1 Oscylator tłumiony *

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 Oscylator tłumiony *"

Transkrypt

1 Projekt Fizyka Plus nr POKL /11 współfinansowany przez Unię Europejską ze środków Europejskieo Funduszu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzki. Kurs Plus - Fizyka ateriały na kurs zaawansowany, uzupełniajacy Przyotowanie: Piotr Nieżurawski, Wydział Fizyki Uniwersytetu Warszawskieo e-ail: Powinniśy porzucić rozróżnienie poiędzy yśla naukowa a nienaukowa. Właściwe rozróżnienie polea na podziale na yśl loiczna i nieloiczna. Clie Staples Lewis ( ) 1 Oscylator tłuiony * Oblicz prędkość i przyśpieszenie ciężarka, któreo położenie na osi X jest opisane równanie x(t) = A e λt sin(ωt + φ), dzie A, λ, ω, φ są pewnyi stałyi. Wyraź przyśpieszenie jako funkcję prędkości i położenia. 2 Prędkość i przyśpieszenie w ruchu jednostajny * Udowodnij, że wartość prędkości punktu aterialneo jest stała wtedy i tylko wtedy, dy jeo przyśpieszenie jest prostopadłe do prędkości albo wartość przyśpieszenia wynosi 0. Wskazówka: Oblicz szybkość, z jaką zienia się wartość wyrażenia czyli 2. 3 Część i całość * Student otrzyał zadanie obliczenia siły, jaką jedna półkula jednorodnej kuli działa na druą półkulę. Po wielu bezsennych nocach doszedł do wniosku, że usi skorzystać z następująceo twierdzenia: Zbiór Z punktów aterialnych jest sua dwóch rozłacznych zbiorów punktów aterialnych: A oraz B. Jeśli oddziaływania iędzy punktai aterialnyi spełniaja III zasadę dynaiki, to siła, jaka działa zbiór punktów B na zbiór punktów A, jest równa sile, jaka działa zbiór punktów Z na zbiór punktów A. Udowodnij to twierdzenie. 1

2 4 Ciekawy skutek braku asy Udowodnij następujące twierdzenie. Wypadkowa siła działajaca na nieważkie ciało jest zawsze równa 0. Jest ono bardzo przydatne zaadnieniach, w których występują nieważkie liny, pręty, bloczki itd. 5 Wjazd Na równi pochyłej o kącie nachylenia α znajduje się odważnik o asie (Rys. 2), który zawsze dotyka całą powierzchnią swojej podstawy równi. Współczynnik tarcia kinetyczneo iędzy odważnikie a równią wynosi f. Odważnik jest połączony nieważką, nierozciąliwą linką z odważnikie o asie, który wisi poza krawędzią równi. Linka przesuwa się bez tarcia po bloczku. Wiadoo, że fraent linki iędzy odważnikie o asie i bloczkie jest zawsze równoleły do stoku równi, a przedłużenie teo fraentu linki zawsze przechodzi przez środek asy odważnika o asie. Przyśpieszenie zieskie wynosi. a) Jaki warunek usi spełniać współczynnik tarcia statyczneo f S, aby odważniki spoczywały, jeśli nie nadano i prędkości początkowych? b) Oblicz wartość przyśpieszenia odważnika o asie, jeśli wiadoo, że odważniki zaczęły się poruszać i odważnik o asie opada. Zaproponuj wartości liczbowe wielkości występujących w zadaniu i uzyskaj wyniki liczbowe. Rys. 2 f α 6 Zderzenie centralne * Kula o asie 1 i prędkości 1 zderza się z kulą o asie 2 i prędkości 2. Zderzenie jest idealnie sprężyste, a środki eoetryczne kul cały czas znajdują się na tej saej prostej. Kule nie wirują. Oblicz prędkość kuli o asie 1 po zderzeniu. Wynik doprowadź do postaci, w której nie występuje pierwiastek kwadratowy. Sprawdź wynik w przypadku, dy 1 / 2 0, oraz w przypadku, dy 2 / 1 0. Spróbuj rozwiazać układ równań sprytnie, bez standardowej procedury dla trójianu kwadratoweo. 7 Waon i deszcz * Waon o asie 0 zaczął poruszać się bez tarcia po pozioych torach. Jeo prędkość początkowa wynosiła 0. Ze wzlędu na pionowo padający, przyarzający deszcz asa waonu zwiększa się w 2

