LABORATORIUM FOTONIKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM FOTONIKI"

Transkrypt

1 Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM FOTONIKI Teoria barwy cz. 1. I. Zagadnienia do samodzielnego przygotowania - promieniowanie optyczne - spektrometr - modele liczbowe barw - diagram chromatyczności CIE własności, barwa podstawowa i dopełniająca - współczynnik oddawania barwy CRI, temperatura barwowa - filtry dichroiczne - transmisja - metameryzm II. Program zajęć - pomiar charakterystyki spektralnej lampy halogenowej - wyznaczenie temperatury barwowej światła lampy halogenowej dla kilku warunków zasilania - pomiar charakterystyki spektralnej lampy LED - wyznaczenie temperatury barwowej światła lampy LED dla kilku warunków zasilania - zapoznanie się z zasadą działania filtrów dichroicznych, wyznaczenie charakterystyk spektralnych filtrów - wyznaczenie barw podstawowych i dopełniających światła odbitego od makiet różnych kolorów, w warunkach oświetlenia lampą LED oraz halogenową - obserwacja zjawiska metameryzmu Wykonując pomiary PRZESTRZEGAJ przepisów BHP

2 1. Układ pomiarowy Na stanowisku laboratoryjnym znajdują się następujące elementy: 1. oświetlacz halogenowy z wiązką światłowodową umocowaną w uchwycie, 2. biała lampa LED, 3. zestaw filtrów optycznych na karuzeli, 4. kolorowe makiety, 5. spektrometr optyczny StellarNet model BlueWave UV-VIS z receptorem kosinusowym, 6. zwierciadła półprzepuszczalne, 7. komputer. 2. Pomiary i obliczenia 2.1 Charakteryzacja źródeł światła białego Włączyć komputer, upewnić się czy spektrometr jest podłączony do komputera i sygnalizuje gotowość do pracy zieloną diodą sygnalizacyjną na panelu przednim. Uruchomić program SpectraWiz, wybrać tryb pracy Scope mode Włączyć oświetlacz halogenowy i ustawić maksymalną moc zasilania lampy Ustawić receptor kosinusowy na wprost źródła światła Czas całkowania spektrometru dobrać tak, aby uzyskać około 95% maksymalnego zakresu pomiarowego UWAGA: po zmianie czasu całkowania należy każdorazowo zapisać charakterystykę ciemną Zapisać charakterystykę spektralną lampy halogenowej Zmierzyć temperaturę barwową W tym celu zmienić tryb pracy na Lux, następnie wybrać opcję pomiarów kolorymetrycznych Color. Z wykresy chromatyczności odczytać temperaturę barwową (CCT) Wyznaczyć temperaturę barwową światła lampy halogenowej dla kilku warunków zasilania Wykreślić wartość temperatury barwowej w funkcji zasilania Powtórzyć pomiary dla lampy LED 2.2 Pomiar transmisji filtrów optycznych Włączyć oświetlacz halogenowy i ustawić średnią moc zasilania lampy Zmontować układ pomiarowy z oświetlacza halogenowego, karuzeli z filtrami, zwierciadeł półprzepuszczalnych oraz detektora w taki sposób, aby możliwe było rejestrowanie światła zarówno transmitowanego przez filtr jak i odbitego Zmierzyć charakterystyki transmisji i odbicia kilku filtrów wskazanych przez prowadzącego (wykorzystać tryb Transmission spektrometru) Określić, które ze zmierzonych filtrów są dichroiczne Zmierzyć charakterystyki transmisji i odbicia złożenia dwóch filtrów wskazanych przez prowadzącego 2

3 2.3 Wyznaczenie barw podstawowych i dopełniających oraz obserwacja zjawiska metameryzmu Włączyć oświetlacz halogenowy i ustawić średnią moc zasilania lampy Światło z lampy halogenowej skierować na kolorową makietę Zbliżyć końcówkę światłowodu podłączonego do spektrometru do makiety w taki sposób, aby uzyskać około 90% maksymalnego zakresu pomiarowego Włączyć w programie SpectraWiz diagram chromatyczności i zaobserwować położenie punktu pomiarowego. Spisać jego współrzędne x, y oraz wyznaczyć barwę podstawową i dopełniającą światła odbitego od makiety Pomiar powtórzyć dla kilku makiet Zmienić źródło światła na lampę LED i powtórzyć pomiary Zaobserwować zmianę położenia punktu pomiarowego przy zmianie kąta obserwacji 3

4 Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM FOTONIKI Teoria barwy cz. 2. I. Zagadnienia do samodzielnego przygotowania - promieniowanie optyczne, wielkości charakteryzujące (energia, długość fali, częstotliwość, temperatura barwowa) - zjawisko dyspersji i dyfrakcji - siatka dyfrakcyjna - pryzmat - spektrometr optyczny - budowa i zasada działania monochromatora II. Program zajęć - pomiar charakterystyki spektralnej lampy halogenowej i całkowitej mocy optycznej - rozszczepienie światła w pryzmacie oraz pomiar mocy optycznej dyskretyzowanych linii emisyjnych - rozszczepienie światła na siatce dyfrakcyjnej oraz pomiar mocy optycznej dyskretyzowanych linii emisyjnych - odtworzenie charakterystyki spektralnej lampy halogenowej z w/w pomiarów - wyznaczenie strat Wykonując pomiary PRZESTRZEGAJ przepisów BHP 4

5 1. Układ pomiarowy Na stanowisku laboratoryjnym znajduje się układ pomiarowy składający się z następujących elementów: 1. oświetlacza halogenowego z wiązką światłowodową umocowaną w uchwycie umieszczonym przed kolimatorem wejściowym modelu monochromatora, 2. modelu monochromatora umożliwiającego zmianę położenia elementu dyspersyjnego (pryzmat lub siatka dyfrakcyjna) oraz kolimatora wyjściowego, 3. światłowodu łączącego kolimator wyjściowy modelu monochromatora ze spektrometrem optycznym, 4. spektrometru optycznego StellarNet model BlueWave UV-VIS, 5. komputera klasy PC. 2.4 Model monochromatora Używanym na stanowisku laboratoryjnym urządzeniem służącym do rozszczepienia wiązki promieniowania na poszczególne składowe jest model monochromatora firmy Frederiksen, którego schematyczną budowę przedstawiono na rysunku 7. Do głównego bloku urządzenia, na którym znajduje się obrotowa podstawa elementu dyspersyjnego, dołączone są dwa ramiona z układami optycznymi. Układ kolimatora wraz ze szczeliną wejściową służy do kierowania badanego promieniowania na element dyspersyjny. Dzięki szczelinie wejściowej regulować można natężenie oświetlenia wprowadzanego do układu. Ruchomy teleskop wyjściowy, do którego podłączyć można element detekujący, umożliwia analizę badanego promieniowania w funkcji kąta jego odchylenia przez element dyspersyjny. Element dyspersyjny (siatka dyfrakcyjne lub pryzmat) umieszcza się na obrotowej podstawie w centralnej części monochromatora. Siatkę dyfrakcyjną zamontowaną w uchwycie przykręca się dostępnymi na stanowisku śrubami montażowymi. Pryzmat na podstawce umieszcza się tak aby trzpień blokujący umieszczony został w jednym z otworów w podstawie obrotowej. Rys. 7. Schemat budowy modelu monochromatora firmy Frederiksen Znacznik pozycji początkowej 0 oznacza ustawienie wzajemne ramion monochromatora w jednej linii, co wiążę się z detekcją maksymalnego sygnału na wyjściu układu. Zmianę pozycji ramienia teleskopu określić można dzięki skali z podziałką kątową 5

6 umieszczoną z dwóch stron monochromatora. Dzięki dodatkowej podziałce kątowej możliwe jest również określenie zmian pozycji obrotowej podstawy z elementem dyspersyjnym względem ruchomego ramienia teleskopu wyjściowego. Wszelkie zmiany położenia ramienia teleskopu i/lub obrotowej podstawy na element dyspersyjny dokonać można w szerokim zakresie kątowym po zwolnieniu śrub blokujących. Przy dokręconych śrubach blokujących zmiana wzajemnego położenia poszczególnych elementów układu jest możliwa w niewielkim zakresie kątowym jedynie dzięki regulacji śrubami regulacyjnymi. 3. Pomiary i obliczenia 3.1 Obserwacja efektu rozpraszania światła białego przechodzącego przez transmisyjną siatkę dyfrakcyjną. Zainstalować siatkę dyfrakcyjną na obrotowej podstawie elementu dyspersyjnego modelu monochromatora. W tym celu uchwyt siatki dyfrakcyjnej przykręcić do podstawy dwiema plastykowymi śrubami montażowymi. Ustawić obrotową podstawę tak, aby promień pierwotny, wychodzący z kolimatora wejściowego, padał prostopadle bezpośrednio na powierzchnię siatki, a nie na płaską powierzchnię szkiełka siatki. Włączyć oświetlacz halogenowy i ustawić maksymalną moc zasilania lampy. Przystawić biały ekran (dostępny na stanowisku) w odległości około 20 cm za siatką dyfrakcyjną i określić ilość widzianych rzędów prążków interferencyjnych odchylanych w prawą i lewą stronę. Wykonać w sprawozdaniu schematyczny szkic otrzymanego obrazu, zaznaczyć i krótko wyjaśnić kolejność pojawiających się barw w obserwowanych prążkach interferencyjnych. Wybrać stronę i rząd dyfrakcji, w której obserwowane barwy mają największą intensywność. 3.2 Pomiar charakterystyki spektralnej lampy halogenowej Ustawić zgrubnie ramię teleskopu wyjściowego w pozycji początkowej 0 i dokręcić śrubę kontrującą. Włączyć komputer, upewnić się czy spektrometr jest podłączony do komputera i sygnalizuje gotowość do pracy zieloną diodą sygnalizacyjną na panelu przednim. Uruchomić program SpectraWiz, wybrać tryb pracy Scope mode i ustawić czas integracji sygnału równy 10 ms. Zdemontować z monochromatora obrotową podstawę elementu dyspersyjnego wraz z siatką dyfrakcyjną, zachowując szczególną ostrożność aby nie uszkodzić siatki dyfrakcyjnej. Śrubą regulacyjną ramienia teleskopu wyjściowego ustawić takie położenie ramienia aby obserwowany sygnał lampy halogenowej był maksymalny. W razie potrzeby przymknąć szczelinę wejściową kolimatora tak aby uniknąć nasycania się matrycy detektorów (płaska charakterystyka w maksymalnym zakresie intensywności). Optymalny poziom sygnału to około zliczeń. Zapisać mierzoną charakterystykę pod nazwą Lampa_halogenowa_ref.SSM, w utworzonym wcześniej katalogu o nazwie według algorytmu: data_dzieńtygodnia_godzina-zajęć (np.: _pt_9:15). 6

7 Zanotować zakres długości fal emitowanych przez lampę halogenową. Zamontować ponownie obrotową podstawę elementu dyspersyjnego wraz z siatką dyfrakcyjną, zachowując szczególną ostrożność aby nie uszkodzić siatki dyfrakcyjnej. 3.3 Pomiar dyskretnych linii widmowych uzyskanych w wyniku rozszczepienia przez siatkę dyfrakcyjną UWAGA! Nie zmieniać ustawień lampy halogenowej ani stopnia otwarcia szczeliny wejściowej. Nie zmieniać ustawień spektrometru. Ustawić obrotową podstawę tak, aby promień pierwotny, wychodzący z kolimatora wejściowego, padał prostopadle bezpośrednio na powierzchnię siatki, a nie na płaską powierzchnię szkiełka siatki. Ustawić zgrubnie ramię teleskopu wyjściowego pod takim kątem do promienia pierwotnego, aby do teleskopu wyjściowego wprowadzić barwne promienie świetlne z wybranego wcześniej prążka interferencyjnego i dokręcić śrubę kontrującą. Przy zgrubnym ustawieniu pozycji teleskopu, w oknie programu SpectraWiz widoczna powinna być wąska charakterystyka widmowa rozszczepionego promieniowania. Zmieniając pozycję ramienia teleskopu wyjściowego dokonać pomiaru i analizy linii widmowych w całym zakresie emisyjnym lampy halogenowej z krokiem co 10 nm. Za każdym razem zanotować następujące dane: Nr pomiaru Długość fali [ nm ] Natężenie światła [ W/m 2 ] Szerokość połówkowa widma FWHM Kąt ugięcia [ o ] Z uzyskanych wyników obliczyć stałą siatki dyfrakcyjnej (co najmniej dla pięciu punktów pomiarowych). Do programu OriginPro zaimportować plik z danymi zmierzonego widma Lampa_halogenowa_ref.SSM i wykreślić graficznie wynik. Do drugiego arkusza wprowadzić dane (długość światła i natężenie) charakteryzujące mierzone wąskie linie widmowe promieniowania rozszczepionego przez siatkę dyfrakcyjną. Wykreślić obie charakterystyki na jednym wykresie. Wyznaczyć całki określające całkowite natężenie światła białego, w jak najszerszym zakresie długości fal, z pomiaru referencyjnego i odtworzonej charakterystyki lampy halogenowej z wąskich linii światła rozszczepionego. Porównać uzyskane wartości natężenia światła (detekowanej światłości na powierzchni czołowej światłowodu podłączonego do spektrometru optycznego) i wyznaczyć straty mocy wprowadzone przez siatkę dyfrakcyjną. Zapisać dane w programie OriginPro we wcześniej utworzonym katalogu. 3.4 Pomiar dyskretnych linii widmowych uzyskanych w wyniku rozszczepienia przez pryzmat UWAGA! Nie zmieniać ustawień lampy halogenowej ani stopnia otwarcia szczeliny wejściowej. Nie zmieniać ustawień spektrometru. Zdemontować siatkę dyfrakcyjną z obrotowej podstawy elementu dyspersyjnego modelu monochromatora, zachowując szczególną ostrożność aby nie uszkodzić siatki 7

8 dyfrakcyjnej. W tym celu uchwyt siatki dyfrakcyjnej odkręcić do podstawy luzując (nie odkręcając całkowicie) dwie plastykowe śruby mocujące. Zainstalować pryzmat na obrotowej podstawie elementu dyspersyjnego modelu monochromatora. Trzpień blokujący podstawki pryzmatu wprowadzić do jednego z dwóch pozostałych otworów podstawy obrotowej monochromatora. Obracając podstawą elementu dyspersyjnego ustawić pryzmat w pozycji umożliwiającej obserwację światła rozszczepionego. Ustalając pozycje pryzmatu posłużyć się białym ekranem ustawianym w odległości około 20 cm za pryzmatem. Ustawić zgrubnie ramię teleskopu wyjściowego pod takim kątem do promienia pierwotnego, aby do teleskopu wyjściowego wprowadzić barwne promienie świetlne uginane przez pryzmat. Dokręcić śrubę kontrującą ramienia teleskopu. Przy zgrubnym ustawieniu pozycji teleskopu, w oknie programu SpectraWiz widoczna powinna być wąska charakterystyka widmowa rozszczepionego promieniowania. Zmieniając pozycję ramienia teleskopu wyjściowego dokonać pomiaru i analizy linii emisyjnych w całym zakresie emisyjnym lampy halogenowej z krokiem co 10 nm. Za każdym razem zanotować następujące dane: Nr pomiaru Długość fali [ nm ] Natężenie światła [ W/m 2 ] Szerokość połówkowa widma FWHM Do kolejnego arkusza w programie OriginPro wprowadzić dane (długość światła i natężenie) charakteryzujące mierzone wąskie linie widmowe promieniowania rozszczepionego przez pryzmat. Wykreślić trzecią charakterystykę na tle wcześniejszych na jednym wykresie. Wyznaczyć całkę określającą całkowite natężenie światła białego otrzymanego z odtworzonej charakterystyki lampy halogenowej z wąskich linii światła rozszczepionego, w takim samym zakresie jak w pkt. 4.3 ćwiczenia. Porównać uzyskane wartości natężenia światła z wartościami uzyskanymi w poprzedniej części ćwiczenia i wyznaczyć straty mocy wprowadzone przez pryzmat. Zapisać dane w programie OriginPro. 3.5 Analiza strat w układzie monochromatora Przedyskutować i wytłumaczyć skąd wynikają straty mocy w układzie po wprowadzeniu elementu dyspersyjnego. Wskazać dla jakiego elementu straty są większe i wytłumaczyć dlaczego. Opuszczając stanowisko pomiarowe należy odłożyć elementy optyczne w odpowiadające im pudełka i opakowania, zachowując szczególną ostrożność. 8

9 Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM FOTONIKI Teoria barwy wstęp teoretyczny 1. Cel ćwiczenia Głównym celem laboratorium jest zapoznanie z charakterystykami spektralnymi źródeł światła białego, metodami rozszczepienia i syntezy światła, modelami liczbowymi barw, jak również obserwacja zjawiska metameryzmu. 2. Wiadomości wstępne Promieniowanie optyczne, nazywane potocznie światłem, obejmuje zakres promieniowania elektromagnetycznego o długości fal w zakresie od 10 nm do 1 mm i mieści się w niewielkim zakresie wykorzystywanych obecnie długości fal promieniowania elektromagnetycznego (rys. 1.). Dzieli się na ultrafiolet UV ( nm), światło widzialne VIS ( nm) i podczerwień IR (780 nm 1 mm). Rys. 1. Widmo promieniowania elektromagnetycznego [1] Wielkością charakteryzującą fale jest częstotliwość, czyli liczba pełnych zmian pola magnetycznego i elektrycznego w ciągu jednej sekundy, wyrażona w hercach. Drugą wielkością jest długość fali, czyli odległość między sąsiednimi punktami, w których pole magnetyczne lub elektryczne ma ten sam zwrot i amplitudę. Zależność tych wielkości opisuje wzór λ = c/f, gdzie λ - długość fali, c - prędkość fali w danym ośrodku, a f częstotliwość. 9

10 Częstotliwość dla danej fali jest stała i niezależna od ośrodka, natomiast długość fali zmienia się, bowiem prędkość propagacji fali zależy od gęstości ośrodka, w którym fala się przemieszcza. Długości fal podane w tej instrukcji odnoszą się do próżni, gdzie prędkość rozchodzenia się fali elektromagnetycznej wynosi w przybliżeniu m/s. Promieniowanie złożone wyłącznie z fal o jednej częstotliwości nazywamy promieniowaniem monochromatycznym. W rzeczywistości jednak każde źródło emituje światło o niezerowej szerokości spektralnej czyli obejmujące pewien przedział częstotliwości. Najbardziej zbliżonym do monochromatycznego jest promieniowanie lasera i często takim mianem jest określane. Światło niemonochromatyczne można rozłożyć na składowe o różnych częstotliwościach otrzymując w ten sposób widmo optyczne (spektrum) promieniowania. Rozdzielenie się fali na składowe o różnej długości nazywane jest rozszczepieniem i zachodzi np. w pryzmacie lub dzięki siatce dyfrakcyjnej. Rozszczepienie światła przez pryzmat (rys. 2.) wynika ze zjawiska dyspersji czyli zależności prędkości rozchodzenia się fali w ośrodku od jej częstotliwości. Efektem jest wpływ częstotliwości na współczynnik załamania (n = c/υ, gdzie n współczynnik załamania, c prędkość światła w próżni, υ prędkość światła w ośrodku), przez co fale o różnej długości przechodząc przez granicę ośrodków np. powietrze-szkło załamują się pod różnymi kątami. Rys. 2. Rozszczepienie światła białego przez pryzmat [2] Mechanizm rozszczepienia światła na siatce dyfrakcyjnej jest odmienny. Fala padająca na rząd równoległych szczelin ulega dyfrakcji i interferencji w efekcie czego otrzymujemy na ekranie spektrum światła padającego (rys. 3.). Siatki dyfrakcyjne można podzielić na odbiciowe i transmisyjne. W siatkach odbiciowych światło nie przechodzi przez materiał lecz odbija się od struktury wytworzonej na powierzchni, co można zaobserwować na przykład na powierzchni płyty CD. W siatkach transmisyjnych światło przechodzi przez wytworzone w materiale rysy. Siatki transmisyjne dzielą się dodatkowo na amplitudowe, czyli takie które składają się z naprzemiennie ułożonych przezroczystych i ciemnych linii, oraz fazowe, które w całym swoim obszarze są dla światła przezroczyste ale zawierają pasy o okresowo zmieniającym się współczynniku załamania. Parametrem charakteryzującym siatkę dyfrakcyjną jest stała siatki d, oznaczająca rozstaw szczelin siatki (odległość między środkami kolejnych szczelin) wyrażona w mm. Jest zatem odwrotnością liczby rys na milimetr (na stanowisku d = 0,00333 mm). Zależność wartości stałej siatki dyfrakcyjnej i kąta ugięcia θ definiuje równanie siatki dyfrakcyjnej: mλ = d sinθ, gdzie: λ to długość fali, m to rząd ugięcia. Stąd łatwo obliczyć stałą siatki: 10

11 d = mλ/sinθ Drugim parametrem jest chromatyczna zdolność rozdzielcza R, czyli miara możliwości rozdzielenia dwóch linii widmowych λ i λ + Δλ. Wyraża iloraz długości fali λ i rozdzielanego przedziału Δλ i definiowana jest następująco: R =λ/δλ = mn (m rząd dyfrakcji, N liczba szczelin). Miarą zdolności siatki do rozszczepiania światła na wiązki monochromatyczne jest kątowa dyspersja siatki opisana wzorem Δθ/Δλ = m/d cosθ. Dyspersja wzrasta wraz z rzędem widma m i jest odwrotnie proporcjonalna do stałej siatki d. Rys. 3. Rozszczepienie światła białego przez siatkę dyfrakcyjną [3] Do dokładnego badania widm służą spektrometry. Główną częścią tych przyrządów jest element dyspersyjny (najczęściej pryzmat lub siatka dyfrakcyjna) i element rejestrujący poziom sygnału. Spektrometr zawiera dodatkowo wzorzec, dzięki czemu możliwa jest nie tylko jakościowa ale i ilościowa analiza promieniowania. W wykorzystywanym podczas zajęć spektrometrze elementem rejestrującym jest jednowymiarowa kamera CCD z 2048 detektorami krzemowymi, co znacznie ułatwia szybką analizę widmową oraz dzięki kalibracji umożliwia ilościową charakteryzację analizowanego promieniowania. Budowa monochromatora i spektrometru optycznego Podstawową różnicą między monochromatorem a spektrometrem optycznym jest to, że monochromator nie posiada elementu detekującego światło. Monochromator to urządzenie umożliwiające uzyskanie dyskretnych (wąskich) linii spektralnych z wprowadzonego przez szczelinę wejściową światła o szerokiej charakterystyce spektralnej. W monochromatorze następuje rozszczepienie wiązki światła na poszczególne składowe (poszczególne długości światła) dzięki elementowi dyspersyjnemu. Może to być pryzmat lub siatka dyfrakcyjna. W wyniku dyspersji światła poszczególne linie emisyjne propagują się wewnątrz monochromatora w różnych kierunkach, zależnych od długości fali i kąta odchylenia/odbicia przez element dyspersyjny. Zestaw kilku zwierciadeł zamontowanych wewnątrz monochromatora (w zależności od jego budowy) wydłuża drogę optyczną promieniowania, polepszając tym samym kątową separację poszczególnych długości światła, czyli zdolność rozdzielczą monochromatora. Regulowane szerokości szczelin: wejściowej i wyjściowej również mają wpływ na szerokość uzyskiwanej linii spektralnej. Szeroko otwarta szczelina 11

12 wyjściowa ma duży kąt akceptacji i tym samym na zewnątrz wydostaje się promieniowanie zawierające długości fal ugiętych w danym kącie akceptacji szczeliny. Przymknięcie szczeliny wyjściowej wpływa na całkowitą moc promieniowania wychodzącego jednocześnie zawężając jego charakterystykę widmowa, dzięki zmniejszeniu kąta akceptacji. Ruchome elementy monochromatora pozwalają zmieniać kąt padania wiązki pierwotnej na element dyspersyjny i w ten sposób na szczelinę wyjściową kierowane jest promieniowanie o innej długości fali. Zasada działania spektrometru optycznego jest niemal identyczna jak monochromatora. Nie ma jednak szczeliny wyjściowej, a w jej miejscu umieszczony jest element rejestrujący w postaci jednowymiarowej matrycy CCD. W wielu konstrukcjach spektrometrów, głównie przenośnych, brak również jakichkolwiek elementów ruchomych. Siatka dyspersyjna rozszczepiając promieniowanie, kieruje je zależnie od długości fali w innym kierunku, w stronę układu detekcji. Na każdy piksel matrycy CCD (każdy dyskretny detektor) pada części promieniowa o wąskim spektrum. Rozdzielczość spektrometru zależna jest od drogi optycznej promieniowania, rozmiarów matrycy detektorów, ilości pikseli w matrycy i parametrów siatki dyfrakcyjnej. Do głównych zalet spektrometru należy wliczyć możliwość detekcji promieniowania i obserwacji widma w czasie rzeczywistym oraz dla skalibrowanych układów detekcyjnych możliwość pomiaru mocy optycznej dla każdej długości fali. Różnice budowy monochromatora i spektrometru schematycznie przedstawiono na rysunku 6. Rys. 6. Schemat budowy monochromatora (lewa strona) i spektrometru optycznego (prawa strona) Fale z zakresu światła widzialnego o jednej częstotliwości odpowiadają konkretnej barwie czystej (prostej). Pozostałe barwy powstają w wyniku zmieszania wielu barw prostych w różnych proporcjach. Widzenie kolorów jest subiektywnym wrażeniem psychicznym powstającym w mózgu. Z fizycznego punktu widzenia barwa jest jednak wielkością mierzalną, możliwą do przedstawienia w postaci liczbowej w określonej przestrzeni barw. Opis za pomocą rozkładu widmowego nie zawsze jest praktyczny, ponieważ różne spektra mogę wywoływać takie samo wrażenie barwowe. Powstało więc wiele matematycznych modeli trójwymiarowych przestrzeni barw. Do najważniejszych należą RGB, CMYK, CIE XYZ. Addytywny model RGB opisuje kolory za pomocą współrzędnych R (red czerwony), G (green zielony) i B (blue niebieski). Przez kombinację tych trzech barw można uzyskać szeroki zakres barw pochodnych zawartych z sześcianie kolorów RGB przedstawionym na 12

13 rysunku 4. Punkt o współrzędnych (0, 0, 0) odpowiada czerni, (1, 1, 1) bieli, a przekątna łącząca te punkty jest osią szarości. Model RGB jest addytywny, co oznacza że kolory powstają przez dodawanie barw podstawowych. Taki model odpowiada sprzętowej metodzie generowania koloru w wyświetlaczach, gdzie jednemu pikselowy odpowiada suma trzech strumieni światła czerwonego, zielonego i niebieskiego. Sprzętowe odwzorowanie kolorów zależy od przyjętych barw podstawowych (ich charakterystyki widmowej). Rys. 4. Sześcian kolorów RGB [4] i zasada addytywnego mieszania barw Model CMYK jest modelem odwrotnym do RGB. Kolory uzyskuje się przez usuwanie barw ze światła białego, dlatego model ten jest nazywany modelem subtraktywnym i jest wykorzystywany w poligrafii, drukarkach i ploterach. Podstawowymi barwami są cyan (zielono-niebieski), magenta (karmazynowy), yellow (żółty), które pochłaniają selektywnie składowe padającego światła białego cyan pochłania barwę czerwoną, magenta zieloną, a yellow niebieską. Aby otrzymać w czasie wydruku dobrze odwzorowaną czerń do barw podstawowych dodano kolor czarny black. Sześcian kolorów CMY i zasada mieszania barw jest przedstawiona na rys. 5. y Rys. 5. Sześcian kolorów m CMY i zasada subtraktywnego mieszania barw Model CIE XYZ zdefiniowała w 1931 roku Międzynarodowa Komisja Oświetleniowa CIE (ComissionInternationale de l'eclairage). Za pomocą trzech fikcyjnych (leżących poza zakresem c widmowym) barw podstawowych X, Y i Z, które są nieujemne w całym zakresie fal, można przedstawić każde światło. Składowe X i Z niosą informację o barwie, natomiast Y o luminancji światła. Po podzieleniu składowych X, Y, Z przez czynnik normalizujący (X+Y+Z) otrzymuje się współrzędne trójchromatyczne x, y, z. Umieszczenie wszystkich barw na wykresie x-y daje diagram chromatyczności przedstawiony na rys. 6. Na brzegu obszaru znajdują się barwy czyste oznaczone odpowiadającą im długością fali. Połączenie dowolnych dwóch kolorów daje punkt leżący na prostej je łączącej. Podobnie wybierając trzy barwy można z ich kombinacji otrzymać wszystkie kolory leżące wewnątrz trójkąta o wierzchołkach w punktach odpowiadających wybranym początkowo barwom. Na rys. 6. zaznaczono linię bieli linię promieniowania ciała doskonale czarnego. Kolorem białym określana jest bowiem cała gama barw. Aby jednoznacznie opisać wizualne wrażenie światła 13

14 białego niezależnie od jego źródła wprowadzono termin temperatury barwowej. Temperatura barwowa jest z definicji temperaturą ciała doskonale czarnego, które wysyła promieniowanie o takiej samej barwie jak obserwowane światło białe. Do wartości około 3500 K barwa jest ciepła, w przedziale od 3500 do 6000 K mieści się barwa naturalna, a powyżej 6000 K odcień jest chłodny. Rys. 6. Diagram chromatyczności z zaznaczoną linią promieniowania ciała doskonale czarnego [5] Odbierany kolor zależy od oświetlającego go światła. Parametrem określającym zdolność źródła światła do oświetlenia obiektu w sposób najlepiej oddający barwy jest współczynnik oddawania barwy CRI (Color Rendering Index), którego maksymalna wartość wynosi 100 i oznacza źródło odniesienia, w którym kolory są oddawane jednoznacznie. CIE ustaliła najpowszechniejszy standard illuminant C, w którym źródłem odniesienia jest światło słoneczne o temperaturze barwowej 6770 K. Wrażenie barwy obiektu zależy też od absorpcji i współczynników odbicia jego powierzchni. Jeżeli dwie powierzchnie w świetle dziennym mają taki sam kolor, a przy innym oświetleniu właściwości widmowe wywołują dwa różne wrażenia barwowe to takie zjawisko nosi nazwę metameryzmu. Filtr optyczny jest elementem wyodrębniającym z padającego promieniowania tylko światło z określonego zakresu widmowego (filtr barwny) lub o określonej polaryzacji (filtr polaryzacyjny). Dostępne w laboratorium filtry barwne są filtrami dichroicznymi co oznacza, że światło z zadanego zakresu długości fal jest transmitowane, natomiast pozostałe długości są odbijane od materiału. W odróżnieniu od konwencjonalnych filtrów, gdzie niepożądane częstotliwości są pochłaniane, filtry dichroiczne nie nagrzewają się i są odporne na laserowe światło o dużej mocy. Ponadto zaletą filtrów dichroicznych są bardzo dobre właściwości selekcyjne i trwałość materiału. 14

Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM. Miernictwa elementów optoelektronicznych. Teoria barwy

Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM. Miernictwa elementów optoelektronicznych. Teoria barwy Ćw. 2. Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM Miernictwa elementów optoelektronicznych Teoria barwy Ćwiczenie opracował zespół: dr inż. Damian Pucicki, mgr inż. Katarzyna Bielak I. Zagadnienia

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7 Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

MODELE KOLORÓW. Przygotował: Robert Bednarz

MODELE KOLORÓW. Przygotował: Robert Bednarz MODELE KOLORÓW O czym mowa? Modele kolorów,, zwane inaczej systemami zapisu kolorów,, są różnorodnymi sposobami definiowania kolorów oglądanych na ekranie, na monitorze lub na wydruku. Model RGB nazwa

Bardziej szczegółowo

Ć W I C Z E N I E N R O-6

Ć W I C Z E N I E N R O-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Co to jest współczynnik oddawania barw?

Co to jest współczynnik oddawania barw? Co to jest współczynnik oddawania barw? Światło i kolor Kolory są wynikiem oddziaływania oświetlenia z przedmiotami. Różne źródła światła mają różną zdolność do wiernego oddawania barw przedmiotów Oddawanie

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

WYKŁAD 14 PODSTAWY TEORII BARW. Plan wykładu: 1. Wrażenie widzenia barwy. Wrażenie widzenia barwy Modele liczbowe barw

WYKŁAD 14 PODSTAWY TEORII BARW. Plan wykładu: 1. Wrażenie widzenia barwy. Wrażenie widzenia barwy Modele liczbowe barw WYKŁAD 14 1. Wrażenie widzenia barwy Co jest potrzebne aby zobaczyć barwę? PODSTAWY TEOII AW Światło Przedmiot (materia) Organ wzrokowy człowieka Plan wykładu: Wrażenie widzenia barwy Modele liczbowe barw

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Analiza spektralna i pomiary spektrofotometryczne

Analiza spektralna i pomiary spektrofotometryczne Analiza spektralna i pomiary spektrofotometryczne Zagadnienia: 1. Absorbcja światła. 2. Współrzędne trójchromatyczne barwy, Prawa Gassmana. 3. Trójkąt barw. Trójkąt nasyceń. 4. Rozpraszanie światła. 5.

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Jaki kolor widzisz? Doświadczenie pokazuje zjawisko męczenia się receptorów w oku oraz istnienie barw dopełniających. Zastosowanie/Słowa kluczowe

Jaki kolor widzisz? Doświadczenie pokazuje zjawisko męczenia się receptorów w oku oraz istnienie barw dopełniających. Zastosowanie/Słowa kluczowe 1 Jaki kolor widzisz? Abstrakt Doświadczenie pokazuje zjawisko męczenia się receptorów w oku oraz istnienie barw Zastosowanie/Słowa kluczowe wzrok, zmysły, barwy, czopki, pręciki, barwy dopełniające, światło

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Zarządzanie barwą w fotografii

Zarządzanie barwą w fotografii 1 z 6 2010-10-12 19:45 14 czerwca 2010, 07:00 Autor: Szymon Aksienionek czytano: 2689 razy Zarządzanie barwą w fotografii Mamy możliwość używania cyfrowych aparatów fotograficznych, skanerów, monitorów,

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

Nowoczesne sieci komputerowe

Nowoczesne sieci komputerowe WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Nowoczesne sieci komputerowe Instrukcja nr 1 Dąbrowa Górnicza, 2010

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

GRAFIKA RASTROWA GRAFIKA RASTROWA

GRAFIKA RASTROWA GRAFIKA RASTROWA GRAFIKA KOMPUTEROWA GRAFIKA RASTROWA GRAFIKA RASTROWA (raster graphic) grafika bitmapowa: prezentacja obrazu za pomocą pionowo-poziomej siatki odpowiednio kolorowanych pikseli na monitorze komputera, drukarce

Bardziej szczegółowo

Laboratorium systemów wizualizacji informacji. Pomiary charakterystyk spektralnych elementów modułu displeja. Kolorymetria.

Laboratorium systemów wizualizacji informacji. Pomiary charakterystyk spektralnych elementów modułu displeja. Kolorymetria. Laboratorium systemów wizualizacji informacji Pomiary charakterystyk spektralnych elementów modułu displeja. Kolorymetria. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska

Bardziej szczegółowo

WYZNACZANIE KĄTA BREWSTERA 72

WYZNACZANIE KĄTA BREWSTERA 72 WYZNACZANIE KĄTA BREWSTERA 72 I. ZAGADNIENIA TEORETYCZNE Polaryzacja światła. Zjawisko polaryzacji światła przy odbiciu od powierzchni dielektrycznej kąt Brewstera. Prawa odbicia i załamania światła na

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

f = -50 cm ma zdolność skupiającą

f = -50 cm ma zdolność skupiającą 19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Falowa natura promieniowania elektromagnetycznego.

Falowa natura promieniowania elektromagnetycznego. Zadanie 1. Falowa natura promieniowania elektromagnetycznego. W telefonii komórkowej poziom bezpieczeństwa (w odniesieniu do szkodliwości oddziaływania promieniowania na materię żywą) określany jest za

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 12 Instrukcja dla studenta

Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 12 Instrukcja dla studenta Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 1 Instrukcja dla studenta I WSTĘP I1 Światło Z punktu widzenia fizyki światło widzialne jest falą elektromagnetyczną a jednocześnie zbiorem

Bardziej szczegółowo

Dyfrakcja na Spiralnej Strukturze (Całkowita liczba pkt.: 10)

Dyfrakcja na Spiralnej Strukturze (Całkowita liczba pkt.: 10) Page 1 of 6 Dyfrakcja na Spiralnej Strukturze (Całkowita liczba pkt.: 10) Wstęp Obraz dyfrakcyjny (w promieniowaniu rentgenowskim) DNA (Rys. 1) wykonany w laboratorium Rosalind Franklin, znany jako sławne

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

Oświetlenie obiektów 3D

Oświetlenie obiektów 3D Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III Dział XI. DRGANIA I FALE (9 godzin lekcyjnych) Ocenę dopuszczającą otrzymuje uczeń, który: wskaże w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie. LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.

Bardziej szczegółowo

MICRON3D skaner do zastosowań specjalnych. MICRON3D scanner for special applications

MICRON3D skaner do zastosowań specjalnych. MICRON3D scanner for special applications Mgr inż. Dariusz Jasiński dj@smarttech3d.com SMARTTECH Sp. z o.o. MICRON3D skaner do zastosowań specjalnych W niniejszym artykule zaprezentowany został nowy skaner 3D firmy Smarttech, w którym do pomiaru

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

7. Wyznaczanie poziomu ekspozycji

7. Wyznaczanie poziomu ekspozycji 7. Wyznaczanie poziomu ekspozycji Wyznaczanie poziomu ekspozycji w przypadku promieniowania nielaserowego jest bardziej złożone niż w przypadku promieniowania laserowego. Wynika to z faktu, że pracownik

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

Interferometr Michelsona zasada i zastosowanie

Interferometr Michelsona zasada i zastosowanie Interferometr Michelsona zasada i zastosowanie Opracował: mgr Przemysław Miszta, Zakład Dydaktyki Instytut Fizyki UMK, przy wydatnej pomocy ze strony Zakładu Biofizyki i Fizyki Medycznej IF UMK Interferencja

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Badania nieniszczące metodami elektromagnetycznymi Numer Temat: Badanie materiałów kompozytowych z ćwiczenia: wykorzystaniem fal elektromagnetycznych

Bardziej szczegółowo

1.2 Logo Sonel podstawowe załoŝenia

1.2 Logo Sonel podstawowe załoŝenia 1.2 Logo Sonel podstawowe załoŝenia Logo czyli graficzna forma przedstawienia symbolu i nazwy firmy. Terminu logo uŝywamy dla całego znaku, składającego się z sygnetu (symbolu graficznego) i logotypu (tekstowego

Bardziej szczegółowo

Mikroskopia fluorescencyjna

Mikroskopia fluorescencyjna Mikroskopia fluorescencyjna Mikroskop fluorescencyjny to mikroskop świetlny, wykorzystujący zjawisko fluorescencji większość z nich to mikroskopy tzw. epi-fluorescencyjne zjawisko fotoluminescencji: fluorescencja

Bardziej szczegółowo

Pod wpływem enzymów forma trans- retinalu powraca do formy cis- i powoli, w ciemności, przez łączenie się z opsyną, następuje resynteza rodopsyny.

Pod wpływem enzymów forma trans- retinalu powraca do formy cis- i powoli, w ciemności, przez łączenie się z opsyną, następuje resynteza rodopsyny. Barwa, kolor, choć z pozoru cecha rzeczywista materii (przyzwyczailiśmy się, że wszystko ma swój kolor) w rzeczywistości jest cechą subiektywną. Barwa nie istnieje w rzeczywistości a jedynie powstaje wrażenie

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Grafika komputerowa Wykład 11 Barwa czy kolor?

Grafika komputerowa Wykład 11 Barwa czy kolor? Grafika komputerowa Wykład 11 czy kolor? Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 3 Mieszanie addytywne barw

Bardziej szczegółowo

Ciało Doskonale Czarne

Ciało Doskonale Czarne Marcin Bieda Ciało Doskonale Czarne (Instrukcja obsługi) Aplikacja została zrealizowana w ramach projektu e-fizyka, współfinansowanym przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (POKL)

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćwiczenie Nr 7 Temat: WYZNACZANIE STA ŁEJ SIATKI DYFRAKCYJNEJ I DŁUGOŚCI FALI ŚWIETLNEJ Warszawa 9 POMIARDŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Bardziej szczegółowo

Deuterowa korekcja tła w praktyce

Deuterowa korekcja tła w praktyce Str. Tytułowa Deuterowa korekcja tła w praktyce mgr Jacek Sowiński jaceksow@sge.com.pl Plan Korekcja deuterowa 1. Czemu służy? 2. Jak to działa? 3. Kiedy włączyć? 4. Jak/czy i co regulować? 5. Jaki jest

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Podręcznik produktowy CBL Lens

Podręcznik produktowy CBL Lens Pierwszy na świecie opatentowany system Full Color Balance (Równoważenia Wszystkich Kolorów) Podręcznik produktowy CBL Lens CBL Lens powstał w celu zapewnienia oddania kolorów odpowiadających oryginałowi,

Bardziej szczegółowo

Spis treści. Od Autorów... 7

Spis treści. Od Autorów... 7 Spis treści Od Autorów... 7 Drgania i fale Ruch zmienny... 10 Drgania... 17 Fale mechaniczne... 25 Dźwięk... 34 Przegląd fal elektromagnetycznych... 41 Podsumowanie... 49 Optyka Odbicie światła... 54 Zwierciadła

Bardziej szczegółowo

Przewodnik po soczewkach

Przewodnik po soczewkach Przewodnik po soczewkach 1. Wchodzimy w program Corel Draw 11 następnie klikamy Plik /Nowy => Nowy Rysunek. Następnie wchodzi w Okno/Okno dokowane /Teczka podręczna/ Przeglądaj/i wybieramy plik w którym

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład III Techniki fotograficzne Fotografia w świetle widzialnym Techniki fotograficzne Techniki fotograficzne techniki rejestracji obrazów powstałych wskutek

Bardziej szczegółowo

Anna Barwaniec Justyna Rejek

Anna Barwaniec Justyna Rejek CMYK Anna Barwaniec Justyna Rejek Wstęp, czyli czym jest tryb koloru? Tryb koloru wyznacza metodę wyświetlania i drukowania kolorów danego obrazu pozwala zmieniać paletę barw zastosowaną do tworzenia danego

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz

Bardziej szczegółowo

Projekt Czy te oczy mogą kłamac

Projekt Czy te oczy mogą kłamac Projekt Czy te oczy mogą kłamac Zajęcia realizowane metodą przewodniego tekstu Cel główny: Rozszerzenie wiedzy na temat mechanizmu widzenia. Treści kształcenia zajęć interdyscyplinarnych: Fizyka: Rozchodzenie

Bardziej szczegółowo

Przenośne urządzenia pomiarowe...59. Nowy spectro-guide...59 Color-guide do małych detali...64 Color-guide do proszków... 64

Przenośne urządzenia pomiarowe...59. Nowy spectro-guide...59 Color-guide do małych detali...64 Color-guide do proszków... 64 Barwa - wprowadzenie...55 Przenośne urządzenia pomiarowe...59 Nowy spectro-guide...59 Color-guide do małych detali...64 Color-guide do proszków... 64 Wyposażenie do przenośnych urządzeń pomiarowych...66

Bardziej szczegółowo

Detektor Laserowy Dla Maszyn Budowlanych BME200 Zestaw Na Ciężki Sprzęt Budowlany

Detektor Laserowy Dla Maszyn Budowlanych BME200 Zestaw Na Ciężki Sprzęt Budowlany 1 V.I.P WOJCIECHOWICZ - Detektor Laserowy Dla Maszyn Budowlanych BME200 Detektor Laserowy Dla Maszyn Budowlanych BME200 Zestaw Na Ciężki Sprzęt Budowlany Instrukcja Obsługi 2 V.I.P WOJCIECHOWICZ - Detektor

Bardziej szczegółowo

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa Technika świetlna Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa Wykonał: Borek Łukasz Tablica rejestracyjna tablica zawierająca unikatowy numer (kombinację liter i cyfr),

Bardziej szczegółowo

PANEL SŁONECZNY NXT. Rozpocznij

PANEL SŁONECZNY NXT. Rozpocznij Panel Słoneczny NXT Panel Słoneczny NXT Opis Zadanie polega na badaniu możliwości generowania prądu przez panel słoneczny poprzez analizę mocy wyjściowej urządzenia [W]. Eksperymentalnie sprawdzony zostanie

Bardziej szczegółowo

Laser elektroniczny 5-promieniowy [ BAP_1075209.doc ]

Laser elektroniczny 5-promieniowy [ BAP_1075209.doc ] Laser elektroniczny 5-promieniowy [ ] Prezentacja Laser elektroniczny 5-promieniowy jest urządzeniem wyposażonym w 5 całkowicie niezależnych diod, z których każda emituje falę o długości 635 nm. Diody

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK

Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK ODKRYWCA FAL RADIOWYCH Fale radiowe zostały doświadczalnie odkryte przez HEINRICHA HERTZA. Zalicza się do nich: fale radiowe krótkie, średnie i długie,

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień

Bardziej szczegółowo

Wymagane parametry dla platformy do mikroskopii korelacyjnej

Wymagane parametry dla platformy do mikroskopii korelacyjnej Strona1 ROZDZIAŁ IV OPIS PRZEDMIOTU ZAMÓWIENIA Wymagane parametry dla platformy do mikroskopii korelacyjnej Mikroskopia korelacyjna łączy dane z mikroskopii świetlnej i elektronowej w celu określenia powiązań

Bardziej szczegółowo

K O L O R Y M E T R I A

K O L O R Y M E T R I A Elektrotechnika Studia niestacjonarne K O L O R Y M E T R I A Rys. 1. Układ optyczny oka z zaznaczoną osią optyczną. Rogówka Źrenica Soczewka Jest soczewką wypukło-wklęsłą i ma kształt czaszy sferycznej.

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

LABORATORIUM OPTOELEKTRONIKI

LABORATORIUM OPTOELEKTRONIKI LABORATORIUM OPTOELEKTRONIKI ĆWICZENIE 1 ŹRÓDŁA ŚWIATŁA Gdańsk 2001 r. ĆWICZENIE 1: ŹRÓDŁA ŚWIATŁA 2 1. Wstęp Zasada działania półprzewodnikowych źródeł światła (LED-ów i diod laserowych LD) jest bardzo

Bardziej szczegółowo

Zestaw, który pragnę zaproponować do doświadczeń ze światlem podczerwonym. Zestaw składa. z następujących elementów: Rys.lb

Zestaw, który pragnę zaproponować do doświadczeń ze światlem podczerwonym. Zestaw składa. z następujących elementów: Rys.lb Velefrh napadu ulitelil fyziky Szkoła Podstawowa Krowiarki Zestaw, który pragnę zaproponować do doświadczeń ze światlem podczerwonym może być wykorzystany zaróvmo w szkole podstawowej jak i w średniej.

Bardziej szczegółowo

Janusz Jaglarz Politechnika Krakowska

Janusz Jaglarz Politechnika Krakowska 34 Wrażenia barwne jak je mierzyć? Janusz Jaglarz Politechnika Krakowska 1. Widzenie barwne jako proces psychofizyczny Barwy w życiu człowieka odgrywają niezwykle istotną rolę, związaną nie tylko z czysto

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

V. KONSPEKTY UCZELNIA WYŻSZA

V. KONSPEKTY UCZELNIA WYŻSZA 66 S t r o n a V. KONSPEKTY UCZELNIA WYŻSZA ŚWIATŁO W ŻYCIU Realizator: Politechnika Krakowska im. Tadeusza Kościuszki w Krakowie Nazwa przedmiotu Cele zajęć Treści programowe Efekty Forma pracy uczniów

Bardziej szczegółowo

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności:

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności: 1. Fale elektromagnetyczne. Światło. Fala elektromagnetyczna to zaburzenie pola elektromagnetycznego rozprzestrzeniające się w przestrzeni ze skończoną prędkością i unoszące energię. Fale elektromagnetyczne

Bardziej szczegółowo

Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI

Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 2 Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. Cel ćwiczenia: Zapoznanie studentów ze zjawiskami tłumienności odbiciowej i własnej.

Bardziej szczegółowo

L E D light emitting diode

L E D light emitting diode Elektrotechnika Studia niestacjonarne L E D light emitting diode Wg PN-90/E-01005. Technika świetlna. Terminologia. (845-04-40) Dioda elektroluminescencyjna; dioda świecąca; LED element półprzewodnikowy

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo