1 Oscylator tłumiony *

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 Oscylator tłumiony *"

Transkrypt

1 Projekt Fizyka Plus nr POKL /11 współfinansowany przez Unię Europejską ze środków Europejskieo Funduszu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzki. Kurs Plus - Fizyka ateriały na kurs zaawansowany, uzupełniajacy Przyotowanie: Piotr Nieżurawski, Wydział Fizyki Uniwersytetu Warszawskieo e-ail: Powinniśy porzucić rozróżnienie poiędzy yśla naukowa a nienaukowa. Właściwe rozróżnienie polea na podziale na yśl loiczna i nieloiczna. Clie Staples Lewis ( ) 1 Oscylator tłuiony * Oblicz prędkość i przyśpieszenie ciężarka, któreo położenie na osi X jest opisane równanie x(t) = A e λt sin(ωt + φ), dzie A, λ, ω, φ są pewnyi stałyi. Wyraź przyśpieszenie jako funkcję prędkości i położenia. 2 Prędkość i przyśpieszenie w ruchu jednostajny * Udowodnij, że wartość prędkości punktu aterialneo jest stała wtedy i tylko wtedy, dy jeo przyśpieszenie jest prostopadłe do prędkości albo wartość przyśpieszenia wynosi 0. Wskazówka: Oblicz szybkość, z jaką zienia się wartość wyrażenia czyli 2. 3 Część i całość * Student otrzyał zadanie obliczenia siły, jaką jedna półkula jednorodnej kuli działa na druą półkulę. Po wielu bezsennych nocach doszedł do wniosku, że usi skorzystać z następująceo twierdzenia: Zbiór Z punktów aterialnych jest sua dwóch rozłacznych zbiorów punktów aterialnych: A oraz B. Jeśli oddziaływania iędzy punktai aterialnyi spełniaja III zasadę dynaiki, to siła, jaka działa zbiór punktów B na zbiór punktów A, jest równa sile, jaka działa zbiór punktów Z na zbiór punktów A. Udowodnij to twierdzenie. 1

2 4 Ciekawy skutek braku asy Udowodnij następujące twierdzenie. Wypadkowa siła działajaca na nieważkie ciało jest zawsze równa 0. Jest ono bardzo przydatne zaadnieniach, w których występują nieważkie liny, pręty, bloczki itd. 5 Wjazd Na równi pochyłej o kącie nachylenia α znajduje się odważnik o asie (Rys. 2), który zawsze dotyka całą powierzchnią swojej podstawy równi. Współczynnik tarcia kinetyczneo iędzy odważnikie a równią wynosi f. Odważnik jest połączony nieważką, nierozciąliwą linką z odważnikie o asie, który wisi poza krawędzią równi. Linka przesuwa się bez tarcia po bloczku. Wiadoo, że fraent linki iędzy odważnikie o asie i bloczkie jest zawsze równoleły do stoku równi, a przedłużenie teo fraentu linki zawsze przechodzi przez środek asy odważnika o asie. Przyśpieszenie zieskie wynosi. a) Jaki warunek usi spełniać współczynnik tarcia statyczneo f S, aby odważniki spoczywały, jeśli nie nadano i prędkości początkowych? b) Oblicz wartość przyśpieszenia odważnika o asie, jeśli wiadoo, że odważniki zaczęły się poruszać i odważnik o asie opada. Zaproponuj wartości liczbowe wielkości występujących w zadaniu i uzyskaj wyniki liczbowe. Rys. 2 f α 6 Zderzenie centralne * Kula o asie 1 i prędkości 1 zderza się z kulą o asie 2 i prędkości 2. Zderzenie jest idealnie sprężyste, a środki eoetryczne kul cały czas znajdują się na tej saej prostej. Kule nie wirują. Oblicz prędkość kuli o asie 1 po zderzeniu. Wynik doprowadź do postaci, w której nie występuje pierwiastek kwadratowy. Sprawdź wynik w przypadku, dy 1 / 2 0, oraz w przypadku, dy 2 / 1 0. Spróbuj rozwiazać układ równań sprytnie, bez standardowej procedury dla trójianu kwadratoweo. 7 Waon i deszcz * Waon o asie 0 zaczął poruszać się bez tarcia po pozioych torach. Jeo prędkość początkowa wynosiła 0. Ze wzlędu na pionowo padający, przyarzający deszcz asa waonu zwiększa się w 2

3 tepie w. Znajdź zależność prędkości waonu od czasu. Po jaki czasie od startu waonu jeo prędkość zniejszy się stokrotnie, jeśli 0 = 10 4 k, w = 0.99 k/s? 8 Trochę inne zadanie -?B Oszacuj ilość paięci, jaką powinien dysponować każdy ieszkaniec planety Zieia, aby ożna było zapisać tyle bajtów, ile jest atoów w próbce zawierającej jedynie 12 C i ważącej Postrzelone wahadło * etalowy ciężarek o asie = 1960 wisi na bardzo lekki sznurku o dłuości l = 50 c. Sznurek zaczepiony jest jedny końce w środku ciężkości ciężarka, a drui w taki sposób, że po nadaniu ciężarkowi prędkości o odpowiednio dużej wartości ciężarek oże poruszać się po okręu leżący w płaszczyźnie pionowej. W pewnej chwili w ciężarek uderza pozioo lecący z prędkością o wartości pocisk o asie = 40. Pocisk zlepia się trwale z ciężarkie. Powstałą bryłę ożna traktować jak punkt aterialny (w rozważaniach ożna poinąć roziary bryły). Jaka powinna być inialna wartość prędkości pocisku, aby utworzona bryła zatoczyła pełny okrą o proieniu l w płaszczyźnie pionowej? Przyjij wartość przyśpieszenia zieskieo = 9,8 /s 2. l 10 Zakręcona ća (wersja deluxe) * Ća leci do źródła światła. Wektor prędkości ćy jest nachylony pod kąte α wzlęde odcinka ća źródło. Tor zawarty jest w płaszczyźnie (tzw. ruch płaski). Owad startuje z odlełości ρ 0 od źródła. Rozważyć przypadki, dy: a) kąt α jest stały, a szybkość ćy zależy od odlełości ća źródło jak (ρ) = 0 (ρ/ρ 0 ) n, dzie 0 i n są stałyi. Znaleźć tor, po jaki porusza się ća oraz jeo dłuość. Podać równanie ruchu owada. Kiedy czas lotu jest skończony? b) szybkość lotu owada jest stała, a kąt α zależy od odlełości ća źródło jak α(ρ) = arctan(aρ ), dzie a i są stałyi. Znaleźć tor, po jaki porusza się ća. 3

4 11 Spacer biedronki po płycie * Płyta raofonowa o proieniu R kręci się z prędkością kątową ω wzlęde układu inercjalneo. Ze środka płyty wyrusza biedronka o asie. Ile powinien wynosić współczynnik tarcia iędzy biedronką a płytą, aby owad ół osiąnąć krawędź płyty, poruszając się cały czas ruche jednostajny prostoliniowy z prędkością wzlęde płyty? Rozwiązać korzystając z wzorów na siły pozorne. Czy zwiększenie asy biedronki pozwoliłoby jej na taki sa spacer po szybciej wirującej płycie? Jednorodne pole rawitacyjne jest prostopadłe do powierzchni płyty. 12 Koralik na pręcie * Koralik o asie porusza się bez tarcia wzdłuż wirująceo pręta. Pręt jest nachylony do poziou pod kąte α, a obraca się ze stałą prędkością kątową ω dookoła pionowej osi. Pręt nie porusza się w pionie, układ znajduje się w jednorodny, stały polu rawitacyjny. Znaleźć prędkość i położenie koralika wzlęde pręta, zakładając, że w chwili początkowej koralik spoczywał w odlełości D od osi obrotu. 13 Zjazd po ruchoej równi * Równia pochyła o kącie nachylenia α oraz o asie oże bez tarcia przesuwać się po stole. Na równię położono ciężarek o asie. Obliczyć przyśpieszenie równi oraz przyśpieszenie ciężarka w inercjalny układzie związany ze stołe, a także przyśpieszenie ciężarka w układzie związany z równią. Rozpatrzyć dwa przypadki: a) ciężarek zsuwa się po równi bez tarcia, b) ciężarek zsuwa się po równi z tarcie, a współczynnik tarcia wynosi µ. Czy ciężarek oże oderwać się od powierzchni równi? Jednorodne pole rawitacyjne jest prostopadłe do powierzchni stołu. 14 Zderzenie z ruchoa równia * Z wysokości h 1 nad pozioy lodowiskie upuszczono kulkę o asie. Na wysokości h 2 kulka odbiła się idealnie sprężyście od równi pochyłej, która początkowo spoczywała. Znajdź wektor prędkości kulki tuż po odbiciu się od równi. Kąt nachylenia równi wynosi α, a jej asa. Równia oże poruszać się po lodowisku bez tarcia. Układ znajduje się w polu rawitacyjny o natężeniu. Proień kulki oraz czas trwania zderzenia są zaniedbywalnie ałe. Uzyskaj również wynik liczbowy w przypadku, dy = 2 k, h 1 = 2.6, h 2 = 0.8, = 4 k, α = 45 oraz = 10 /s 2. h 1 h 2 α 4

5 15 ałpa Odważnik o asie przyocowano do nieważkiej, nierozciąliwej liny, którą przewieszono przez bloczek przyczepiony do sufitu. Za swobodny koniec liny chwyciła ałpa o asie i wspina się. Jaki ruche wzlęde liny przeieszcza się ałpa, skoro jej odlełość od sufitu się nie zienia? Obliczyć paraetry teo ruchu. Bloczek jest nieważki, a układ znajduje się w jednorodny polu rawitacyjny. 16 Bloczek-dźwinia Bloczek składający się z dwóch sztywno połączonych jednorodnych walców oże obracać się dookoła własnej osi syetrii. Na walec o proieniu R 1 i asie 1 nawinięto nierozciąliwy sznurek, do któreo przyocowano ciężarek o asie 1. W przeciwny kierunku nawinięto na walec o proieniu R 2 i asie 2 nierozciąliwy sznurek, do któreo przyocowano ciężarek o asie 2. Układ znajduje się w stały jednorodny polu rawitacyjny. Obliczyć przyśpieszenie ciężarka o asie 1. R 1 1 R Straszliwy wielokrażek * Z jakii przyśpieszeniai będą poruszać się odważniki o asach A oraz B w układzie przedstawiony na rysunku? Wszystkie bloczki są nieważkie, a nieważka, nierozciąliwa lina porusza się bez tarcia. Układ znajduje się w jednorodny polu rawitacyjny. C A B Zadanie to wyyśliłe na kolokwiu z Fizyki IBC na jesieni 2006 r. Spośród 155 piszacych kolokwiu 7 osób przedstawiło poprawne rozwiazanie. Zadanie zostało następnie wykorzystane w Olipiadzie Fizycznej. 5

6 18 oent pędu układu * Układ N punktów aterialnych jest izolowany. Oddziaływania iędzy punktai aterialnyi spełniają III zasadę dynaiki. Udowodnij, że całkowity oent pęd układu jest zachowany, jeśli dla każdych dwóch punktów aterialnych siła, jaką jeden z nich działa na drui, jest równoleła do prostej przechodzącej przez te punkty aterialne. 19 Koeta Halleya * Oblicz największą i najniejszą wartość prędkości koety, jeśli najniejsza i największa odlełość od koety do Słońca równa jest odpowiednio d oraz D. Dane są asa Słońca S oraz stała rawitacji G. Uzyskaj również wyniki liczbowe, jeśli przyjiey d = , D = , S = k oraz G = N 2 k Trójkat rawitacyjny * Jakie warunki uszą być spełnione, aby odlełości iędzy trzea swobodnyi punktai aterialnyi były stałe, jeśli znane są ich asy oraz wiadoo, że punkty nie leżą na prostej? Oblicz prędkość kątową punktów aterialnych w inercjalny układzie, w który środek ich asy spoczywa. Wyprowadź warunki na odlełości poiędzy ciałai. Punkty aterialne oddziałują jednie rawitacyjnie. Układ jest izolowany. 21 Akcelerator, anes i ekran Początkowo spoczywającą cząstkę o dodatni ładunku Q i asie przyśpieszono za poocą akceleratora o dłuości L. W akceleratorze wytwarzane jest jednorodne pole elektryczne E. Tuż za akceleratore cząstka wleciała w obszar jednorodneo pola anetyczneo B. W jakiej odlełości D od końca akceleratora cząstka uderzy w ekran? Kąt iędzy osią akceleratora a płaszczyzną ekranu wynosi α. W wybrany układzie współrzędnych wektory pól są wyrażone następująco: E = E(cos αê x + sin αê y ) i B = Bê z, równanie ekranu a postać y = 0, a cząstka opuszczając akcelerator przelatuje przez początek układu współrzędnych. 22 Pola równolełe * Cząstka o ładunku Q i asie, ając początkową prędkość 0 = 0x ê x + 0y ê y, wlatuje w obszar równolełych, jednorodnych pól: elektryczneo E = Eê y i anetyczneo B = Bê y. Wynikające z druiej zasady dynaiki Newtona równania na współrzędne położenia cząstki x i z rozwiązać po sprowadzeniu do jedneo równania na zienną zespoloną f = ẋ + iż. Podać równanie ruchu cząstki zakładając, że w chwili początkowej przelatywała przez początek układu współrzędnych. Jaki warunek usi być spełniony, aby cząstka dotarła do ekranu, któreo równanie a postać x = L? Jaki obraz utworzą na ekranie cząstki o różnych wartościach 0x, jeśli założyć, że odlełość L jest ała w porównaniu z proienie toru w płaszczyźnie XZ, tzn. L 0x /(QB)? Wskazówka: Obraz ożna znaleźć jako zależność y(z) po zastosowaniu następujących przybliżeń dla x(t) i z(t): jeśli sin α 1, to sin α α oraz cos α 1 α 2 /2. 6

7 23 Pola prostopadłe * Cząstka o ładunku Q i asie znajduje się w obszarze prostopadłych, jednorodnych pól: elektryczneo E = Eê z i anetyczneo B = Bê y. Wynikające z druiej zasady dynaiki Newtona równania na współrzędne położenia cząstki x i z rozwiązać po sprowadzeniu do jedneo równania na zienną zespoloną f = ẋ + iż. Podać równanie ruchu cząstki zakładając, że w chwili początkowej wyruszała ona z początku układu współrzędnych z prędkością początkową 0 = 0x ê x + 0y ê y. Jakie warunki uszą być spełnione, aby tore cząstki była zwykła cykloida? Jakie warunki uszą być spełnione, aby cząstka poruszała się ruche jednostajny prostoliniowy? Jaka będzie wtedy jej prędkość? Fizyka relatywistyczna W poniższych probleach należy uwzlędniać efekty relatywistyczne. 24 Zderzenie dwóch jader Dwa jądra atoowe zbliżają się do siebie. Każde a asę i porusza się z prędkością (kierunki prędkości są równolełe). Po zderzeniu obserwujey dwa jądra o asach 1 = 3 i 4 2 = 1, które 4 kontynuują ruch pierwotnych jąder (tzn. ają tę saą prędkość i kierunek co pierwotne jądra), oraz układ cząstek powstałych w zderzeniu, X. Obliczyć asę niezienniczą układu X, X. Podać również wyrażenie na X w szczeólnych przypadkach: a) 1 = 2 oraz b) 1 = 2 = 1. 2 Uwaa: Zastanowić się, jaki jest kierunek wektora pędu układu X. Poinać efekty zwiazane z budowa jadra. Przed zderzenie Po zderzeniu 2 X 1 25 Awaria rakiety i wyprawa ratunkowa Z Ziei wyrusza rakieta lecąca z prędkością c/2. Po 10 dniach rakieta ulea awarii (10 dni w pokładoweo zeara). Załoa wysyła synał świetlny z prośbą o pooc. Po otrzyaniu wiadoości centru lotów na Ziei natychiast wysyła rakietę ratunkową. Z jaką szybkością powinna się ona poruszać wzlęde Ziei, aby uratować załoę pierwszej z rakiet, w której astronauci oą utrzyać się przy życiu przez 30 dni od awarii? 26 Fotorafia pręta * Równoleły do osi Y pręt porusza się wzdłuż osi X z prędkością. Fotorafujey pręt aparate znajdujący się w punkcie x = y = 0, z = a. Na zdjęciu środek pręta znajduje się w początku układu współrzędnych. Jaki jest kształt pręta na fotorafii? 7

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

1 Polowanie na asteroidę 3D

1 Polowanie na asteroidę 3D Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskieo Funduszu Społeczneo w ramach Proramu Operacyjneo Kapitał Ludzki. Kurs Plus - Fizyka - wersja

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

Ćwiczenie: Symulacja zderzeń sprężystych i niesprężystych Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ ZAGADNIENIA DO ĆWICZEŃ 1. Warunki równowagi ciał. 2. Praktyczne wykorzystanie warunków równowagi w tzw. maszynach prostych.

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

7. Drgania i fale. Drgania

7. Drgania i fale. Drgania 7 Drgania i fale Drgania Ruche drgający okresowy nazyway taki ruch w który układ po upływie pewnego czasu nazywanego okrese drgania wraca do stanu wyjściowego Drganie haroniczne proste W ujęciu geoetryczny

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3

LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Andrzej Wysołek plik; Koitet Główny Olipiady Fizycznej. Andrzej Wysołek Koitet

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU. KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

5 m. 3 m. Zad. 4 Pod jakim kątem α do poziomu należy rzucić ciało, aby wysokość jego wzniesienia równała się 0.5 zasięgu rzutu?

5 m. 3 m. Zad. 4 Pod jakim kątem α do poziomu należy rzucić ciało, aby wysokość jego wzniesienia równała się 0.5 zasięgu rzutu? Segment A.II Kinematyka II Przygotował: dr Katarzyna Górska Zad. 1 Z wysokości h = 35 m rzucono poziomo kamień z prędkością początkową v = 30 m/s. Jak daleko od miejsca rzucenia spadnie kamień na ziemię

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Bryła sztywna Przewodnik do rozwiązywania typowych zadań

Bryła sztywna Przewodnik do rozwiązywania typowych zadań Bryła sztywna Przewodnik do rozwiązywania typowych zadań Przed przystąpieniem do korzystania z poniższego poradnika: wydrukuj jego treść, przygotuj kartki w kratkę, na których będziesz rozwiązywał zadania,

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

I Wielkości fizyczne. Układ współrzędnych. Rachunek wektorowy

I Wielkości fizyczne. Układ współrzędnych. Rachunek wektorowy I Wielkości fizyczne. Układ współrzędnych. Rachunek wektorowy 1/12 I Wielkości fizyczne. Układ współrzędnych. Rachunek wektorowy 1.* Przelicz szybkości podane w metrach na sekundę na kilometry na godzinę:

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor (na podstawie J.Giergiel, L.Głuch, A.Łopata: Zbiór zadań z mechaniki.wydawnictwo AGH, Kraków 2011r.) Temat

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

FIZYKA Kolokwium nr 4 (e-test)

FIZYKA Kolokwium nr 4 (e-test) FIZYKA Kolokwium nr 4 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Pręt jednorodny o długości 1.7m i ciężarze 100N zawieszono poziomo na dwóch

Bardziej szczegółowo

(prędkość ta nie zależy od ciężarów narciarzy)

(prędkość ta nie zależy od ciężarów narciarzy) Segment A.V Energia potencjalna i kinetyczna, energia kinetyczna ruchu obrotowego, zasada zachowania energii, praca i moc Przygotował: Wiesław Nowak Zad. 1 Na wysokości h = 0 m na zboczu góry w Unisławiu

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

1 Zadanie - 7 ton. 3 Zadanie - Wioślarz

1 Zadanie - 7 ton. 3 Zadanie - Wioślarz Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki. Kurs Plus - Fizyka Materiały

Bardziej szczegółowo

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R.

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. Pytania mogą posłużyć do rozegrania I etapu konkursu rozgrywającego się w macierzystej szkole gimnazjalistów - kandydatów. Matematyka Zad. 1 Ze wzoru wynika,

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R E-15 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

5. Dynamika bryły sztywnej

5. Dynamika bryły sztywnej 5. Dynaika bryły sztywnej Moent siły, oent pędu i oent bezwładności Aby spowodować ruch postępowy, konieczne jest przyłożenie do ciała siły. Aby wprawić bryłę w ruch obrotowy wokół osi lub punktu, niezbędne

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Ruch obrotowy. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Ruch obrotowy. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ruch obrotowy Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ruch jednostajny po okręgu y v W ruchu jednostajnym po okręgu prędkość punktu materialnego jest

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona

Bardziej szczegółowo

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI 3 Copyright by Zbigniew Osiak Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora. Portret

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

LVIII OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA

LVIII OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA LVIII OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA Rozwiązania zadań I stopnia należy przesyłać do Okręgowych Komitetów Olimpiady Fizycznej w terminach: część I do 15 października b.r, część II do 15 listopada

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora)

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora) Kinematyka Ocena podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny wprowadzenia Międzynarodowego Układu

Bardziej szczegółowo

Doświadczenie. Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego. I. CZĘŚĆ TEORETYCZNA

Doświadczenie. Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego. I. CZĘŚĆ TEORETYCZNA Doświadczenie Wyznaczanie przyspieszenia ziemskieo za pomocą wahadła matematyczneo. I. CZĘŚĆ TEORETYCZNA Wahadłem matematycznym nazywamy ciało o masie m skupionej w jednym punkcie, zawieszonej na nieważkiej

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

Matematyka, kl. 6. Konieczne umiejętności

Matematyka, kl. 6. Konieczne umiejętności Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych

Bardziej szczegółowo

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I 1. (3p) Jaki rodzaj oddziaływań zachodzi w podanych ytuacjach? a) Spadanie jabłka z drzewa -... b) Uderzenie łotkie w gwóźdź...

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

Egzamin wstępny z Fizyki 1 lipca 2011 r.

Egzamin wstępny z Fizyki 1 lipca 2011 r. Egzamin wstępny z Fizyki 1 lipca 2011 r. 1 Metalowa kulka uderza o nieruchomą poziomą płytę z prędkością v = 20 m/s pod kątem = 45 0, po czym odbija się od niej sprężyście. Obliczyć maksymalną wysokość,

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII

ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII (Wypełnia kandydat przed rozpoczęciem pracy) KOD KANDYDATA ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron.

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 11. Ruch drgający i fale mechaniczne zadania z arkusza I 11.6 11.1 11.7 11.8 11.9 11.2 11.10 11.3 11.4 11.11 11.12 11.5 11. Ruch drgający i fale mechaniczne - 1 - 11.13 11.22 11.14 11.15 11.16 11.17 11.23

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

Plan wynikowy (propozycja 61 godzin)

Plan wynikowy (propozycja 61 godzin) 1 Plan wynikowy (propozycja 61 godzin) Kinematyka (19 godzin) *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji realizowanych w ramach danego zagadnienia.

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJÓW

KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJÓW ... pieczątka WKK... kod pracy ucznia KONKURS PRZEDMIOTOWY FIZYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI Drogi Uczniu, Witaj na II etapie konkursu fizycznego. Przeczytaj uważnie instrukcję i postaraj

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym?

CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym? WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A GDAŃSK, 6 CZERWCA 2009, CZAS TRWANIA TESTU (CZĘŚĆ A + B +

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ

EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MFA-W2D1P-021 EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Instrukcja dla zdającego Czas pracy 120 minut 1. Proszę sprawdzić,

Bardziej szczegółowo

Fizyka elementarna - Zadania domowe. Części 1 i 2. Przygotowanie: Piotr Nieżurawski (24.09.2008)

Fizyka elementarna - Zadania domowe. Części 1 i 2. Przygotowanie: Piotr Nieżurawski (24.09.2008) Fizyka elementarna - Zadania domowe. Części 1 i 2. Przygotowanie: Piotr Nieżurawski (24.09.2008) Zadanie 1. Nominalne oprocentowanie lokaty bankowej w skali roku wynosi p. Oznacza to, że gdyby kapitalizacja

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2011/2012 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

PRZEDMIOTOWY KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM

PRZEDMIOTOWY KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ... pieczątka nagłówkowa szkoły... kod pracy ucznia PRZEDMIOTOWY KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i

Bardziej szczegółowo