3 tepie w. Znajdź zależność prędkości waonu od czasu. Po jaki czasie od startu waonu jeo prędkość zniejszy się stokrotnie, jeśli 0 = 10 4 k, w = 0.99 k/s? 8 Trochę inne zadanie -?B Oszacuj ilość paięci, jaką powinien dysponować każdy ieszkaniec planety Zieia, aby ożna było zapisać tyle bajtów, ile jest atoów w próbce zawierającej jedynie 12 C i ważącej Postrzelone wahadło * etalowy ciężarek o asie = 1960 wisi na bardzo lekki sznurku o dłuości l = 50 c. Sznurek zaczepiony jest jedny końce w środku ciężkości ciężarka, a drui w taki sposób, że po nadaniu ciężarkowi prędkości o odpowiednio dużej wartości ciężarek oże poruszać się po okręu leżący w płaszczyźnie pionowej. W pewnej chwili w ciężarek uderza pozioo lecący z prędkością o wartości pocisk o asie = 40. Pocisk zlepia się trwale z ciężarkie. Powstałą bryłę ożna traktować jak punkt aterialny (w rozważaniach ożna poinąć roziary bryły). Jaka powinna być inialna wartość prędkości pocisku, aby utworzona bryła zatoczyła pełny okrą o proieniu l w płaszczyźnie pionowej? Przyjij wartość przyśpieszenia zieskieo = 9,8 /s 2. l 10 Zakręcona ća (wersja deluxe) * Ća leci do źródła światła. Wektor prędkości ćy jest nachylony pod kąte α wzlęde odcinka ća źródło. Tor zawarty jest w płaszczyźnie (tzw. ruch płaski). Owad startuje z odlełości ρ 0 od źródła. Rozważyć przypadki, dy: a) kąt α jest stały, a szybkość ćy zależy od odlełości ća źródło jak (ρ) = 0 (ρ/ρ 0 ) n, dzie 0 i n są stałyi. Znaleźć tor, po jaki porusza się ća oraz jeo dłuość. Podać równanie ruchu owada. Kiedy czas lotu jest skończony? b) szybkość lotu owada jest stała, a kąt α zależy od odlełości ća źródło jak α(ρ) = arctan(aρ ), dzie a i są stałyi. Znaleźć tor, po jaki porusza się ća. 3

4 11 Spacer biedronki po płycie * Płyta raofonowa o proieniu R kręci się z prędkością kątową ω wzlęde układu inercjalneo. Ze środka płyty wyrusza biedronka o asie. Ile powinien wynosić współczynnik tarcia iędzy biedronką a płytą, aby owad ół osiąnąć krawędź płyty, poruszając się cały czas ruche jednostajny prostoliniowy z prędkością wzlęde płyty? Rozwiązać korzystając z wzorów na siły pozorne. Czy zwiększenie asy biedronki pozwoliłoby jej na taki sa spacer po szybciej wirującej płycie? Jednorodne pole rawitacyjne jest prostopadłe do powierzchni płyty. 12 Koralik na pręcie * Koralik o asie porusza się bez tarcia wzdłuż wirująceo pręta. Pręt jest nachylony do poziou pod kąte α, a obraca się ze stałą prędkością kątową ω dookoła pionowej osi. Pręt nie porusza się w pionie, układ znajduje się w jednorodny, stały polu rawitacyjny. Znaleźć prędkość i położenie koralika wzlęde pręta, zakładając, że w chwili początkowej koralik spoczywał w odlełości D od osi obrotu. 13 Zjazd po ruchoej równi * Równia pochyła o kącie nachylenia α oraz o asie oże bez tarcia przesuwać się po stole. Na równię położono ciężarek o asie. Obliczyć przyśpieszenie równi oraz przyśpieszenie ciężarka w inercjalny układzie związany ze stołe, a także przyśpieszenie ciężarka w układzie związany z równią. Rozpatrzyć dwa przypadki: a) ciężarek zsuwa się po równi bez tarcia, b) ciężarek zsuwa się po równi z tarcie, a współczynnik tarcia wynosi µ. Czy ciężarek oże oderwać się od powierzchni równi? Jednorodne pole rawitacyjne jest prostopadłe do powierzchni stołu. 14 Zderzenie z ruchoa równia * Z wysokości h 1 nad pozioy lodowiskie upuszczono kulkę o asie. Na wysokości h 2 kulka odbiła się idealnie sprężyście od równi pochyłej, która początkowo spoczywała. Znajdź wektor prędkości kulki tuż po odbiciu się od równi. Kąt nachylenia równi wynosi α, a jej asa. Równia oże poruszać się po lodowisku bez tarcia. Układ znajduje się w polu rawitacyjny o natężeniu. Proień kulki oraz czas trwania zderzenia są zaniedbywalnie ałe. Uzyskaj również wynik liczbowy w przypadku, dy = 2 k, h 1 = 2.6, h 2 = 0.8, = 4 k, α = 45 oraz = 10 /s 2. h 1 h 2 α 4

5 15 ałpa Odważnik o asie przyocowano do nieważkiej, nierozciąliwej liny, którą przewieszono przez bloczek przyczepiony do sufitu. Za swobodny koniec liny chwyciła ałpa o asie i wspina się. Jaki ruche wzlęde liny przeieszcza się ałpa, skoro jej odlełość od sufitu się nie zienia? Obliczyć paraetry teo ruchu. Bloczek jest nieważki, a układ znajduje się w jednorodny polu rawitacyjny. 16 Bloczek-dźwinia Bloczek składający się z dwóch sztywno połączonych jednorodnych walców oże obracać się dookoła własnej osi syetrii. Na walec o proieniu R 1 i asie 1 nawinięto nierozciąliwy sznurek, do któreo przyocowano ciężarek o asie 1. W przeciwny kierunku nawinięto na walec o proieniu R 2 i asie 2 nierozciąliwy sznurek, do któreo przyocowano ciężarek o asie 2. Układ znajduje się w stały jednorodny polu rawitacyjny. Obliczyć przyśpieszenie ciężarka o asie 1. R 1 1 R Straszliwy wielokrażek * Z jakii przyśpieszeniai będą poruszać się odważniki o asach A oraz B w układzie przedstawiony na rysunku? Wszystkie bloczki są nieważkie, a nieważka, nierozciąliwa lina porusza się bez tarcia. Układ znajduje się w jednorodny polu rawitacyjny. C A B Zadanie to wyyśliłe na kolokwiu z Fizyki IBC na jesieni 2006 r. Spośród 155 piszacych kolokwiu 7 osób przedstawiło poprawne rozwiazanie. Zadanie zostało następnie wykorzystane w Olipiadzie Fizycznej. 5

6 18 oent pędu układu * Układ N punktów aterialnych jest izolowany. Oddziaływania iędzy punktai aterialnyi spełniają III zasadę dynaiki. Udowodnij, że całkowity oent pęd układu jest zachowany, jeśli dla każdych dwóch punktów aterialnych siła, jaką jeden z nich działa na drui, jest równoleła do prostej przechodzącej przez te punkty aterialne. 19 Koeta Halleya * Oblicz największą i najniejszą wartość prędkości koety, jeśli najniejsza i największa odlełość od koety do Słońca równa jest odpowiednio d oraz D. Dane są asa Słońca S oraz stała rawitacji G. Uzyskaj również wyniki liczbowe, jeśli przyjiey d = , D = , S = k oraz G = N 2 k Trójkat rawitacyjny * Jakie warunki uszą być spełnione, aby odlełości iędzy trzea swobodnyi punktai aterialnyi były stałe, jeśli znane są ich asy oraz wiadoo, że punkty nie leżą na prostej? Oblicz prędkość kątową punktów aterialnych w inercjalny układzie, w który środek ich asy spoczywa. Wyprowadź warunki na odlełości poiędzy ciałai. Punkty aterialne oddziałują jednie rawitacyjnie. Układ jest izolowany. 21 Akcelerator, anes i ekran Początkowo spoczywającą cząstkę o dodatni ładunku Q i asie przyśpieszono za poocą akceleratora o dłuości L. W akceleratorze wytwarzane jest jednorodne pole elektryczne E. Tuż za akceleratore cząstka wleciała w obszar jednorodneo pola anetyczneo B. W jakiej odlełości D od końca akceleratora cząstka uderzy w ekran? Kąt iędzy osią akceleratora a płaszczyzną ekranu wynosi α. W wybrany układzie współrzędnych wektory pól są wyrażone następująco: E = E(cos αê x + sin αê y ) i B = Bê z, równanie ekranu a postać y = 0, a cząstka opuszczając akcelerator przelatuje przez początek układu współrzędnych. 22 Pola równolełe * Cząstka o ładunku Q i asie, ając początkową prędkość 0 = 0x ê x + 0y ê y, wlatuje w obszar równolełych, jednorodnych pól: elektryczneo E = Eê y i anetyczneo B = Bê y. Wynikające z druiej zasady dynaiki Newtona równania na współrzędne położenia cząstki x i z rozwiązać po sprowadzeniu do jedneo równania na zienną zespoloną f = ẋ + iż. Podać równanie ruchu cząstki zakładając, że w chwili początkowej przelatywała przez początek układu współrzędnych. Jaki warunek usi być spełniony, aby cząstka dotarła do ekranu, któreo równanie a postać x = L? Jaki obraz utworzą na ekranie cząstki o różnych wartościach 0x, jeśli założyć, że odlełość L jest ała w porównaniu z proienie toru w płaszczyźnie XZ, tzn. L 0x /(QB)? Wskazówka: Obraz ożna znaleźć jako zależność y(z) po zastosowaniu następujących przybliżeń dla x(t) i z(t): jeśli sin α 1, to sin α α oraz cos α 1 α 2 /2. 6

7 23 Pola prostopadłe * Cząstka o ładunku Q i asie znajduje się w obszarze prostopadłych, jednorodnych pól: elektryczneo E = Eê z i anetyczneo B = Bê y. Wynikające z druiej zasady dynaiki Newtona równania na współrzędne położenia cząstki x i z rozwiązać po sprowadzeniu do jedneo równania na zienną zespoloną f = ẋ + iż. Podać równanie ruchu cząstki zakładając, że w chwili początkowej wyruszała ona z początku układu współrzędnych z prędkością początkową 0 = 0x ê x + 0y ê y. Jakie warunki uszą być spełnione, aby tore cząstki była zwykła cykloida? Jakie warunki uszą być spełnione, aby cząstka poruszała się ruche jednostajny prostoliniowy? Jaka będzie wtedy jej prędkość? Fizyka relatywistyczna W poniższych probleach należy uwzlędniać efekty relatywistyczne. 24 Zderzenie dwóch jader Dwa jądra atoowe zbliżają się do siebie. Każde a asę i porusza się z prędkością (kierunki prędkości są równolełe). Po zderzeniu obserwujey dwa jądra o asach 1 = 3 i 4 2 = 1, które 4 kontynuują ruch pierwotnych jąder (tzn. ają tę saą prędkość i kierunek co pierwotne jądra), oraz układ cząstek powstałych w zderzeniu, X. Obliczyć asę niezienniczą układu X, X. Podać również wyrażenie na X w szczeólnych przypadkach: a) 1 = 2 oraz b) 1 = 2 = 1. 2 Uwaa: Zastanowić się, jaki jest kierunek wektora pędu układu X. Poinać efekty zwiazane z budowa jadra. Przed zderzenie Po zderzeniu 2 X 1 25 Awaria rakiety i wyprawa ratunkowa Z Ziei wyrusza rakieta lecąca z prędkością c/2. Po 10 dniach rakieta ulea awarii (10 dni w pokładoweo zeara). Załoa wysyła synał świetlny z prośbą o pooc. Po otrzyaniu wiadoości centru lotów na Ziei natychiast wysyła rakietę ratunkową. Z jaką szybkością powinna się ona poruszać wzlęde Ziei, aby uratować załoę pierwszej z rakiet, w której astronauci oą utrzyać się przy życiu przez 30 dni od awarii? 26 Fotorafia pręta * Równoleły do osi Y pręt porusza się wzdłuż osi X z prędkością. Fotorafujey pręt aparate znajdujący się w punkcie x = y = 0, z = a. Na zdjęciu środek pręta znajduje się w początku układu współrzędnych. Jaki jest kształt pręta na fotorafii? 7

