthod of nalysis i mdal oyal ocity 849 Profsor matmatyki, un s Collg, Cork 85 Dzikan Wydziału Nauk Ścisłych (cinc) 854 n Invstigation into th Laws of Thought [..] 855 Małżństwo z Mary Evrst Od algbry Bool a do komputra (5) Od algbry Bool a do komputra (6) Od algbry Bool a do komputra

2 Jrzy Nawrocki, lgbra liczb naturalnych lgbra Bool a <N,, s,, -, *, /> <{F, T}, T, not, and, or> = s() 2 = s() 3 = s(2)... x = x x s(y) = s(x y) x * = x * s(y) = x x * y Gorg Bool F = not T F T not T F Miszko był królm. B Niprawda, ż Miszko był królm. B not Od algbry Bool a do komputra (7) Od algbry Bool a do komputra (8) lgbra Bool a lgbra Bool a <{F, T}, T, not, and, or> <{F, T}, T, not, and, or> Gorg Bool B and B F F F F T F T F F T T T Miszko był królm. B Chrobry był królm. C Miszko był królm i Chrobry był królm. C and B Od algbry Bool a do komputra (9) Gorg Bool B or B F F F F T T T F T T T T Od algbry Bool a do komputra () lgbra Bool a rytmtyka dzisiętna <{, },, not, and, or> włączon lub wysoki poziom napięcia (5 V) wyłączon lub niski poziom napięcia ( V) not B and B B or B * 2 * * = Od algbry Bool a do komputra () Od algbry Bool a do komputra (2) Od algbry Bool a do komputra 2

3 Jrzy Nawrocki, rytmtyka binarna rytmtyka binarna 2 *2 2 * 2 = 4 * 2 Dzisiętni Binarni Od algbry Bool a do komputra (3) Od algbry Bool a do komputra (4) 4-bitowy 4-bitowy = 7 ( 4 2 ) B = 3 ( 2 ) = 7 ( 4 2 ) B = 3 ( 2 ) = 2 = 2 = 2 = 2 Od algbry Bool a do komputra (5) Od algbry Bool a do komputra (6) 4-bitowy 4-bitowy = 7 ( 4 2 ) B = 3 ( 2 ) = 7 ( 4 2 ) B = 3 ( 2 ) = (8 2 ) = 3 = 2 3 B 3 2 B 2 B B Od algbry Bool a do komputra (7) 3 2 Od algbry Bool a do komputra (8) Od algbry Bool a do komputra 3

4 Jrzy Nawrocki, 4-bitowy 4-bitowy 3 B 3 2 B 2 B 2 3 = 7 ( 4 2 ) B = 3 ( 2 ) = (8 2 ) B 3 B B 2 2 C = 7 ( 4 2 ) B = 3 ( 2 ) = (8 2 ) B C B C 3 C C 3 2 Od algbry Bool a do komputra (9) 3 2 Od algbry Bool a do komputra (2) 3 B B 2 2 C B 4-bitowy = 7 ( 4 2 ) B = 3 ( 2 ) = (8 2 ) C B B C B C C 3 C C 3 2 Od algbry Bool a do komputra (2) Od algbry Bool a do komputra (22) 3 B 3 3 C B 2 2 C 2 B C 4-bitowy = 7 ( 4 2 ) B = 3 ( 2 ) = (8 2 ) C B C Od algbry Bool a do komputra (23) B C C B C C Od algbry Bool a do komputra (24) Od algbry Bool a do komputra 4

5 Jrzy Nawrocki, Tranzystor Bramki <{F, T}, T, not, and, or> NOT ND O Tranzystor PNP Tranzystor NPN Jack Kilby Txas Instr., 958 plika pirwszgo tranzystora wynalziongo w Bll Labs w 947r. Od algbry Bool a do komputra (25) Od algbry Bool a do komputra (26) Bramka NND B C B and B NND not ( and (x, y) ) B C Tchnologia TTL (Transistor-Transistor Logic) Txas Instrumnts 962 B C Od algbry Bool a do komputra (27) Od algbry Bool a do komputra (28) B C B C B = B B B C C C B B Od algbry Bool a do komputra (29) Od algbry Bool a do komputra (3) Od algbry Bool a do komputra 5

6 Jrzy Nawrocki, Elmnt pamiętający Elmnt pamiętający Zapisani zra Od algbry Bool a do komputra (3) Od algbry Bool a do komputra (32) Elmnt pamiętający Elmnt pamiętający Zmiana z na niczgo ni zmini Zapisani zra tan po zapisaniu zra Od algbry Bool a do komputra (33) Od algbry Bool a do komputra (34) Elmnt pamiętający Zmiana z na niczgo ni zmini Elmnt pamiętający Zapisani jdynki Zapisani jdynki Od algbry Bool a do komputra (35) Od algbry Bool a do komputra (36) Od algbry Bool a do komputra 6

7 Jrzy Nawrocki, Przrzutnik - Przrzutnik - z wjścim zgarowym Od algbry Bool a do komputra (37) Od algbry Bool a do komputra (38) Przrzutnik typu D jstr 4-bitowy D ozkaz pamiętania D D D D D ymbol przrzutnika typu D Od algbry Bool a do komputra (39) Od algbry Bool a do komputra (4) Dkodr Dkodr D k o d r Y Y Y2 Y3 Y Y Y2 Y3 Od algbry Bool a do komputra (4) Od algbry Bool a do komputra (42) Od algbry Bool a do komputra 7

8 Jrzy Nawrocki, Zapisywani dr = () Zapisywani dr = () dr = () dr = () dr = 2 () dr = 2 () dr = 3 () dr = 3 () D3 D2 D D Dkodr W Od algbry Bool a do komputra (43) Dkodr Od algbry Bool a do komputra (44) Multiplksr Multiplksr D D D2 D3 D D D2 D3 D k o d r M u l t i p l k s r Y = D D k o d r Y = D Od algbry Bool a do komputra (45) Od algbry Bool a do komputra (46) 3 2 Odczytywani lgbra Bool a w języku C FLE;! TUE; M M M M Y3 Y2 Y Y x=; y=; z=2; if (x) printf("ye \n"); x=; y=; z=2; if (z) printf("ye \n"); Od algbry Bool a do komputra (47) Od algbry Bool a do komputra (48) Od algbry Bool a do komputra 8

9 Jrzy Nawrocki, lgbra Bool a w języku C FLE;! TUE; && ND; O;! NOT lgbra Bool a w języku C FLE;! TUE; && ND; O;! NOT Opratory bitow: & (ND), (O), ^ (XO) x=; y=; z=2; if (x y) printf("ye \n"); x=; y=; z=2; if (x && y) printf("ye \n"); x=; y=; z=2; if (!x) printf("ye \n"); x x x y y y x&y x y x^y Od algbry Bool a do komputra (49) Od algbry Bool a do komputra (5) lgbra Bool a w języku C FLE;! TUE; && ND; O;! NOT Opratory bitow: & (ND), (O), ^ (XO), ~ (NOT), << (HIFT) lgbra Bool a w języku C FLE;! TUE; && ND; O;! NOT Opratory bitow: & (ND), (O), ^ (XO), ~ (NOT), << (HIFT) x x ~x x<< x x<<2 x=; y=; z=2; if (y && z) printf("ye \n"); YE x=; y=; z=2; if (y & z) printf("ye \n"); No! y z y&z Od algbry Bool a do komputra (5) Od algbry Bool a do komputra (52) Podsumowani Litratura podstawowa Wrszci! Komputr mikroprocsor arytmomtr sumator n-bitowy i półsumator jako układ kombinacyjny zbudowany z bramk lgbra Bool a i rodzaj bramk jstry, dkodry i multiplksry Opracj boolowski w C Barry Wilkinson, Układy cyfrow, WKŁ, Warszawa, 2 Od algbry Bool a do komputra (53) Od algbry Bool a do komputra (54) Od algbry Bool a do komputra 9

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Magistrala systemowa Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Organizacja komputera IBM PC Pamięć Od algebry Boole a do komputera Jerzy. Nawrocki,

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Magistrala systemowa Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Cel wykładu Asembler i koncepcja von Neumanna Wprowadzenie do programowania na

Bardziej szczegółowo

Programowalne układy logiczne

Programowalne układy logiczne Programowalne układy logiczne Układy kombinacyjne Szymon Acedański Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 28 września 2015 Co to jest układ kombinacyjny? Stan wyjść zależy tylko

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 2: Reprezentacja danych Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Kilka ciekawostek Zapisy binarny, oktalny, decymalny

Bardziej szczegółowo

Układy kombinacyjne 1

Układy kombinacyjne 1 Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę I. KARTA PRZEDMIOTU Nazwa przedmiotu/modułu: Nazwa angielska: Kierunek studiów: Poziom studiów: Profil studiów: Jednostka prowadząca: Technika cyfrowa i mikroprocesorowa Edukacja techniczno-informatyczna

Bardziej szczegółowo

Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń

Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń Załącznik 4c do SIWZ Lp. NAZWA OPIS GŁÓWNYCH PARAMETRÓW TECHNICZNYCH ILOŚĆ (szt.) Zestaw powinien składać się min. z modułu bazowego oraz modułów ćwiczeniowych

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia

Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia Poznanie zasad budowy działania komparatorów cyfrowych. Konstruowanie komparatorów

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe

Elektronika i techniki mikroprocesorowe Elektronika i techniki mikroprocesorowe Technika cyfrowa Podstawowy techniki cyfrowej Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 trochę historii

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych (I)

Technika cyfrowa Synteza układów kombinacyjnych (I) Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE UKŁADÓW FUNKCJI LOGICZNYCH (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE UKŁADÓW FUNKCJI LOGICZNYCH (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PRCOWNI ELEKTRCZN I ELEKTRONICZN imię i nazwisko z ćwiczenia nr Temat ćwiczenia: DNIE UKŁDÓW FUNKCJI LOGICZNCH (SMULCJ) rok szkolny klasa grupa

Bardziej szczegółowo

Logiczny model komputera i działanie procesora. Część 1.

Logiczny model komputera i działanie procesora. Część 1. Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.

Bardziej szczegółowo

Ćwiczenie 28. Przy odejmowaniu z uzupełnieniem do 2 jest wytwarzane przeniesienie w postaci liczby 1 Połówkowy układ

Ćwiczenie 28. Przy odejmowaniu z uzupełnieniem do 2 jest wytwarzane przeniesienie w postaci liczby 1 Połówkowy układ Temat: Układy odejmujące połówkowe i pełne. Cel ćwiczenia Ćwiczenie 28 Poznanie teorii uzupełniania. Budowanie układów odejmujących połówkowych pełnych. Czytanie schematów elektronicznych, przestrzeganie

Bardziej szczegółowo

O systemach liczbowych

O systemach liczbowych O systemach liczbowych 1. Systemy liczbowe Literatura:Turski,Propedeutyka...;Skomorowski,... 1.1. Dwójkowy system pozycyjny W dziesiętnym systemie pozycyjnym ciąg cyfr 321.23 oznacza liczbę 3 10 2 +2 10

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch)

Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch) DSCH2 to program do edycji i symulacji układów logicznych. DSCH2 jest wykorzystywany do sprawdzenia architektury układu logicznego przed rozpoczęciem projektowania fizycznego. DSCH2 zapewnia ergonomiczne

Bardziej szczegółowo

Elektronika cyfrowa i mikroprocesory. Dr inż. Aleksander Cianciara

Elektronika cyfrowa i mikroprocesory. Dr inż. Aleksander Cianciara Elektronika cyfrowa i mikroprocesory Dr inż. Aleksander Cianciara Sprawy organizacyjne Warunki zaliczenia Lista obecności Kolokwium końcowe Ocena końcowa Konsultacje Poniedziałek 6:-7: Kontakt Budynek

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ KDEMI MORSK KTEDR NWIGCJI TECHNICZEJ ELEMETY ELEKTRONIKI LORTORIUM Kierunek NWIGCJ Specjalność Transport morski Semestr II Ćw. 4 Podstawy techniki cyfrowej Wersja opracowania Marzec 5 Opracowanie: mgr

Bardziej szczegółowo

Podstawy programowania. 1. Operacje arytmetyczne Operacja arytmetyczna jest opisywana za pomocą znaku operacji i jednego lub dwóch wyrażeń.

Podstawy programowania. 1. Operacje arytmetyczne Operacja arytmetyczna jest opisywana za pomocą znaku operacji i jednego lub dwóch wyrażeń. Podstawy programowania Programowanie wyrażeń 1. Operacje arytmetyczne Operacja arytmetyczna jest opisywana za pomocą znaku operacji i jednego lub dwóch wyrażeń. W językach programowania są wykorzystywane

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42

Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42 Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42

Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42 Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system

Bardziej szczegółowo

Podstawy Informatyki JA-L i Pamięci

Podstawy Informatyki JA-L i Pamięci Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Operator elementarny Proste układy z akumulatorem Realizacja dodawania Realizacja JAL dla pojedynczego bitu 2 Parametry

Bardziej szczegółowo

Technika Cyfrowa i Mikroprocesorowa

Technika Cyfrowa i Mikroprocesorowa Technika Cyfrowa i Mikroprocesorowa Prowadzący przedmiot: Ćwiczenia laboratoryjne: dr inż. Andrzej Ożadowicz dr inż. Andrzej Ożadowicz dr inż. Jakub Grela Wydział Elektrotechniki, Automatyki, Informatyki

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania. UKŁDAY CYFROWE Układy cyfrowe są w praktyce realizowane różnymi technikami. W prostych urządzeniach automatyki powszechnie stosowane są układy elektryczne, wykorzystujące przekaźniki jako podstawowe elementy

Bardziej szczegółowo

Układy elektroniki cyfrowej - elementarz Tomasz Słupiński, Zakład Fizyki Ciała Stałego FUW

Układy elektroniki cyfrowej - elementarz Tomasz Słupiński, Zakład Fizyki Ciała Stałego FUW Układy elektroniki cyfrowej - elementarz Tomasz Słupiński, Zakład Fizyki Ciała Stałego FUW Elektronika cyfrowa vs analogowa - oscyloskop, generator funkcyjny - bity, układy liczenia dwójkowy, oktalny,

Bardziej szczegółowo

Kombinacyjne bloki funkcjonalne

Kombinacyjne bloki funkcjonalne Sławomir Kulesza Technika cyfrowa Kombinacyjne bloki funkcjonalne Wykład dla studentów III roku Informatyki Wersja., 5//2 Bloki cyfrowe Blok funkcjonalny to układ cyfrowy utworzony z pewnej liczby elementów

Bardziej szczegółowo

Podstawy układów mikroelektronicznych

Podstawy układów mikroelektronicznych Podstawy układów mikroelektronicznych wykład dla kierunku Technologie Kosmiczne i Satelitarne Część 2. Podstawy działania układów cyfrowych. dr inż. Waldemar Jendernalik Katedra Systemów Mikroelektronicznych,

Bardziej szczegółowo

Funkcja Boolowska a kombinacyjny blok funkcjonalny

Funkcja Boolowska a kombinacyjny blok funkcjonalny SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Funkcja Boolowska a kombinacyjny blok funkcjonalny Kombinacyjny blok funkcjonalny w technice cyfrowej jest układem kombinacyjnym złożonym znwejściach

Bardziej szczegółowo

Technika cyfrowa projekt: Sumator 4 bitowy równoległy

Technika cyfrowa projekt: Sumator 4 bitowy równoległy Technika cyfrowa projekt: Sumator 4 bitowy równoległy Autorzy: Paweł Bara Robert Boczek Przebieg prac projektowych: Zadany układ dostaje na wejściu dwie czterobitowe liczby naturalne, sumuje je, po czym

Bardziej szczegółowo

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1. Plan wykładu

SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1. Plan wykładu SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1 Plan wykładu 1. Wprowadzenie, funkcje boolowskie i bramki logiczne, 2. Minimalizacja funkcji boolowskich, 3. Kombinacyjne bloki

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 4 BADANIE BRAMEK LOGICZNYCH A. Cel ćwiczenia. - Poznanie zasad logiki binarnej. Prawa algebry Boole

Bardziej szczegółowo

1.Podstawytechnikicyfrowej

1.Podstawytechnikicyfrowej Materiały do wykładu 1.Podstawytechnikicyfrowej Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 24 stycznia 2009 Sygnały 1.1 analogowe dyskretne ciągłe w czasie dyskretne w czasie Sygnały

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Technika Cyfrowa 2 wykład 1: programowalne struktury logiczne - wprowadzenie

Technika Cyfrowa 2 wykład 1: programowalne struktury logiczne - wprowadzenie Technika Cyfrowa 2 wykład 1: programowalne struktury logiczne - wprowadzenie Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Sprawy formalne konsultacje,

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite.

Plan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite. Plan wykładu rchitektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka sekwencyjna

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55 Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Temat: Pamięci. Programowalne struktury logiczne.

Temat: Pamięci. Programowalne struktury logiczne. Temat: Pamięci. Programowalne struktury logiczne. 1. Pamięci są układami służącymi do przechowywania informacji w postaci ciągu słów bitowych. Wykonuje się jako układy o bardzo dużym stopniu scalenia w

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek rchitektura systemów komputerowych układów logicznych. lgebra oole a. Układy kombinacyjne Cezary olek Katedra Informatyki Plan wykładu układów logicznych ramki logiczne lgebra sieci przełączających Funkcje

Bardziej szczegółowo

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Poznanie zasad działania układów koderów. Budowanie koderów z podstawowych bramek logicznych i układu scalonego Czytanie schematów elektronicznych,

Bardziej szczegółowo

Cyfrowe układy kombinacyjne. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowe układy kombinacyjne. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy kombinacyjne 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy kombinacyjne X1 X2 X3 Xn Y1 Y2 Y3 Yn Układy kombinacyjne charakteryzuje funkcja, która każdemu stanowi wejściowemu X i X jednoznacznie

Bardziej szczegółowo

Technika Cyfrowa 1 wykład 1: kody. Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej

Technika Cyfrowa 1 wykład 1: kody. Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej Technika Cyfrowa 1 wykład 1: kody Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Sprawy formalne konsultacje, p. 225 C-3: PN: 12:45-15:15, PT: 14:30-16:00

Bardziej szczegółowo

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2 WSTĘP O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą rodziną

Bardziej szczegółowo

ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO

ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO Wybór schematu adresowania podsieci jest równoznaczny z wyborem podziału lokalnej części adresu

Bardziej szczegółowo

Układy cyfrowe. Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Układy cyfrowe. Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Układy cyfrowe Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Bramki logiczne i ich tablice prawdy. Cela kształcenia: Zna symbole graficzne i działania logiczne bramek:

Bardziej szczegółowo

Architektura systemów komputerowych Laboratorium 13 Symulator SMS32 Operacje na bitach

Architektura systemów komputerowych Laboratorium 13 Symulator SMS32 Operacje na bitach Marcin Stępniak Architektura systemów komputerowych Laboratorium 13 Symulator SMS32 Operacje na bitach 1. Informacje Matematyk o nazwisku Bool wymyślił gałąź matematyki do przetwarzania wartości prawda

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1. Przedmowa... 9. Wstęp... 11

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1. Przedmowa... 9. Wstęp... 11 Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1 Spis treúci Przedmowa... 9 Wstęp... 11 1. Komputer PC od zewnątrz... 13 1.1. Elementy zestawu komputerowego... 13 1.2.

Bardziej szczegółowo

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna.

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Architektura komputerów ćwiczenia Zbiór zadań IV Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Wprowadzenie 1 1 fragmenty książki "Organizacja i architektura systemu

Bardziej szczegółowo

Table of Contents. Table of Contents UniTrain-I Kursy UniTrain Kursy UniTrain: Technika cyfrowa. Lucas Nülle GmbH 1/7

Table of Contents. Table of Contents UniTrain-I Kursy UniTrain Kursy UniTrain: Technika cyfrowa. Lucas Nülle GmbH 1/7 Table of Contents Table of Contents UniTrain-I Kursy UniTrain Kursy UniTrain: Technika cyfrowa 1 2 2 3 Lucas Nülle GmbH 1/7 www.lucas-nuelle.pl UniTrain-I UniTrain is a multimedia e-learning system with

Bardziej szczegółowo

Opis. Brak. Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć

Opis. Brak. Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Architektura systemów komputerowych nazwa przedmiotu SYLABUS A. Informacje ogólne Tę część wypełnia koordynator przedmiotu (w porozumieniu

Bardziej szczegółowo

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1 Część 3 Układy sekwencyjne Układy sekwencyjne i układy iteracyjne - grafy stanów 18.11.2017 TCiM Wydział EAIiIB Katedra EiASPE 1 Układ cyfrowy - przypomnienie Podstawowe informacje x 1 x 2 Układ cyfrowy

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

Elektryczna implementacja systemu binarnego.

Elektryczna implementacja systemu binarnego. Elektryczna implementacja systemu binarnego. Cela kształcenia: Zna symbole graficzne i działania logiczne bramek: Bramka OR; Bramka AND; Bramka NOT - inwerter Bramki; NAND i NOR; Bramka XOR - ExclusixeOR.

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

KARTA PRZEDMIOTU. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia. Forma prowadzenia zajęć

KARTA PRZEDMIOTU. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia. Forma prowadzenia zajęć Z1-PU7 WYDANIE N1 Strona 1 z 1 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PROJEKTOWANIE URZĄDZEŃ CYFROWYCH I i II 2. Kod przedmiotu: PUC 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013

Bardziej szczegółowo

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

organizacja procesora 8086

organizacja procesora 8086 Systemy komputerowe Procesor 8086 - tendencji w organizacji procesora organizacja procesora 8086 " # $ " % strali " & ' ' ' ( )" % *"towego + ", -" danych. Magistrala adresowa jest 20.bitowa, co pozwala

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr 1(rok)/1(sem) Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Wykład 3. Obwody cyfrowe. 22 maja 2018

Wykład 3. Obwody cyfrowe. 22 maja 2018 Wykład 3 Obwody cyfrowe 22 maja 2018 Wstęp 1. Zapis cyfrowy 2. Rachunek zdań 2.1 Algebra Boole'a 2.2 Tożsamości logiczne 3. Bramki logiczne 3.1 Standard TTL 3.2 Oznaczenia i tabelki prawdy bramek 4. Przerzutniki

Bardziej szczegółowo

Układy sekwencyjne. Wstęp doinformatyki. Zegary. Układy sekwencyjne. Automaty sekwencyjne. Element pamięciowy. Układy logiczne komputerów

Układy sekwencyjne. Wstęp doinformatyki. Zegary. Układy sekwencyjne. Automaty sekwencyjne. Element pamięciowy. Układy logiczne komputerów Wstęp doinformatyki Układy sekwencyjne Układy logiczne komputerów Układy sekwencyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 Wstęp do informatyki I. Pardyka Akademia Świętokrzyska Kielce,

Bardziej szczegółowo

while(wyrażenie) instrukcja

while(wyrażenie) instrukcja emat zajęć: Operatory i instrukcje w języku C - 2 Autor: mgr inż. Sławomir Samolej Zagadnienie 1. (instrukcja cyklu: while) Do wykonywania cyklicznych obliczeń w języku C stosuje się instrukcje cyklu (pętli).

Bardziej szczegółowo

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI.. Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.

Bardziej szczegółowo

Podstawy techniki cyfrowej

Podstawy techniki cyfrowej Podstawy techniki cyfrowej Wykład 1: Wstęp Dr hab. inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Informacje o przedmiocie Wprowadzenie Podstawy matematyczne:

Bardziej szczegółowo

IZ1UAL1 Układy arytmetyczno-logiczne Arithmetic logic systems. Informatyka I stopień ogólnoakademicki niestacjonarne

IZ1UAL1 Układy arytmetyczno-logiczne Arithmetic logic systems. Informatyka I stopień ogólnoakademicki niestacjonarne KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Technika cyfrowa Układy arytmetyczne

Technika cyfrowa Układy arytmetyczne Sławomir Kulesza Technika cyfrowa Układy arytmetyczne Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Układy arytmetyczne UKŁADY ARYTMETYCZNE UKŁADY SUMUJĄCE i ODEJMUJĄCE UKŁADY MNOŻĄCE

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Architektura komputerów wer. 7

Architektura komputerów wer. 7 Architektura komputerów wer. 7 Wojciech Myszka 2013-10-29 19:47:07 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie i wynik

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Wstęp do informatyki- wykład 2

Wstęp do informatyki- wykład 2 MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI. Komputerowe pomiary parametrów bramki NAND TTL

LABORATORIUM PODSTAW ELEKTRONIKI. Komputerowe pomiary parametrów bramki NAND TTL ZESPÓŁ LBORTORIÓW TELEMTYKI TRNSPORTU ZKŁD TELEKOMUNIKJI W TRNSPORIE WYDZIŁ TRNSPORTU POLITEHNIKI WRSZWSKIEJ LBORTORIUM PODSTW ELEKTRONIKI INSTRUKJ DO ĆWIZENI NR Komputerowe pomiary parametrów bramki NND

Bardziej szczegółowo

W jaki sposób użyć tych n bitów do reprezentacji liczb całkowitych

W jaki sposób użyć tych n bitów do reprezentacji liczb całkowitych Arytmetyka komputerowa Wszelkie liczby zapisuje się przy użyciu bitów czyli cyfr binarnych: 0 i 1 Ile różnych liczb można zapisać używajac n bitów? n liczby n-bitowe ile ich jest? 1 0 1 00 01 10 11 3 000001010011100101110111

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Architektura typu Single-Cycle

Architektura typu Single-Cycle Architektura typu Single-Cycle...czyli budujemy pierwszą maszynę parową Przepływ danych W układach sekwencyjnych przepływ danych synchronizowany jest sygnałem zegara Elementy procesora - założenia Pamięć

Bardziej szczegółowo

Układy cyfrowe - elementarz

Układy cyfrowe - elementarz Układy cyfrowe - elementarz Tomasz Słupiński 26.4.26 Pracownia Fizyczna i Elektroniczna, dla Inżynierii Nanostruktur oraz Energetyki i Chemii Jądrowej Pliki symulacji do wykładu dla programu Logisim (licencja

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI. Komputerowe pomiary parametrów bramki NAND TTL

LABORATORIUM PODSTAW ELEKTRONIKI. Komputerowe pomiary parametrów bramki NAND TTL ZESPÓŁ LBORTORIÓW TELEMTYKI TRNSPORTU ZKŁD TELEKOMUNIKJI W TRNSPORIE WYDZIŁ TRNSPORTU POLITEHNIKI WRSZWSKIEJ LBORTORIUM PODSTW ELEKTRONIKI INSTRUKJ DO ĆWIZENI NR Komputerowe pomiary parametrów bramki NND

Bardziej szczegółowo

PODSTAWY UKŁADÓW CYFROWYCH

PODSTAWY UKŁADÓW CYFROWYCH U N I W E R S Y T E T J A G I E L L O Ń S K I INSTYTUT INFORMATYKI SKRYPTY UCZELNIANE Marek Skomorowski PODSTAWY UKŁADÓW CYFROWYCH Kraków 1996 2 Spis treści Przedmowa 5 1 SYSTEMY LICZBOWE I KODY 7 1.1

Bardziej szczegółowo

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Architektura komputera. Cezary Bolek

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Architektura komputera. Cezary Bolek Wstęp do informatyki Architektura komputera Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki System komputerowy systemowa (System Bus) Pamięć operacyjna ROM,

Bardziej szczegółowo

Architektura komputerów, Informatyka, sem.iii. Sumatory

Architektura komputerów, Informatyka, sem.iii. Sumatory Sumatory Architektury sumatorów (zarys) Sumatory 1-bitowe Sumatory z propagacją Przeniesień CPA (Carry Propagate Adders) Sumatory wieloargumentowe 3-argumentowe Half Adder HA Macierz sumatorów RCA Full

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 19 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 19 kwietnia

Bardziej szczegółowo