UNIWERSYTET ŚLĄSKI WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII INSTYTUT CHEMII ZAKŁAD CHEMII I TECHNOLOGII ŚRODOWISKA PIOTR BUJAK ROZPRAWA DOKTORSKA

Wielkość: px
Rozpocząć pokaz od strony:

Download "UNIWERSYTET ŚLĄSKI WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII INSTYTUT CHEMII ZAKŁAD CHEMII I TECHNOLOGII ŚRODOWISKA PIOTR BUJAK ROZPRAWA DOKTORSKA"

Transkrypt

1 UNIWERSYTET ŚLĄSKI WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII INSTYTUT CHEMII ZAKŁAD CHEMII I TECHNOLOGII ŚRODOWISKA PIOTR BUJAK ROZPRAWA DOKTORSKA Charakterystyka mikrostrukturalna wybranych kopolimerów akrylowych za pomocą spektroskopii NMR Promotor: dr hab. inż. MAREK MATLENGIEWICZ Katowice 2008

2 SPIS TREŚCI 1. WSTĘP 1 2. CZĘŚĆ TEORETYCZNA Struktura makrocząsteczki Mikrostruktura łańcucha Regioregularność Stereoizomeria Izomeria geometryczna Mikrostruktura kopolimerów Techniki analityczne stosowane do analizy mikrostrukturalnej polimerów Rentgenografia Spektroskopia w podczerwieni i spektroskopia Ramana Spektrometria masowa Spektroskopia NMR Spektroskopia 1 H NMR Spektroskopia 13 C NMR Rozkład sekwencji konfiguracyjnych w homopolimerach Rozkład sekwencji kompozycyjno-konfiguracyjnych w kopolimerach Analiza mikrostrukturalna homopolimerów i kopolimerów Przykłady zastosowania spektroskopii 13 C NMR do analizy mikrostrukturalnej różnych homopolimerów i kopolimerów Polietylen Polipropylen Polibutadien Polistyren Polimery winylowe Kopolimer styren/butadien Kopolimer styren/metakrylan metylu Zastosowanie spektroskopii 13 C NMR do analizy mikrostrukturalnej homopolimerów i kopolimerów akrylowych 43

3 2.9.1 Zastosowanie spektroskopii 13 C NMR do analizy mikrostrukturalnej poliestrów kwasu metakrylowego Zastosowanie spektroskopii 13 C NMR do analizy mikrostrukturalnej poliestrów kwasu akrylowego Zastosowanie spektroskopii 13 C NMR do analizy mikrostrukturalnej kopolimerów estrów kwasu akrylowego i metakrylowego CEL PRACY CZĘŚĆ BADAWCZA Badania mikrostrukturalne modelowego homopolimeru poli(metakrylanu metylu) Badania mikrostrukturalne poli(akrylanu n-butylu) Badania mikrostrukturalne poli(akrylanu tert-butylu) Badania mikrostrukturalne kopolimeru metakrylanu metylu i akrylanu n-butylu na podstawie obszaru karbonylowego widm 13 C NMR Badania mikrostrukturalne kopolimeru metakrylanu metylu i akrylanu tert-butylu na podstawie obszaru karbonylowego widm 13 C NMR Badania mikrostrukturalne kopolimeru metakrylanu metylu i akrylanu n-butylu na podstawie sygnałów węgli -CH 2 widm 13 C NMR Badania mikrostrukturalne kopolimeru metakrylanu metylu i akrylanu tert-butylu na podstawie sygnałów węgli -CH 2 widm 13 C NMR CZĘŚĆ EKSPERYMENTALNA Otrzymywanie homopolimerów Polimeryzacja rodnikowa Polimeryzacja jonowa Otrzymywanie kopolimerów Rejestracja widm 1 H i 13 C NMR otrzymywanych homopolimerów i kopolimerów Rejestracja widm DEPT otrzymanych kopolimerów Symulacja widm NMR PODSUMOWANIE WYNIKÓW Analiza mikrostrukturalna homopolimerów Analiza mikrostrukturalna kopolimerów 157

4 7. WNIOSKI LITERATURA ANEKS DOROBEK NAUKOWY 188

5 1. WSTĘP W grupie najczęściej otrzymywanych polimerów, obok polietylenu, polipropylenu, polichlorku winylu czy polistyrenu, ważne miejsce zajmują polimery akrylowe, charakteryzujące się szerokim zakresem zastosowań. Opierając się na grupie około 20 monomerów, wykorzystując różnorodne katalizatory oraz technologie prowadzenia procesów polimeryzacji i kopolimeryzacji, można w płynny sposób zmieniać w bardzo szerokim zakresie właściwości otrzymywanych produktów. Dużą grupę praktycznie ważnych kopolimerów akrylowych stanowią kopolimery estrów kwasu akrylowego i metakrylowego. Można tu wyróżnić kopolimery, w których jeden ze składników występuje w dużej przewadze, a drugi jest wprowadzany w celu modyfikacji jego właściwości. Jest tak głównie w przypadku stosowania metakrylanu metylu i modyfikacji takich właściwości poli(metakrylanu metylu) jak twardość, odporność termiczna czy ograniczenie palności z zachowaniem podstawowych zalet, tj. przezroczystości, łatwości formowania, wybarwialności, walorów estetycznych. Przykładem tego typu kopolimerów są produkty kopolimeryzacji metakrylanu metylu ze styrenem lub akrylonitrylem. Różnorodność kopolimerów akrylowych jest znaczna ze względu na łatwą syntezę odpowiednich pochodnych, zawierających rozmaite podstawniki: alifatyczne, aromatyczne, cykliczne, aż do bardzo złożonych, takich jak fragmenty leków, enzymów, katalizatorów, barwników itp. Niektóre właściwości kopolimerów, zwłaszcza wartości temperatury zeszklenia i związane z tym właściwości reologiczne, mogą być oszacowane i zaprogramowane. Ze składników powodujących niską temperaturę zeszklenia, a co za tym idzie właściwości typowe dla elastomerów, takich jak akrylany butylu lub heksylu oraz powodujących wyższą temperaturę zeszklenia, większą twardość i sztywność, takich jak metakrylan metylu lub metakrylany aromatyczne, można otrzymywać kopolimery o pośredniej temperaturze zeszklenia. O właściwościach fizykochemicznych polimerów i kopolimerów decyduje wiele czynników do najważniejszych należy struktura i mikrostruktura oraz masa molowa makrocząsteczek. W ramach tego samego homopolimeru czy kopolimeru możemy obserwować zróżnicowanie budowy łańcucha makrocząsteczki, zwane mikrostrukturą, od której bezpośrednio zależy wiele różnorodnych właściwości fizykochemicznych. Analiza mikrostrukturalna wykorzystująca spektroskopię 13 C NMR umożliwia zarówno określenie budowy jak i przewidywanie właściwości fizykochemicznych, co jest bardzo ważne we wszelkich zastosowaniach. 1

6 2. CZĘŚĆ TEORETYCZNA Związki wielkocząsteczkowe ze względu na pochodzenie można podzielić na dwie podstawowe grupy. Pierwsza z nich grupa naturalnych związków wielkocząsteczkowych obejmuje związki występujące w przyrodzie, np. celuloza, skrobia, kauczuk naturalny. Drugą grupę stanowią syntetyczne związki wielkocząsteczkowe otrzymywane w wyniku polimeryzacji, polikondensacji czy poliaddycji. Makrocząsteczką nazywamy związek chemiczny zbudowany z wielokrotnie powtarzających się jednostek zwanych merami, połączonych ze sobą wiązaniami chemicznymi i występujących w takiej liczbie, że dodanie lub odjęcie kilku tych jednostek nie wywiera znaczącego wpływu na właściwości makrocząsteczki. Powtarzanie się w łańcuchu jednakowego elementu strukturalnego jest charakterystyczną cechą makrocząsteczki regularnej. Makrocząsteczki o budowie nieregularnej nie da się opisać za pomocą jednego elementu strukturalnego. Podobnie jak dla związków niskocząsteczkowych podstawową cechą charakteryzującą polimery jest ich struktura chemiczna. Drugą cechą charakterystyczną polimerów regularnych jest to, że w dowolnej małej ilości, którą operuje się praktycznie w badaniach, obecne są nie makrocząsteczki o jednakowej masie molowej, lecz mieszanina makrocząsteczek o mniej lub bardziej zbliżonych masach molowych. W stosunku do polimerów pojęcie masy molowej traci swój sens w takim znaczeniu, w jakim jest ono stosowane do związków niskocząsteczkowych i musi zostać zastąpione pojęciem średniej masy molowej. Ponadto, aby scharakteryzować polimer należy znać nie tylko średnią masę molową, lecz i stopień polidyspersji, który wskazuje jak dalece masy molowe makrocząsteczek zawartych w badanej próbce odbiegają od wartości średniej. Dodatkowo w obrębie jednego łańcucha polimeru (regularnego) może wystąpić zróżnicowanie mikrostrukturalne polegające na różnorodnym ułożeniu jednostek monomerycznych. Ustalenie struktury jak również mikrostruktury polimeru, w odróżnieniu od związku niskocząsteczkowego, jest praktycznie niemożliwe ze względu na wielkość cząsteczki więc również i w tym przypadku posługujemy się rozkładami statystycznymi. Różnice pomiędzy związkami niskocząsteczkowymi i makrocząsteczkami objawiają się we właściwościach fizykochemicznych. Jedną z najważniejszych cech wyróżniającą polimer jest brak ostrego przejścia pomiędzy stanem stałym i ciekłym. Wprawdzie znane są polimery o budowie krystalicznej, ale i w tym przypadku, pomimo istnienia wyraźnej temperatury topnienia, mięknienie ich występuje znacznie wcześniej. W strukturze chemicznej 2

7 makrocząsteczki, czyli w przestrzennym rozmieszczeniu jej atomów są zakodowane informacje o możliwych sposobach ich oddziaływań, właściwościach i optymalnych sposobach przetwarzania. Głównym celem analizy polimerów jest ustalenie związku między budową chemiczną makrocząsteczki a właściwościami fizykochemicznymi polimeru. Rozmieszczenie jednostek monomerycznych określa się jako strukturę oraz mikrostrukturę polimeru. W zależności od rodzaju polimeru możliwe są do rozpatrzenia różne ułożenia jednostek monomerycznych. 2.1 Struktura makrocząsteczki Makrocząsteczka może przyjmować różne struktury topologiczne (Rysunek 2.1)[1,2], które decydują o kształcie (konformacji) makrocząsteczek oraz ich właściwościach fizycznych. W układach tych można wyróżnić trzy podstawowe struktury: łańcuchową (liniową) (Rysunek 2.1a), rozgałęzioną (Rysunek 2.1b,c,d) i usieciowaną (Rysunek 1.1e,f). a) b) c) d) e) f) Rysunek 2.1 Układy topologiczne makrocząsteczek: a) łańcuch, b) łańcuch z rozgałęzieniami, c) drzewo, d) gwiazda, e) sieć, f) drabinka Układ liniowy, który został najdokładniej przebadany, możemy traktować jako układ podstawowy. Z właściwości makrocząsteczki liniowej można niejednokrotnie wyprowadzić informacje o właściwościach polimerów o innej topologii. Polimery liniowe otrzymuje się 3

8 najczęściej w wyniku polimeryzacji, poliaddycji lub polikondensacji dwufunkcyjnych monomerów. Powstające rozgałęzienia wynikają często z metody polimeryzacji np. polimeryzacja etylenu pod wysokim ciśnieniem daje polietylen z rozgałęzieniami łańcucha, podczas gdy katalityczny proces niskociśnieniowy daje produkt praktycznie liniowy. Monomery o większej funkcyjności dają w wyniku polimeryzacji czy polikondensacji produkty o różnym stopniu rozgałęzienia. Struktury łańcuchowe oraz rozgałęzione posiadające reaktywne fragmenty mogą reagować dalej, prowadząc do produktów usieciowanych. Struktury usieciowane występują zarówno w grupie polimerów naturalnych jak i syntetycznych. 2.2 Mikrostruktura łańcucha W obrębie jednego łańcucha polimeru (regularnego) możliwe jest różnorodne ułożenie tych samych jednostek monomerycznych. Różnice te opisuje mikrostruktura łańcucha, na którą składa się w zależności od rodzaju monomeru: regioregularność, stereoizomeria oraz izomeria geometryczna. Określenie stopnia regularności polimeru pozwala przewidywać właściwości fizykochemiczne otrzymanego produktu. Polimery regularne łatwiej krystalizują i mają zdecydowanie lepsze właściwości mechaniczne, optyczne czy elektryczne Regioregularność Przez regioregularność rozumie się różnice wynikające z usytuowania fragmentów asymetrycznej jednostki monomerycznej względem poprzedzającego i następującego fragmentu łańcucha. Jeżeli w asymetrycznej jednostce monomerycznej wyodrębnimy umownie jej początek (głowa) i koniec (ogon) to możliwe są trzy typy połączeń między dwoma merami: głowa-ogon (połączeń ogon-głowa zazwyczaj nie da się odróżnić od połączeń głowa-ogon), głowa-głowa, ogon-ogon (Rysunek 2.2) [1,2]. 4

9 X X H 2 C CH CH 2 CH a) X X H 2 C CH CH CH 2 b) X X CH CH 2 CH2 CH c) Rysunek 2.2 Typy połączenia monomerów asymetrycznych: a) głowa-ogon, b) głowagłowa, c) ogon-ogon W zależności od rodzaju reagującego monomeru możemy otrzymywać polimery o różnej regioregularności. Dla monomerów akrylowych o ogólnej strukturze CH 2 =C(R)COOR, biorąc pod uwagę trzy czynniki stabilizację rezonansową utworzonych form, efekt steryczny i polarność dominuje przyłączenie głowa-ogon, dlatego inne przyłączenia można zazwyczaj pominąć [3]. W większości polimerów struktury głowa-ogon to % wszystkich struktur [1]. Znaczący udział struktur nieregularnych głowa-głowa obserwuje się w przypadku polimerów zawierających podstawniki fluorowe, w tych przypadkach wymiary i zdolność do stabilizacji rodników są stosunkowo małe, duży efekt indukcyjny atomu fluoru sprawia, że w toku addycji typu głowa-ogon można oczekiwać odpychających oddziaływań elektrostatycznych między atomami mającymi utworzyć wiązanie [1]. W poli(fluorku winylu) zawartość ugrupowań nieregularnych dochodzi do około 10 %, a w poli(fluorku winylidenu) do około 20 % [1]. Izomerię głowa-ogon możemy zaobserwować również dla innych układów. Na przykład wśród badanych obecnie bardzo intensywnie polimerów przewodzących, typu podstawionych politiofenów, takich jak poli(3- heksylotiofen) (Rysunek 2.3, R = heksyl), w zależności od warunków prowadzenia procesu polimeryzacji możliwe jest otrzymanie i zaobserwowanie przy pomocy spektroskopii 1 H 5

10 NMR albo mieszaniny czterech możliwych form albo praktycznie jednego produktu o układzie głowa-ogon-głowa-ogon (Rysunek 2.3a). Ten ostatni polimer o regularnej budowie głowa-ogon-głowa-ogon charakteryzuje się większym przewodnictwem elektrycznym od innych form [4] R R R R S S S S a) b) R S R S R R R R S S S S S S c) R d) R Rysunek 2.3 Struktury regioregularne poli(3-heksylotiofenu) (R = heksyl) a) głowa-ogongłowa-ogon, b) ogon-ogon-głowa-ogon, c) głowa-ogon-głowa-głowa, d) ogon-ogon-głowagłowa Stereoizomeria Stereoizomeria w polimerach i kopolimerach może występować wtedy, gdy w obrębie jednostki monomerycznej znajduje się co najmniej jedno centrum chiralne lub prochiralne. Monomery mogą zawierać centrum chiralności zarówno w łańcuchu bocznym jak i w łańcuchu głównym. Na przykład polimeryzacja (R,S)-3-metylopent-1-enu [5] czy (R,S)-4- metyloheks-1-enu [6] prowadzi do otrzymania łańcuchów polimerów o różnej konfiguracji chiralnych atomów węgla w łańcuchach bocznych. Natomiast występowanie centrum asymetrii w łańcuchu głównym prowadzi do pojęcia prochiralności. Dwa końce łańcucha połączone z centrum asymetrii są w praktyce nierozróżnialne gdyż nie ma fizycznej możliwości aby zamienić ich położenie przez zwykły obrót, jak ma to miejsce w przypadku małych cząsteczek. Centrum prochiralnym jest np. atom węgla w łańcuchu głównym podstawiony czterema podstawnikami, z których dwa są praktyczne takie same, ponieważ wymiana lub przekształcenie jednego z identycznych podstawników prowadzące do 6

11 podstawnika różnego od pozostałych doprowadza do chiralności [1]. Jedną z takich podstawowych grup są związki winylowe, do których należą monomery akrylowe CH 2 =C(R)COOR. Polimeryzacja akrylanów prowadzi do powstawania jednostek monomerycznych zawierających jedno centrum asymetrii. (Rysunek 2.4) R R R n H 2 C C H 2 C C* CH 2 C* O C O C O C OR` OR` OR` Rysunek 2.4 Schemat reakcji polimeryzacji monomerów akrylowych Uporządkowanie kolejności występowania powtarzalnych jednostek konfiguracyjnych w łańcuchu głównym cząsteczki polimeru zwane jest taktycznością; dlatego polimerem taktycznym nazywamy polimer regularny, którego cząsteczki można opisać tylko jednym rodzajem powtarzalnych jednostek konfiguracyjnych o jednakowej sekwencji [7]. Polimerem stereoregularnym nazywamy polimer regularny, którego cząsteczki można opisać tylko jednym rodzajem jednostki stereopowtarzalnej o jednakowej sekwencji [7]. Pojęcie stereoregularności jest węższe od pojęcia taktyczności, ponieważ do tego, aby polimer był taktyczny wystarczy, by w powtarzalnej jednostce konfiguracyjnej była określona konfiguracja względna, co najmniej jednego centrum chiralnego lub prochiralnego a nie koniecznie wszystkich, jak to jest wymagane w przypadku polimeru stereoregularnego [1]. Opis taktyczności, polega na podaniu informacji statystycznej o zawartości różnego rodzaju sekwencji konfiguracyjnych, określanych jako rozkład sekwencji. W opisie konfiguracji centrów chiralnych stosuje się notację bezwzględnej konfiguracji przestrzennej R lub S. W wyniku homopolimeryzacji możemy otrzymać trzy typy konfiguracji łańcucha: a) łańcuch ataktyczny, jeżeli konfiguracja kolejnych asymetrycznych atomów węgla jest przypadkowa np. RRSSRSRRR, b) izotaktyczny o jednakowej konfiguracji kolejnych atomów węgla np. RRRRRRRRR, c) syndiotaktyczny o naprzemiennej konfiguracji kolejnych atomów węgla RSRSRSRSR. (Rysunek 2.5) [8]: 7

12 R R COOR` R COOR' C CH 2 C CH 2 C CH 2 C CH 2 C CH 2 a) łańcuch ataktyczny COOR` COOR` R COOR` R R R R R R C CH 2 C CH 2 C CH 2 C CH 2 C CH 2 b) łańcuch izotaktyczny COOR` COOR` COOR` COOR` COOR` R COOR` R COOR` R C CH 2 C CH 2 C CH 2 C CH 2 C CH 2 COOR` R COOR` R COOR` c) łańcuch syndiotaktyczny Rysunek 2.5 Typy konfiguracyjne łańcuchów homopolimerów akrylowych W celu opisu względnych konfiguracji łańcucha zawierającego jednostkę konfiguracyjną z jednym centrum asymetrii Bovey i in. [9-11] zdefiniowali pojęcie diady, opisujące segment łańcucha polimeru obejmujący dwie kolejne jednostki monomeryczne. Jeżeli asymetryczne atomy węgla tego segmentu mają taką samą konfigurację to diada zwana jest mezo (m), gdy ich konfiguracja jest przeciwna to diada zwana jest racemiczną (r) (Rysunek 2.6). 8

13 R R R COOR' C CH 2 C C CH 2 C COOR' COOR' COOR' R diada m diada r Rysunek 2.6 Konfiguracja diady mezo (m) i racemicznej (r) Dłuższe sekwencje konfiguracyjne mogą więc być opisywane przy pomocy diad m i r. Sekwencje zawierające trzy centra stereoizomeryczne są nazywane triadami i są układami zawierającymi dwie kolejne diady; mamy, więc cztery różne triady mm, mr, rm i rr. (Rysunek 2.7) triada rr R R COOR` R R C CH 2 C CH 2 C CH 2 C CH 2 C CH 2 COOR` COOR` R COOR` COOR` pentada mrrm Rysunek 2.7 Przykłady dłuższych sekwencji konfiguracyjnych W przypadku polimerów akrylowych w jednostkach monomerycznych mamy pojedyncze centra asymetrii, ale mogą oczywiście istnieć polimery zawierające więcej takich centrów. Do opisu mikrostruktury polimeru zawierającego jednostkę konfiguracyjną z dwoma centrami asymetrii posługujemy się konfiguracją względną stosując określenia erytro i treo, przez analogie do nomenklatury cukrów (Rysunek 2.8) [9]. Przykładem takich polimerów mogą być polilaktydy [12], których mery zawierają dwa centra asymetrii. 9

14 H H H B C C C C A B a) b) A H Rysunek 2.8 Konfiguracja a) erytro, b) treo Izomeria geometryczna Pojęcie stereoregularności jak również taktyczności dotyczy nie tylko struktur polimerowych zawierających asymetryczne atomy węgla, ale również izomerii geometrycznej polimerów z wiązaniami podwójnymi (lub układami pierścieniowymi). Stereoizomeria obejmuje izomerię optyczną oraz izomerię geometryczną. Izomeria geometryczna, najczęściej występuje, gdy jednostka monomeryczna zawiera wiązania podwójne (izomeria typu cis i trans) lub pierścienie aromatyczne (izomeria orto, meta, para). W polimeryzacji monomerów o funkcyjności większej niż dwa np. dienów sprzężonych, obecność dwóch podwójnych wiązań powoduje, że powstają dwa różne addukty: 1,2, który prowadzi do otrzymywania produktów rozgałęzionych i 1,4 prowadzący do polimerów liniowych. (Rysunek 2.9) H 2 C CX CH CH 2 H 2 C CX CH 2 CH CH 2 CH CX CH 2 a) H 2 C CX CH CH 2 H 2 C CH CX CH 2 CH 2 CH CX CH 2 b) Rysunek 2.9 Addycja a) 1,2, b) 1,4 Ze względów sterycznych uprzywilejowanym produktem jest addukt 1,4. Polimeryzacja rodnikowa najczęściej stosowanych dienów: butadienu, izoprenu (X = CH 3 ) i chloroprenu (X = Cl) prowadzi do otrzymania produktu, w którym zawartość struktur 1,4 wynosi odpowiednio: 80 %, 90 % i 95 % [1]. Produkt 1,4 występuje w postaci dwóch izomerów geometrycznych cis i trans. (Rysunek 2.10) 10

15 H 2 C CH 2 H 2 C X C C C C H X a) b) H CH 2 Rysunek 2.10 a) addukt 1,4-cis b) addukt 1,4-trans Różne typy tej taktyczności mają specyficzne nazwy. Polimerami cis- lub transtaktycznymi (Rysunek 2.11a) nazywa się polimery z jednym określonym typem izomerii geometrycznej wiązania podwójnego (lub układu pierścieniowego) w łańcuchu polimeru. Polimery di- lub tritaktyczne są to polimery, których podstawowa jednostka konfiguracyjna zawiera w łańcuchu głównym dwa lub trzy centra określonej stereoizometrii (Rysunek 2.11b,c) np. izomerii geometrycznej i izomerii optycznej [1]. H 2 C C C X H 3 C Y Y CH 3 H H 3 C H Y X CH 3 H CH 2 X X a) b) c) X H H Y Rysunek 2.11 Polimery a) transtaktyczne b) ditaktyczne c) tritaktyczne Związki aromatyczne zawierające różne podstawniki, posiadają aktywne pozycje orto, meta lub para. Polikondensacja takich aromatycznych związków może prowadzić do różnych produktów. Na przykład polikondensacja fenolu z formaldehydem może przebiegać wobec katalizatorów kwaśnych lub zasadowych. Przebieg tego procesu uzależniony jest przede wszystkim od rodzaju katalizatora oraz od wzajemnego molowego stosunku reagentów. Fenol jest w tej reakcji związkiem trójfunkcyjnym; posiada on dwie reaktywne pozycje orto i jedną para. Oprócz pochodnej o-monometylowej i p-monometylowej powstają dwie izomeryczne pochodne dimetylowe oraz pochodna trimetylowa. Reakcja polikondensacji takich produktów przejściowych prowadzi do otrzymania wielu polimerów o różnym sposobie rozgałęzienia. Na rysunku 2.12 przedstawiono dwie z wielu możliwych struktur. 11

16 OH OH HO a) + HCHO CH 2 O CH 2 CH 2 OH + HCHO HO CH 2 O CH 2 OH b) CH 2 Rysunek 2.12 Połączenie a) orto-orto-orto-orto, b) orto-para-para-orto 2.3 Mikrostruktura kopolimerów Kopolimerami nazywamy makrocząsteczki, które składają się z więcej niż jednego rodzaju meru. Kopolimer charakteryzuje rodzaj tworzących go merów, ich udział ilościowy, sposób rozmieszczenia merów i struktura topologiczna. Podobnie jak w przypadku polimerów rozróżnia się kopolimery liniowe, rozgałęzione i usieciowane. Kopolimer liniowy podobnie jak homopolimer liniowy można traktować za układ podstawowy. W kopolimerach rozgałęzionych rozróżnia się takie, w których łańcuch główny jest zbudowany z jednego rodzaju merów, a łańcuchy boczne z innego rodzaju merów. Kopolimery usieciowane można podzielić na takie, w których wszystkie fragmenty sieci mają taki sam skład oraz takie, w których jeden monomer tworzy łańcuchy a drugi mostki pomiędzy łańcuchami. Podstawowym problemem mikrostruktury kopolimerów liniowych to sposób rozmieszczenia merów w łańcuchu. Wyróżniamy kopolimery przemienne (...ABABABABAB ), których cząsteczki składają się z powtarzających się na przemian merów, kopolimery statystyczne ( ABBBABAAB ), czyli takie, w których rozkład jednostek monomerycznych jest zgodny z prawami statystyki oraz kopolimery blokowe ( AAAAABBBBAAAAABBBB ). W tej ostatniej grupie wyróżniamy kopolimery dwublokowe, trójblokowe lub segmentowe. W reakcjach kopolimeryzacji dwa monomery (A i B) konkurują ze sobą w addycji do centrów aktywnych. W kopolimeryzacji rodnikowej rozmieszczenie merów w łańcuchu zależy od względnych współczynników reaktywności. Współczynnik reaktywności monomeru określa stosunek stałej szybkości przyłączenia się rodnika do własnego monomeru do stałej szybkości przyłączenia się tego rodnika do drugiego 12

17 monomeru. Jeżeli oba współczynniki reaktywności są mniejsze od jedności to otrzymamy kopolimer statystyczny [1]. W kopolimerach, podobnie jak w polimerach występują również inne różnice mikrostrukturalne np. konfiguracyjne, spowodowane występowaniem asymetrycznych atomów węgla. Rozróżniamy tu dwa przypadki. Jeśli izomeria konfiguracyjna występuje tylko dla jednego komonomeru, to sekwencje konfiguracyjne mogą występować tylko pomiędzy jednostkami tego komonomeru, np. ( ABrBrBAA ). W drugim przypadku (np. kopolimeryzacja akrylanów) gdy oba komonomery wprowadzają do łańcucha zróżnicowanie konfiguracyjne, to dla każdej sekwencji kompozycyjnej należy uwzględnić wszelkie możliwe sekwencje konfiguracyjne. W przypadku polimeryzacji monomerów akrylowych analiza mikrostrukturalna sprowadza się do określenia rozkładu sekwencji konfiguracyjnych dla homopolimerów oraz rozkładu sekwencji konfiguracyjno-kompozycyjnych dla kopolimerów. 2.4 Techniki analityczne stosowane do analizy mikrostrukturalnej polimerów Polimeryzację tego samego monomeru można prowadzić w różnych warunkach np. stosując różne inicjatory, rozpuszczalniki, stężenia itp. W wyniku tych reakcji można otrzymać produkty o różnych właściwościach fizykochemicznych. Różnice te mogą wynikać z różnej struktury jak i mikrostruktury łańcucha polimeru. Dlatego do badań należy zastosować odpowiednie techniki analityczne pozwalające analizować budowę łańcucha polimeru Rentgenografia Historycznie, pierwszą metodą, którą użyto do badań mikrostrukturalnych była rentgenografia. Metodę tę zastosowano do analizy między innymi takich polimerów jak otrzymanego katalitycznie syndiotaktycznego poli(chloreku winylu) [13] czy polipropylenu [14], co pozwoliło powiązać możliwość krystalizowania polimeru z jego strukturą i mikrostrukturą. Rentgenografię wykorzystuje się do analizy mikrostrukturalnej krystalicznych oligomerów. Mieszaninę otrzymanych oligomerów np. metakrylanu metylu [15] rozdziela się przy pomocy wysokociśnieniowej chromatografii cieczowej (HPLC) otrzymując oligomery o różnej konfiguracji, które następnie poddaje się analizie rentgenograficznej. Podstawowym ograniczeniem tej metody jest wymaganie, aby próbka była krystaliczna, a więc metoda jest ograniczona do badań polimerów o bardzo regularnej budowie. 13

18 2.4.2 Spektroskopia w podczerwieni i spektroskopia Ramana Próbki polimerów o budowie mniej regularnej można analizować stosując spektroskopię w podczerwieni, IR, lub spektroskopię Ramana. Metody te można wykorzystać zarówno do analizy próbek polimerów oraz mieszanin polimerów w stanie stałym (proszków, cienkich warstw) jak i ciekłym (roztwory). Spektroskopię w podczerwieni można wykorzystać przede wszystkim do identyfikacji polarnych fragmentów łańcucha, natomiast spektroskopię Ramana do analizy łańcucha głównego [16]. Na przykład, do badań struktury kopolimerów etylenu z propylenem można zastosować zarówno spektroskopię w podczerwieni [17,18] jak i spektroskopię Ramana [19]. Spektroskopię IR można też zastosować do badań ilościowych kopolimerów etylenu z akrylanami [20], badań kinetyki reakcji polimeryzacji etylenu [21] czy kopolimeryzacji metakrylanu metylu ze styrenem [22]. Zjawisko dichroizmu w podczerwieni wykorzystuje się do określania konformacji łańcucha i prowadzono takie badania dla polistyrenu [23] czy izotaktycznego polipropylenu [24]. Spektroskopię Ramana można zastosować do badań strukturalnych uzyskując wyniki ilościowe np. określania zawartości butadienu w kopolimerze butadien-styren [25]; techniką tą można również badać stopień usieciowania kopolimeru np. dimetakrylanu glikolu etylenowego z metakrylanem metylu [26]. Przedstawione przykłady świadczą, że spektroskopię IR oraz Ramana można stosować do badań strukturalnych (konformacyjnych) jak i mikrostrukturalnych polimerów oraz kopolimerów. Podstawową wadą tych technik jest jednak trudność w uzyskaniu wyników ilościowych. Możliwość uzyskania wyników ilościowych wymaga przeprowadzenia wielu pomiarów i przetestowania wielu parametrów rejestracji [27,28], co wydłuża czas badań, dlatego można stwierdzić, że metody te nie są metodami dostatecznie uniwersalnymi, obejmującymi szeroki zakres polimerów Spektrometria masowa Inną techniką, często stosowaną do analizy makrocząsteczek, jest spektrometria masowa (MS), którą zazwyczaj stosuje się łącznie z innymi metodami, najczęściej chromatografią gazową (GC), lub wysokociśnieniową chromatografią cieczową (HPLC). Podstawowym zastosowaniem spektrometrii masowej w chemii polimerów jest określenie mas molowych związków wielkocząsteczkowych z możliwością rozszerzenia na badania strukturalne. W zależności od sposobu jonizacji próbki można zastosować różne techniki. Technika jonizacja określana jako spektrometria masowa jonów wtórnych (SIMS) (ang. Secondary Ion Mass Spectrometry) została zastosowana między innymi do analizy 14

19 poli(tetrafluoroetylenu) [29]. Metodę bombardowania próbki szybkimi atomami (FAB) (ang. Fast Atom Bombardment) wykorzystano do badań poli(glikolu etylenowego) [30]. Najczęściej stosowanymi technikami do badań polimerów jest technika MALDI-TOF MS (ang. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry) czyli spektrometria masowa z desorpcją laserem w obecności matrycy oraz spektrometria masowa z rozpylaniem w polu elektrycznym ESI-MS (ang. Electrospray Ionization Mass Spectrometry). Metoda MALDI-TOF MS [31] polega na użyciu lasera do naświetlania próbki polimeru umieszczonej na matrycy absorbującej światło ultrafioletowe. Metoda ta służy do szybkiego i bardzo dokładnego określenia masy molowej oraz szybkiej identyfikacji polimeru. Jeżeli rodzaj polimeru jest znany, to analiza pozwala na określenie grup początkowych i końcowych w makrocząsteczkach, a także identyfikację ewentualnych produktów ubocznych powstających w trakcie syntezy. Próbkę do analizy przygotowuje się w ten sposób, że miesza się polimer z matrycą. Jako matryce służą związki organiczne, np. 1,8,9-trihydroantracen lub 4-nitroanilina. Roztwór matrycy miesza się z roztworem polimeru w tym samym rozpuszczalniku i jeżeli jest to niezbędne z roztworem zawierającym jony metali, na przykład litu, sodu lub srebra. Mieszaninę suszy się, wprowadza do spektrometru i poddaje działaniu światła lasera. Na widmie obserwuje się piki reprezentujące addukty kationu metalu z makrocząsteczkami lub protonowane makrocząsteczki. Odległość pomiędzy pikami powtarzającymi się w równych odstępach na osi odciętych odpowiada masie molowej meru. Obecność dodatkowych serii pików o innym położeniu, ale również różniących się masą meru, świadczy o istnieniu makrocząsteczek z różnymi grupami początkowymi lub końcowymi lub o różnej liczbie tych grup, co wskazuje na utworzenie rozgałęzień. W ten sposób z położenia piku można ustalić budowę makrocząsteczek [32]. Metodę tę zastosowano między innymi do analizy strukturalnej poli(metakrylanu metylu) [33] oraz innych polimerów metakrylowych [34]. Przy pomocy tej metody analizowano rozkład sekwencji kompozycyjnych kopolimerów tlenku etylenu z tlenkiem propylenu [35]. Zastosowanie techniki ESI-MS ograniczone jest do identyfikacji makrocząsteczek o relatywnie niskich masach molowych, zwykle do 2000, a tylko w specjalnych przypadkach do [36]. Dokładność pomiaru masy, uwzględniająca występowanie izotopów pierwiastków wchodzących w skład makrocząsteczek, pozwala na precyzyjne określenie rodzaju grup początkowych i końcowych. Metoda ESI-MS jest szczególnie przydatna w badaniach mechanizmu inicjowania polimeryzacji jonowej i identyfikacji powstających pierwotnie produktów [36]. Spektrometria masowa pozwala na uzyskanie wielu informacji na temat struktury makrocząsteczki, pozwala na analizę strukturalną wielu polimerów i kopolimerów 15

20 (łańcuch blokowy, przemienny, przypadkowy) dostarczając dane ilościowe. Podstawową wadą spektrometrii masowej jest jednak fakt, że jest to metoda destrukcyjna, która nie analizuje łańcucha jako całości a jedynie jego fragmenty. Nawet tak szeroko stosowana w badaniach polimerów technika MALDI-TOF MS nie pozwala na uzyskanie dostatecznych danych dotyczących mikrostruktury łańcucha Spektroskopia NMR Spektroskopia magnetycznego rezonansu jądrowego NMR jest obecnie jedną z najlepszych technik analitycznych, jeśli chodzi o badania struktury chemicznej. Pierwsze zastosowania tej metody do badania polimerów sięgają lat 60-tych ubiegłego wieku, gdy Bovey i Thiers [37] zauważyli, że protonowe widma poli(metakrylanu metylu), zawierają informacje o mikrostrukturze łańcucha. Obecnie do badań polimerów wykorzystuje się różne techniki spektroskopii magnetycznego rezonansu jądrowego. Większość badań prowadzi się dla próbek w stanie ciekłym ale możliwe jest też badanie próbek w stanie stałym. Spektroskopię NMR ciała stałego wykorzystuje się do analizy strukturalnej i morfologicznej polimerów i kopolimerów. Metoda ta pozwala określać wiele powiązań między właściwościami fizycznymi (mechanicznymi) polimerów a ich strukturą. Spektroskopia NMR ciała stałego nie jest jednak obecnie techniką o dostatecznej rozdzielczości, aby badać mikrostrukturę łańcucha polimeru. Spektroskopię magnetycznego rezonansu jądrowego, głównie izotopów 1 H i 13 C, dla próbek w stanie ciekłym stosuje się do badań mikrostrukturalnych homopolimerów, a w badaniach kopolimerów przede wszystkim do określenia składu, ale również do badania taktyczności. Spektroskopię 1 H i 13 C NMR można również zastosować do badań kinetyki polimeryzacji, określania masy molowej, temperatury zeszklenia [38]. Dużą grupę metod stanowią dwuwymiarowe techniki NMR, które pozwalają badać defekty łańcucha polimerowego polegające np. na występowaniu połączeń głowa-głowa. Techniki dwuwymiarowe pozwalają uzyskiwać widma polimerów i kopolimerów, na podstawie których np. dzięki zastosowaniu korelacji sygnałów protonów z sygnałami węgla, można analizować nakładające się sygnały występujące na widmach 1 H i 13 C NMR, co wykorzystuje się w analizie mikrostrukturalnej. Widma dwuwymiarowe J-rozdzielcze pozwalają określać konformacje łańcucha polimeru na podstawie wartości stałych sprzężenia. Technik dwuwymiarowych nie można jednak zastosować w przypadkach, gdy nie można wykorzystać korelacji węgiel-wodór, na przykład dla sygnałów węgli karbonylowych; utrudnione jest 16

Wykład 2. (godz. 2 - ) Masy cząsteczkowe, masy molowe, rozkład mas cząsteczkowych (molowych), mikrostruktura makrocząsteczek.

Wykład 2. (godz. 2 - ) Masy cząsteczkowe, masy molowe, rozkład mas cząsteczkowych (molowych), mikrostruktura makrocząsteczek. Wykład 2. (godz. 2 - ) Masy cząsteczkowe, masy molowe, rozkład mas cząsteczkowych (molowych), mikrostruktura makrocząsteczek. CEMIA MAKCZĄSTECZEK (PLIMEÓW) Masa cząsteczkowa (Mc) jest masą określonej cząsteczki,

Bardziej szczegółowo

Masy cząsteczkowe, rozkład mas cząsteczkowych, mikrostruktura. Wykład 2 i 3

Masy cząsteczkowe, rozkład mas cząsteczkowych, mikrostruktura. Wykład 2 i 3 Masy cząsteczkowe, rozkład mas cząsteczkowych, mikrostruktura Wykład 2 i 3 CEMIA MAKCZĄSTECZEK (PLIMEÓW) Masa cząsteczkowa (Mc) jest masą określonej cząsteczki, wyrażoną w atomowych jednostkach masy, gramach

Bardziej szczegółowo

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz FIZYKOCEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli

Bardziej szczegółowo

Badania NMR mikrostruktury kopolimerów akrylanów butylu z metakrylanami metylu i tert-butylu

Badania NMR mikrostruktury kopolimerów akrylanów butylu z metakrylanami metylu i tert-butylu Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii Zakład Chemii Materiałów i Technologii Chemicznej ROZPRAWA DOKTORSKA Maria Siołek Badania NMR mikrostruktury kopolimerów akrylanów

Bardziej szczegółowo

POLIMERYZACJA KOORDYNACYJNA

POLIMERYZACJA KOORDYNACYJNA POLIMEYZAJA KOODYNAYJNA Proces katalityczny: - tworzą się związki koordynacyjne pomiędzy katalizatorem a monomerem - tworzą się polimery taktyczne - stereoregularne Polimeryzacji koordynacyjnej ulegają:

Bardziej szczegółowo

Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii Zakład Chemii i Technologii Środowiska MARCIN PASICH

Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii Zakład Chemii i Technologii Środowiska MARCIN PASICH Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii Zakład Chemii i Technologii Środowiska MARCIN PASICH Badania mikrostruktury kopolimerów metakrylanu metylu z akrylanami metylu i propylu

Bardziej szczegółowo

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA 1. Metody miareczkowania w analizie chemicznej, wyjaśnić działanie wskaźników 2.

Bardziej szczegółowo

OTWARCIE PRZEWODU DOKTORSKIEGO. Badania mikrostruktury kopolimerów metakrylowo akrylowych przy uŝyciu spektroskopii NMR.

OTWARCIE PRZEWODU DOKTORSKIEGO. Badania mikrostruktury kopolimerów metakrylowo akrylowych przy uŝyciu spektroskopii NMR. OTWARCIE PRZEWODU DOKTORSKIEGO Proponowany temat pracy doktorskiej: Badania mikrostruktury kopolimerów metakrylowo akrylowych przy uŝyciu spektroskopii NMR Marcin Pasich Opiekun pracy: Prof. UŚ dr hab.

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 1. POLIMERY A TWORZYWA SZTUCZNE dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

dobry punkt wyjściowy do analizy nieznanego związku

dobry punkt wyjściowy do analizy nieznanego związku spektrometria mas dobry punkt wyjściowy do analizy nieznanego związku cele: wyznaczenie masy cząsteczkowej związku wyznaczenie wzoru empirycznego określenie fragmentów cząsteczki określenie niedoboru wodoru

Bardziej szczegółowo

11.Chemia organiczna. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu)

11.Chemia organiczna. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu) 11.Chemia organiczna. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu) Związki organiczne CHEMIA ORGANICZNA Def. 1. (Gmelin 1848, Kekule 1851 ) chemia

Bardziej szczegółowo

7-9. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych

7-9. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych 7-9. Stereoizomeria izomery konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych stereoizomery zbudowane z takich samych atomów atomy połączone w takiej samej sekwencji

Bardziej szczegółowo

4. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych

4. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych 4. Stereoizomeria izomery konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych stereoizomery zbudowane z takich samych atomów atomy połączone w takiej samej sekwencji

Bardziej szczegółowo

Wykład 3. Makrocząsteczki w roztworze i w stanie skondensowanym.

Wykład 3. Makrocząsteczki w roztworze i w stanie skondensowanym. Wykład 3 Makrocząsteczki w roztworze i w stanie skondensowanym. Roztwory polimerów Zakresy stężeń: a) odległości pomiędzy środkami masy kłębków większe niż średnice kłębków b) odległości

Bardziej szczegółowo

Chemia organiczna. Stereochemia. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Chemia organiczna. Stereochemia. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Chemia organiczna Stereochemia Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Chemia organiczna jest nauką, która zajmuje się poszukiwaniem zależności pomiędzy budową cząsteczki a właściwościami

Bardziej szczegółowo

r Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii Zakład Chemii Materiałów i Technologii Chemicznej Marcin Pasich

r Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii Zakład Chemii Materiałów i Technologii Chemicznej Marcin Pasich r Uniwersytet Śląski Wydział Matematyki, Fizyki i Chemii Instytut Chemii Zakład Chemii Materiałów i Technologii Chemicznej Marcin Pasich ROZPRAWA DOKTORSKA Badania mikrostruktury kopolimerów metakrylanu

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

Jak analizować widmo IR?

Jak analizować widmo IR? Jak analizować widmo IR? Literatura: W. Zieliński, A. Rajca, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. WNT. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spektroskopowe

Bardziej szczegółowo

Kopolimery statystyczne. Kopolimery blokowe. kopolimerów w blokowych. Sonochemiczna synteza -A-A-A-A-A-A-A-B-B-B-B-B-B-B-B-B-B- Typowe metody syntezy:

Kopolimery statystyczne. Kopolimery blokowe. kopolimerów w blokowych. Sonochemiczna synteza -A-A-A-A-A-A-A-B-B-B-B-B-B-B-B-B-B- Typowe metody syntezy: 1 Sonochemiczna synteza kopolimerów w blokowych Kopolimery statystyczne -A-B-A-A-B-A-B-B-A-B-A-B-A-A-B-B-A- Kopolimery blokowe -A-A-A-A-A-A-A-B-B-B-B-B-B-B-B-B-B- Typowe metody syntezy: Polimeryzacja żyjąca

Bardziej szczegółowo

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1) Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH ZAAWANSWANE METDY USTALANIA BUDWY ZWIĄZKÓW RGANICZNYC Witold Danikiewicz Instytut Chemii rganicznej PAN ul. Kasprzaka /52, 0-22 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli jak powiązać

Bardziej szczegółowo

Mechanizm dehydratacji alkoholi

Mechanizm dehydratacji alkoholi Wykład 5 Mechanizm dehydratacji alkoholi I. Protonowanie II. odszczepienie cząsteczki wody III. odszczepienie protonu Etap 1 Reakcje alkenów Najbardziej reaktywne jest wiązanie podwójne, lub jego sąsiedztwo

Bardziej szczegółowo

STABILNOŚĆ TERMICZNA TWORZYW SZTUCZNYCH

STABILNOŚĆ TERMICZNA TWORZYW SZTUCZNYCH KATERA TELGII PLIMERÓW IŻYIERIA PLIMERÓW LABRATRIUM: STABILŚĆ TERMIZA TWRZYW SZTUZY pracował: dr inż. T. Łazarewicz 1 1. WPRWAZEIE TERETYZE Temperatura w której rozpoczyna się rozkład związków stanowi

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Techniki immunochemiczne opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Oznaczanie immunochemiczne RIA - ( ang. Radio Immuno Assay) techniki radioimmunologiczne EIA -

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Szkło. T g szkła używanego w oknach katedr wynosi ok. 600 C, a czas relaksacji sięga lat. FIZYKA 3 MICHAŁ MARZANTOWICZ

Szkło. T g szkła używanego w oknach katedr wynosi ok. 600 C, a czas relaksacji sięga lat. FIZYKA 3 MICHAŁ MARZANTOWICZ Szkło Przechłodzona ciecz, w której ruchy uległy zamrożeniu Tzw. przejście szkliste: czas potrzebny na zmianę konfiguracji cząsteczek (czas relaksacji) jest rzędu minut lub dłuższy T g szkła używanego

Bardziej szczegółowo

Fotochromowe kopolimery metakrylanu butylu zawierające pochodne 4-amino-N-(4-metylopirymidyn-2-ilo)benzenosulfonamidu i sposób ich otrzymywania

Fotochromowe kopolimery metakrylanu butylu zawierające pochodne 4-amino-N-(4-metylopirymidyn-2-ilo)benzenosulfonamidu i sposób ich otrzymywania PL 224153 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224153 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 411794 (22) Data zgłoszenia: 31.03.2015 (51) Int.Cl.

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy Temat: Białka Aminy Pochodne węglowodorów zawierające grupę NH 2 Wzór ogólny amin: R NH 2 Przykład: CH 3 -CH 2 -NH 2 etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

Bardziej szczegółowo

Title: Wpływ kompleksów typu [sigma] oraz [my] na mikrostrukturę polibutadienu otrzymywanego w procesie polimeryzacji anionowej

Title: Wpływ kompleksów typu [sigma] oraz [my] na mikrostrukturę polibutadienu otrzymywanego w procesie polimeryzacji anionowej Title: Wpływ kompleksów typu [sigma] oraz [my] na mikrostrukturę polibutadienu otrzymywanego w procesie polimeryzacji anionowej Author: Radosław Kozak Citation style: Kozak Radosław (2017). Wpływ kompleksów

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I Aby uzyskać ocenę wyższą niż dana ocena, uczeń musi opanować wiadomości i umiejętności dotyczące danej oceny oraz ocen od niej niższych. Dział:

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.)

1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) Imię i nazwisko:... Suma punktów:...na 89 moŝliwych 1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) O...... O O O O O... N 2... H O O... 2. Jakie 3

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Makrocząsteczki. Przykłady makrocząsteczek naturalnych: -Polisacharydy skrobia, celuloza -Białka -Kwasy nukleinowe

Makrocząsteczki. Przykłady makrocząsteczek naturalnych: -Polisacharydy skrobia, celuloza -Białka -Kwasy nukleinowe Makrocząsteczki Przykłady makrocząsteczek naturalnych: -Polisacharydy skrobia, celuloza -Białka -Kwasy nukleinowe Syntetyczne: -Elastomery bardzo duża elastyczność charakterystyczna dla gumy -Włókna długie,

Bardziej szczegółowo

Stereochemia Ułożenie atomów w przestrzeni

Stereochemia Ułożenie atomów w przestrzeni Slajd 1 Stereochemia Ułożenie atomów w przestrzeni Slajd 2 Izomery Izomery to różne związki posiadające ten sam wzór sumaryczny izomery izomery konstytucyjne stereoizomery izomery cis-trans izomery zawierające

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. Projekt zrealizowany w ramach Mazowieckiego programu stypendialnego dla uczniów szczególnie uzdolnionych

Bardziej szczegółowo

IDENTYFIKACJA JAKOŚCIOWA NIEZNANEGO ZWIĄZKU ORGANICZNEGO

IDENTYFIKACJA JAKOŚCIOWA NIEZNANEGO ZWIĄZKU ORGANICZNEGO IDENTYFIKACJA JAKOŚCIOWA NIEZNANEGO ZWIĄZKU ORGANICZNEGO Schemat raportu końcowego w ramach ćwiczeń laboratoryjnych z przedmiotu Badanie struktury związków organicznych 1. Symbol kodujący identyfikowaną

Bardziej szczegółowo

Alkeny - reaktywność

Alkeny - reaktywność 11-13. Alkeny - reaktywność 1 6.1. Addycja elektrofilowa - wprowadzenie nukleofil elektrofil elektrofil nukleofil wolno szybko nowe wiązanie utworzone przez elektrony z wiązania nowe wiązanie utworzone

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Alkeny. Wzór ogólny alkenów C n H 2n. (Uwaga identyczny wzór ogólny mają cykloakany!!!)

Alkeny. Wzór ogólny alkenów C n H 2n. (Uwaga identyczny wzór ogólny mają cykloakany!!!) Alkeny Wzór ogólny alkenów n 2n (Uwaga identyczny wzór ogólny mają cykloakany!!!) Węglowodory nienasycone, zawierające wiązanie podwójne, hybrydyzacja atomow węgla biorących udział w tworzeniu wiązania

Bardziej szczegółowo

Część I ZADANIA PROBLEMOWE (26 punktów)

Część I ZADANIA PROBLEMOWE (26 punktów) Zadanie 1 (0 6 punktów) Część I ZADANIA PROBLEMOWE (26 punktów) W podanym niżej tekście w miejsce kropek wpisz: - kwas solny - kwas mlekowy - kwas octowy - zjełczałe masło - woda sodowa - pokrzywa - zsiadłe

Bardziej szczegółowo

1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) O 2

1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) O 2 Imię i nazwisko:... Suma punktów:...na 89 moŝliwych 1. Jaką funkcję w procesach polimeryzacji wolnorodnikowej pełnią niŝej wymienione związki?: (5 pkt.) OH H O O CN N N CN O 2 N C 2. Jakie 3 wady i 3 zalety

Bardziej szczegółowo

ALDEHYDY, KETONY. I. Wprowadzenie teoretyczne

ALDEHYDY, KETONY. I. Wprowadzenie teoretyczne ALDEYDY, KETNY I. Wprowadzenie teoretyczne Aldehydy i ketony są produktami utlenienia alkoholi. Aldehydy są produktami utlenienia alkoholi pierwszorzędowych, a ketony produktami utlenienia alkoholi drugorzędowych.

Bardziej szczegółowo

RJC A-B A + B. Slides 1 to 27

RJC A-B A + B. Slides 1 to 27 Reakcje Rodnikowe rodniki substytucja addycja polimeryzacje A-B A + B Slides 1 to 27 Reakcje Organiczne... powstawanie i rozrywanie wiązań kowalencyjnych. Addycja A + B AB Podstawienie AB + C A + BC Eliminacja

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu

Bardziej szczegółowo

Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT

Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT 1 ĆWICZENIE 3 Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT Do wyznaczenia stopnia krystaliczności wybranych próbek polimerów wykorzystany zostanie program

Bardziej szczegółowo

CHEMIA MAKROCZĄSTECZEK (POLIMERÓW)

CHEMIA MAKROCZĄSTECZEK (POLIMERÓW) CHEMIA MAKROCZĄSTECZEK (POLIMERÓW) Model makrocząsteczki polietylenu o masie cząsteczkowej 100 000 Rzeczywista długość makrocząsteczki 0.001 mm. Powiększenie: x 10 7 (0.001 mm 10 m) ARCHITEKTURA MAKROCZĄSTECZEK

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

prof. dr hab. inż. Krystyna Czaja Opole, luty 2019 r. Katedra Technologii Chemicznej i Chemii Polimerów

prof. dr hab. inż. Krystyna Czaja Opole, luty 2019 r. Katedra Technologii Chemicznej i Chemii Polimerów prof. dr hab. inż. Krystyna Czaja Opole, luty 2019 r. Katedra Technologii Chemicznej i Chemii Polimerów e-mail: krystyna.czaja@uni.opole.pl OPINIA o rozprawie doktorskiej mgr Joanny WOLSKIEJ zatytułowanej:

Bardziej szczegółowo

KARTA PRZEDMIOTU. Egzamin, sprawdziany, ocena sprawozdań Egzamin, sprawdziany, ocena. związków wielkocząsteczkowych. Wykład, laboratorium K_W07 +++

KARTA PRZEDMIOTU. Egzamin, sprawdziany, ocena sprawozdań Egzamin, sprawdziany, ocena. związków wielkocząsteczkowych. Wykład, laboratorium K_W07 +++ Z1-PU7 WYDANIE N3 Strona: 1 z 5 (pieczęć jednostki organizacyjnej) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CHEMIA MAKROCZĄSTECZEK 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego: 2017/18

Bardziej szczegółowo

Informacja do zadań 1. i 2. Zadanie 1. (2 pkt) Zadanie 2. (2 pkt)

Informacja do zadań 1. i 2. Zadanie 1. (2 pkt) Zadanie 2. (2 pkt) Informacja do zadań 1. i 2. Tworzywa sztuczne znajdują szerokie zastosowanie praktyczne. Do ważnych polimerów zaliczamy polietylen (polieten) i polichlorek winylu (polichloroeten). Zadanie 1. (2 pkt) W

Bardziej szczegółowo

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV Informacja do zadań 1. i 2. Proces spalania pewnego węglowodoru przebiega według równania: C 4 H 8(g) + 6O 2(g) 4CO 2(g) + 4H 2 O (g) + energia cieplna Zadanie 1. (1 pkt) Procesy chemiczne można zakwalifikować

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne

Podstawowe pojęcia i prawa chemiczne Podstawowe pojęcia i prawa chemiczne Pierwiastki, nazewnictwo i symbole. Budowa atomu, izotopy. Przemiany promieniotwórcze, okres półtrwania. Układ okresowy. Właściwości pierwiastków a ich położenie w

Bardziej szczegółowo

PL B1. UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU, Poznań, PL BUP 24/17

PL B1. UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU, Poznań, PL BUP 24/17 RZECZPOSPOLITA POLSKA (2) OPIS PATENTOWY (9) PL () 229709 (3) B (2) Numer zgłoszenia: 49663 (5) Int.Cl. C07F 7/30 (2006.0) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 05.2.206 (54)

Bardziej szczegółowo

RJC # Alk l a k ny n Ster St eoi er zom eoi er zom y er Slides 1 to 30

RJC # Alk l a k ny n Ster St eoi er zom eoi er zom y er Slides 1 to 30 Alkany Stereoizomery Slides 1 to 30 Centrum asymetryczne (stereogeniczne) Atom węgla o hybrydyzacji sp 3 połączony z czterema róŝnymi podstawnikami tworzy centrum asymetryczne (stereogeniczne). Chiralność

Bardziej szczegółowo

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC prof. Marian Kamiński Wydział Chemiczny, Politechnika Gdańska CEL Celem rozdzielania mieszaniny substancji na poszczególne składniki, bądź rozdzielenia tylko wybranych

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego TEMAT I WYBRANE WŁAŚCIWOŚCI ZWIĄZKÓW NIEORGANICZNYCH. STOPNIE UTLENIENIA. WIĄZANIA CHEMICZNE. WZORY SUMARYCZNE I STRUKTURALNE. TYPY REAKCJI CHEMICZNYCH. ILOŚCIOWA INTERPRETACJA WZORÓW I RÓWNAŃ CHEMICZNYCH

Bardziej szczegółowo

Węglowodory poziom podstawowy

Węglowodory poziom podstawowy Węglowodory poziom podstawowy Zadanie 1. (2 pkt) Źródło: CKE 2010 (PP), zad. 19. W wyniku całkowitego spalenia 1 mola cząsteczek węglowodoru X powstały 2 mole cząsteczek wody i 3 mole cząsteczek tlenku

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Chemia Poziom podstawowy Listopad 03 W niniejszym schemacie oceniania zadań otwartych są prezentowane przykładowe poprawne odpowiedzi. W tego typu

Bardziej szczegółowo

I KSZTAŁCENIA PRAKTYCZNEGO. Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty

I KSZTAŁCENIA PRAKTYCZNEGO. Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO XV Konkurs Chemii Organicznej rok szkolny 2011/12 Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty Zadanie 1 (9 pkt) Ciekłą mieszaninę,

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 3. POLIMERY AMORFICZNE dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery.

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. Dział - Substancje i ich przemiany WYMAGANIA PODSTAWOWE stosuje zasady bezpieczeństwa

Bardziej szczegółowo

Budowa atomu. Wiązania chemiczne

Budowa atomu. Wiązania chemiczne strona /6 Budowa atomu. Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu; jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i

Bardziej szczegółowo

Studia I stopnia kierunek: chemia Załącznik nr 3

Studia I stopnia kierunek: chemia Załącznik nr 3 Studia I stopnia kierunek: chemia Załącznik nr 3 Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia

Bardziej szczegółowo

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I Nr zajęć Data Zagadnienia Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I 9.10.2012. b. określenie liczby cząstek elementarnych na podstawie zapisu A z E, również dla jonów; c. określenie

Bardziej szczegółowo

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ Badania kinetyki utleniania wybranych grup związków organicznych podczas procesów oczyszczania

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: II DR INŻ. TOMASZ LASKOWSKI O TO JEST WIDMO? WIDMO NMR wykres ilości kwantów energii promieniowania elektromagnetycznego pochłanianego przez próbkę w funkcji

Bardziej szczegółowo

Chemiczne składniki komórek

Chemiczne składniki komórek Chemiczne składniki komórek Pierwiastki chemiczne w komórkach: - makroelementy (pierwiastki biogenne) H, O, C, N, S, P Ca, Mg, K, Na, Cl >1% suchej masy - mikroelementy Fe, Cu, Mn, Mo, B, Zn, Co, J, F

Bardziej szczegółowo

Ocenę niedostateczną otrzymuje uczeń, który: Ocenę dopuszczającą otrzymuje uczeń, który: Ocenę dostateczną otrzymuje uczeń, który:

Ocenę niedostateczną otrzymuje uczeń, który: Ocenę dopuszczającą otrzymuje uczeń, który: Ocenę dostateczną otrzymuje uczeń, który: Kryteria oceniania z chemii dla klasy 3A i 3B Gimnazjum w Borui Kościelnej Rok szkolny: 2015/2016 Semestr: pierwszy Opracowała: mgr Krystyna Milkowska, mgr inż. Malwina Beyga Ocenę niedostateczną otrzymuje

Bardziej szczegółowo

O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW

O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW Jolanta Baldy Wrocław, 2 grudnia 2016 r. Matura 2016 z chemii w liczbach Średni wynik procentowy Województwo dolnośląskie 36% (1981) Województwo

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki

Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Załącznik nr 1 Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów chemia należy do obszaru

Bardziej szczegółowo

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I MATERIAŁY POMOCNICZE 1 GDYBY MATURA 00 BYŁA DZISIAJ OKRĘ GOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY Informacje ARKUSZ EGZAMINACYJNY I 1. Przy każdym zadaniu podano

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa CZĘŚĆ I PRZEGLĄD METOD SPEKTRALNYCH Program wykładów Wprowadzenie:

Bardziej szczegółowo

Test diagnostyczny. Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł. Część A (0 5) Standard I

Test diagnostyczny. Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł. Część A (0 5) Standard I strona 1/9 Test diagnostyczny Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł Część A (0 5) Standard I 1. Przemianą chemiczną nie jest: A. mętnienie wody wapiennej B. odbarwianie wody bromowej C. dekantacja

Bardziej szczegółowo

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 21 maja 2016 Im. Jana Kasprowicza INOWROCŁAW XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY

Bardziej szczegółowo

Węglowodory poziom rozszerzony

Węglowodory poziom rozszerzony Węglowodory poziom rozszerzony Zadanie 1. (1 pkt) Źródło: KE 2010 (PR), zad. 21. Narysuj wzór strukturalny lub półstrukturalny (grupowy) węglowodoru, w którego cząsteczce występuje osiem wiązań σ i jedno

Bardziej szczegółowo

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia zdefiniowanymi dla poszczególnych modułów

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych)

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody instrumentalne podział ze względu na uzyskane informację. 1. Analiza struktury; XRD (dyfrakcja

Bardziej szczegółowo

Analiza i monitoring środowiska

Analiza i monitoring środowiska Analiza i monitoring środowiska CHC 017003L (opracował W. Zierkiewicz) Ćwiczenie 1: Analiza statystyczna wyników pomiarów. 1. WSTĘP Otrzymany w wyniku przeprowadzonej analizy ilościowej wynik pomiaru zawartości

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014

Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014 ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014 Imię i nazwisko uczestnika Szkoła Klasa Nauczyciel Imię

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Ocenę niedostateczną otrzymuje uczeń, który nie opanował wymagań na ocenę dopuszczającą.

Bardziej szczegółowo

Jonizacja plazmą wzbudzaną indukcyjnie (ICP)

Jonizacja plazmą wzbudzaną indukcyjnie (ICP) Jonizacja plazmą wzbudzaną indukcyjnie (ICP) Inductively Coupled Plasma Ionization Opracowane z wykorzystaniem materiałów dr Katarzyny Pawlak z Wydziału Chemicznego PW Schemat spektrometru ICP MS Rozpylacz

Bardziej szczegółowo

Jednym z możliwych sposobów rozwiązania powyższych problemów jest opracowanie materiałów uwalniających pestycydy w sposób pozwalający na kontrolę

Jednym z możliwych sposobów rozwiązania powyższych problemów jest opracowanie materiałów uwalniających pestycydy w sposób pozwalający na kontrolę Dr hab. Krzysztof Szczubiałka, prof.uj Wydział Chemii Uniwersytet Jagielloński Ingardena 3 30-060 Kraków Tel. 12 6632062 Email: szczubia@chemia.uj.edu.pl Kraków, 10 maja 2015 Recenzja pracy doktorskiej

Bardziej szczegółowo

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji:

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji: Zadanie 1. [0-3 pkt] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Suma protonów i elektronów anionu X 2- jest równa 34. II. Stosunek masowy

Bardziej szczegółowo

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Materiały pomocnicze do zajęć wspomagających z chemii opracował: dr Błażej Gierczyk Wydział Chemii UAM Obliczenia stechiometryczne Podstawą

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych 1. Wielkości i jednostki stosowane do wyrażania ilości materii 1.1 Masa atomowa, cząsteczkowa, mol Masa atomowa Atomy mają

Bardziej szczegółowo

Przykłady: zderzenia ciał

Przykłady: zderzenia ciał Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski

Bardziej szczegółowo