1 Polowanie na asteroidę 3D

1 Polowanie na asteroidę 3D Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskieo Funduszu Społeczneo w ramach Proramu Operacyjneo Kapitał Ludzki. Kurs Plus - Fizyka ateriały

Bardziej szczegółowo

1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8.

1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8. DYNAMIKA BRYŁY SZTYWNEJ Środek asy. Z pręta o stały przekroju poprzeczny i długości odcięto 5 c kawałek. O ile przesunęło się połoŝenie środka asy pręta. o 8 początkowej długości pręta. Trzy kule o asach:,

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

1 Polowanie na asteroidę 3D

1 Polowanie na asteroidę 3D Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskieo Funduszu Społeczneo w ramach Proramu Operacyjneo Kapitał Ludzki. Kurs Plus - Fizyka - wersja

Bardziej szczegółowo

Bryła sztywna Zadanie domowe

Bryła sztywna Zadanie domowe Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła

Bardziej szczegółowo

Mechanika ogólna II Kinematyka i dynamika

Mechanika ogólna II Kinematyka i dynamika Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,

Bardziej szczegółowo

Nara -Japonia. Yokohama, Japan, September 2014

Nara -Japonia. Yokohama, Japan, September 2014 Nara -Japonia Yokohaa, Japan, Septeber 4 -7 (Jaroszewicz slajdów Zasady zachowania, zderzenia ciał Praca, oc i energia echaniczna Zasada zachowania energii Zasada zachowania pędu Zasada zachowania oentu

Bardziej szczegółowo

Dynamika: układy nieinercjalne

Dynamika: układy nieinercjalne Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

FIZYKA R.Resnick & D. Halliday

FIZYKA R.Resnick & D. Halliday FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

Ćwiczenie: Symulacja zderzeń sprężystych i niesprężystych Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Fizyka I. Kolokwium

Fizyka I. Kolokwium Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić

Bardziej szczegółowo

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę

Bardziej szczegółowo

Dynamika ruchu obrotowego 1

Dynamika ruchu obrotowego 1 Dynamika ruchu obrotowego 1 1. Obliczyć moment bezwładności jednorodnego pręta o masie M i długości L względem osi prostopadłej do niego i przechodzącej przez: (a) koniec pręta, (b) środek pręta. 2. Obliczyć

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ ZAGADNIENIA DO ĆWICZEŃ 1. Warunki równowagi ciał. 2. Praktyczne wykorzystanie warunków równowagi w tzw. maszynach prostych.

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski.

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski. PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/

Bardziej szczegółowo

Dynamika ruchu obrotowego

Dynamika ruchu obrotowego Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

O ciężarkach na bloczku z uwzględnieniem masy nici

O ciężarkach na bloczku z uwzględnieniem masy nici 46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Spis treści 1 Bezwładność 2 I zasada dynamiki 2.1 Zasada bezwładności 2.2 Układ odniesienia 2.3 Ciało izolowane 2.4 Układ inercjalny 3 II zasada dynamiki 3.1 II prawo Newtona 3.2

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Wybierz lub podaj i krótko uzasadnij właściwą odpowiedź na dowolnie przez siebie wybrane siedem spośród dziesięciu poniższych punktów: ZADANIE

Bardziej szczegółowo

Zasada zachowania pędu 1

Zasada zachowania pędu 1 Zasada zachowania pędu 1 1. Z działa o asie 5 10 3 kg wylatuje pocisk o cięŝarze 100 kg. Energia kinetyczna wylatującego pocisku wynosi 7.5 10 6 J. Jaką energię kinetyczną uzyskuje działo wskutek odrzutu?

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

Zadania z fizyki. Wydział PPT

Zadania z fizyki. Wydział PPT Zadania z fizyki Wydział PPT 9 Moment pędu; bryła sztywna Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone gwiazdką są (zdaniem

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Środek ciężkości Zaad.6.1 Wyznacz środek masy układu pięciu mas o odpowiednich współrzędnych: m 1 (2,2), m 2 (2,5), m 3 (-4,2), m 4 (-3,-2),

Bardziej szczegółowo

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r 1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Przygotowane częściowo na podstawie materiałów z roku akademickiego 2007/8. Literatura (wspólna dla wszystkich

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski.

PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski. PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Środek masy Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu.

Środek masy Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu. Środek masy 125. Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu. 126. Dwa klocki poruszają się po płaskim stole wzdłuż tej samej

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

7. Drgania i fale. Drgania

7. Drgania i fale. Drgania 7 Drgania i fale Drgania Ruche drgający okresowy nazyway taki ruch w który układ po upływie pewnego czasu nazywanego okrese drgania wraca do stanu wyjściowego Drganie haroniczne proste W ujęciu geoetryczny

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Dynaika punktu aterialnego 1. O czasie t 1 =14.0 s saochód o asie =1200 kg był w punkcie r 1 =[100,0,25] i iał pęd p 1 =[6000,0,-3600] kg /s. Jaka była pozycja saochodu w czasie t 2 =14.5 s? 2. Kierowca

Bardziej szczegółowo

Dynamika punktu materialnego 1

Dynamika punktu materialnego 1 Dynamika punktu materialnego 1 1. Znaleźć wartość stałej siły działającej na ciało o masie 2,5kg, jeżeli w ciągu 5s od chwili spoczynku przebyło ono drogę 40m. 2. Rakieta i jej ładunek mają masę 50000kg.

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji) Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E). Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną

Bardziej szczegółowo

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad: III. DYAMIKA 7. Dynamika ruchu postępowego Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki ewtona. Przykładowe sformułowania tych zasad: I. Istnieje taki układ

Bardziej szczegółowo

FIZYKA Kolokwium nr 3 (e-test)

FIZYKA Kolokwium nr 3 (e-test) FIZYKA Kolokwium nr 3 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Z balkonu znajdującego się na wysokości 11m nad ziemią wypadła poduszka o

Bardziej szczegółowo

TRANFORMACJA GALILEUSZA I LORENTZA

TRANFORMACJA GALILEUSZA I LORENTZA TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna

Bardziej szczegółowo

30 = 1.6*a F = 2.6*18.75

30 = 1.6*a F = 2.6*18.75 Fizyka 1 SKP drugie kolokwium, cd. [Rozwiązał: Maciek K.] 1. Winda osobowa rusza w dół z przyspieszeniem 1m/s2. Ile wynosi siła nacisku człowieka o masie 90 kg na podłogę windy? Wynik podaj w N z dokładnością

Bardziej szczegółowo

5 m. 3 m. Zad. 4 Pod jakim kątem α do poziomu należy rzucić ciało, aby wysokość jego wzniesienia równała się 0.5 zasięgu rzutu?

5 m. 3 m. Zad. 4 Pod jakim kątem α do poziomu należy rzucić ciało, aby wysokość jego wzniesienia równała się 0.5 zasięgu rzutu? Segment A.II Kinematyka II Przygotował: dr Katarzyna Górska Zad. 1 Z wysokości h = 35 m rzucono poziomo kamień z prędkością początkową v = 30 m/s. Jak daleko od miejsca rzucenia spadnie kamień na ziemię

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Pęd. Pędem ciała nazywamy iloczyn jego masy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową.

Pęd. Pędem ciała nazywamy iloczyn jego masy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową. Pęd Pęde ciała nazyway iloczyn jego asy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową. p v v Zgodnie z powyższą definicją jednostką pędu jest kilogra razy etr na sekundę: [kg*/s]

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU. KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

ZADANIA. Tłok w silniku wykonuje drgania harmoniczne opisane następującym równaniem

ZADANIA. Tłok w silniku wykonuje drgania harmoniczne opisane następującym równaniem SPRĘŻYNY I DRGANIA ZADANIA Zadanie SD1 Tłok w silniku wykonuje drgania harmoniczne opisane następującym równaniem xx(tt) = 5 cm cos 2tt + ππ 6. gdzie xx(tt) to położenie tłoka w chwili tt. Dla chwili tt

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3

LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Andrzej Wysołek plik; Koitet Główny Olipiady Fizycznej. Andrzej Wysołek Koitet

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy

WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy KOD UCZNIA Białystok 08.02.2007r. WOJEWÓDZKI KONKURS FIZYCZNY stopień rejonowy Młody Fizyku! Przed Tobą stopień rejonowy Wojewódzkiego Konkursu Fizycznego. Masz do rozwiązania 15 zadań zakniętych i 3 otwarte.

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv

Bardziej szczegółowo

Plan wynikowy fizyka rozszerzona klasa 2

Plan wynikowy fizyka rozszerzona klasa 2 Plan wynikowy fizyka rozszerzona klasa 2 1. Opis ruchu postępowego Temat lekcji Elementy działań na wektorach dostateczną uczeń podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy

Bardziej szczegółowo

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne

Bardziej szczegółowo

Wykład 2 Mechanika Newtona

Wykład 2 Mechanika Newtona Wykład Mechanika Newtona Dynamika jest nauką, która zajmuję się ruchem ciał z uwzględnieniem sił, które działają na ciało. Podstawą mechaniki klasycznej są trzy doświadczalne zasady, które po raz pierwszy

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Bryła sztywna Przewodnik do rozwiązywania typowych zadań

Bryła sztywna Przewodnik do rozwiązywania typowych zadań Bryła sztywna Przewodnik do rozwiązywania typowych zadań Przed przystąpieniem do korzystania z poniższego poradnika: wydrukuj jego treść, przygotuj kartki w kratkę, na których będziesz rozwiązywał zadania,

Bardziej szczegółowo

5. Ruch harmoniczny i równanie falowe

5. Ruch harmoniczny i równanie falowe 5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 2013 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega

Bardziej szczegółowo

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu: Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej

Bardziej szczegółowo

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie, Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział. Składanie ruchów... 11 Rozdział 3. Modelowanie zjawisk fizycznych...43 Rozdział 4. Numeryczne całkowanie, czyli obliczanie pracy w polu grawitacyjnym

Bardziej szczegółowo

Mechanika ruchu obrotowego

Mechanika ruchu obrotowego Mechanika ruchu obrotowego Fizyka I (Mechanika) Wykład X: Przypomnienie, ruch po okręgu Oscylator harmoniczny, wahadło Ruch w jednorodnym polu elektrycznym i magnetycznym Prawa ruchu w układzie obracajacym

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Zadania z fizyki. Wydział PPT

Zadania z fizyki. Wydział PPT Zadania z fizyki Wydział PPT 5 Zasady dynamiki Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone gwiazdką są (zdaniem wykładowcy)

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo