Wstęp do Optyki i Fizyki Materii SkondensowanejI
|
|
- Magda Urban
- 4 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do Optyki i Fizyki Materii SkondensowanejI Optyka 3 Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Potr.Fita@fuw.edu.pl
2 Absorpcja i emisja światła Piotr Fita
3 Absorpcja i emisja światła Prawo Lamberta-Beera Piotr Fita
4 Absorpcja i emisja światła Prawo Lamberta-Beera Piotr Fita
5 Klasyczny model współczynnika załamania Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Dielektryk E P Polaryzacja ośrodka D = ε 0 E + P Ԧx -q +q Ԧp = q Ԧx Moment dipolowy atomu (cząsteczki)
6 Klasyczny model współczynnika załamania Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Rozważamy przestrzeń wypełnioną oscylatorami o częstotliwości rezonansowej 0 i współczynniku tłumienia ; oscylatory mają masę m, ładunek q są poruszane (wzbudzane) przez oscylujące pole elektryczne E. Ԧx -q +q Ԧp = q Ԧx Moment dipolowy atomu (cząsteczki) polaryzacja P = N Ԧp = N ε 0 αe = ε 0 χe polarisability polaryzowalność dielectric susceptibility podatność dielektryczna
7 Klasyczny model współczynnika załamania Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Rozważamy przestrzeń wypełnioną oscylatorami o częstotliwości rezonansowej 0 i współczynniku tłumienia ; oscylatory mają masę m, ładunek q są poruszane (wzbudzane) przez oscylujące pole elektryczne E. Ԧx -q +q Ԧp = q Ԧx Stąd D = ε 0 E + P = ε χ E = ε 0 εe Szukamy: n 2 = ε = 1 + χ Polaryzacja P t = N Ԧp t = Nq Ԧx t = ε 0 χe t Wystarczy wyznaczyć Ԧx(t) 10/19/2019 7
8 Klasyczny model współczynnika załamania Model Lorentza Rozważamy przestrzeń wypełnioną oscylatorami o częstotliwości rezonansowej 0 i współczynniku tłumienia ; oscylatory mają masę m, ładunek q są poruszane (wzbudzane) przez oscylujące pole elektryczne E. Szukamy: n 2 = ε = 1 + χ Ԧx -q +q Ԧp = q Ԧx d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = q m Eeiωt damping tłumienie the elastic force siła sprężysta driving force siła wymuszająca the steady state solution: stan ustalony: Ԧx t = Ԧx 0 e iωt 10/19/2019 8
9 Klasyczny model współczynnika załamania D = ε 0 E + P = ε χ E = ε 0 εe Polaryzacja P t = N Ԧp t = Nq Ԧx t = ε 0 χe t Wystarczy wyznaczyć Ԧx(t) Szukamy: n 2 = ε = 1 + χ Ԧx -q +q Ԧp = q Ԧx d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = q m Eeiωt damping tłumienie the elastic force siła sprężysta driving force siła wymuszająca the steady state solution: stan ustalony: Ԧx t = Ԧx 0 e iωt 10/19/2019 9
10 Klasyczny model współczynnika załamania D = ε 0 E + P = ε χ E = ε 0 εe Polaryzacja P t = N Ԧp t = Nq Ԧx t = ε 0 χe t Ԧx -q +q Ԧp = q Ԧx Wystarczy wyznaczyć Ԧx(t) d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = q m Eeiωt ω 2 + iγω + ω 0 2 Ԧx 0 = q m Eeiωt Szukamy: n 2 = ε = 1 + χ Ԧx t = Ԧx 0 e iωt 10/19/
11 Klasyczny model współczynnika załamania n 2 = ε = 1 + Nqx ε 0 E = 1 + Nq 2 ε 0 m ω 2 + iγω + ω 0 2 = q m Eeiωt a) n = n + iκ κ = Nq2 2ε 0 m k = nk 0 = n k 0 + iκk 0 γω ω 0 2 ω γ 2 ω 2 b) n = 1 + Nq2 2ε 0 m ω 0 2 ω 2 ω 0 2 ω γ 2 ω 2 dyspersja normalna: n ω dyspersja anomalna: n ω Funkcja Lorentza: L = x 2 10/19/
12 Klasyczny model współczynnika załamania Model oscylatorów Lorentza (ośrodek dyspersyjny) a) b) n jest współczynnikiem załamania (ang. refractive index) i wpływa na prędkość fazową rzeczywisty współczynnik załamania. Pomijając absorpcję n = n. Część urojona κ to współczynnik ekstynkcji (extinction coefficient) i oznacza absorpcję fali przechodzącej przez materiał Wielkość dn dω of the medium) jest nazywana dyspersją ośrodka (dispersion dn dω Poza rezonansem jest ona funkcją dodatnią - dyspersja normalna. Dla częstości bliskich częstości rezonansowej dyspersja ma znak ujemny - dyspersja anomalna. 10/19/
13 Klasyczny model współczynnika załamania Prawo Lamberta-Beera: Fala elektromagnetyczne propagująca się w ośrodku: k = 0,0, k E z, t = E 0 exp i k 0 n z + ik 0 κz ω 0 t = E 0 exp 2π λ κz exp i k 0n z ω 0 t k 0, ω 0 fali w próżni Natężenie I z E z 2 = E 0 2 exp 4π λ κz I z = I 0 e αz Współczynnik absorpcji α = 2κk
14 Klasyczny model współczynnika załamania Prawo Lamberta-Beera: Fala elektromagnetyczne propagująca się w ośrodku: k = 0,0, k E z, t = E 0 exp i k 0 n z + ik 0 κz ω 0 t = E 0 exp 2π λ κz exp i k 0n z ω 0 t k 0, ω 0 fali w próżni Natężenie I z E z 2 = E 0 2 exp 4π λ κz I z = I 0 e αz I( ) 0 Współczynnik absorpcji α = 2κk
15 Klasyczny model współczynnika załamania Model oscylatorów Lorentza (ośrodek dyspersyjny) Several resonances in the medium a). H 2 O b)
16 Klasyczny model współczynnika załamania Model oscylatorów Lorentza (ośrodek dyspersyjny) Several resonances in the medium a). H 2 O b) Dla jednej częstości oscylatora ω 0 ε L = 1 ale dla wielu jest to w przybliżeniu stała suma wkładów od pozostałych
17 Klasyczny model współczynnika załamania The Lorentz Oscillator model Water example:
18 Klasyczny model współczynnika załamania The Lorentz Oscillator model Water example: Roger Waters
19 Odbicie, transmisja, absorpcja Wzory Fresnela p-like (parallel) or TM s-like (from senkrecht, German for perpendicular) or TE
20 Odbicie, transmisja, absorpcja
21 Klasyczny model współczynnika załamania Fala w ośrodku (różnym) d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = q m E 0e iωt d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = 0 d 2 Ԧx dt = q m E 0e iωt Model Lorentza Widmo emisji Fale plazmowe the steady state solution: Ԧx t = Ԧx 0 e iωt 10/19/
22 Klasyczny model współczynnika załamania Fala w ośrodku (różnym) d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = q m E 0e iωt Model Lorentza d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = 0 Widmo emisji d 2 Ԧx dt = q m E 0e iωt Fale plazmowe the steady state solution: Ԧx t = Ԧx 0 e iωt 10/19/
23 Klasyczny model współczynnika załamania Widmo emisji d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = 0 Przejście między dwoma poziomami układu kwantowego może być z dobrym przybliżeniem opisane za pomocą modelu oscylatora harmonicznego. x -q +q Tym razem atomy (cząsteczki) zostały (jakoś) pobudzone do drgań i starają się powrócić do swojej równowagi tracąc energię na emisję promieniowania elektromagnetycznego ( tłumienie ). P t = N Ԧp t = Nq Ԧx t = ε 0 χe t Ԧp = q Ԧx Moment dipolowy atomu (cząsteczki) 10/19/
24 Klasyczny model współczynnika załamania Widmo emisji d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = 0 Analiza tego tłumienia oscylacji daje wgląd w mikroskopowe zjawiska zachodzące podczas (i w okolicach) emisji promieniowania elektromagnetycznego! Charakter zaniku promieniowania w czasie ma wpływ na jego widmo (w domenie częstości). x -q +q Tym razem atomy (cząsteczki) zostały (jakoś) pobudzone do drgań i starają się powrócić do swojej równowagi tracąc energię na emisję promieniowania elektromagnetycznego ( tłumienie ). P t = N Ԧp t = Nq Ԧx t = ε 0 χe t Ԧp = q Ԧx Moment dipolowy atomu (cząsteczki) 10/19/
25 Klasyczny model współczynnika załamania Widmo emisji d 2 Ԧx d Ԧx + γ dt2 dt + ω 0 2 Ԧx = 0 Widmo - transformata Fouriera: Szerokość połówkowa linii: drgania tłumione (naturalna szerokość linii) poszerzenie ciśnieniowe poszerzenie dopplerowskie (profil Voigta) 0 I( ) C( t) t /19/
26 Klasyczny model współczynnika załamania Widmo emisji 10/19/
27 Poszerzenie linii widmowych Widmo emisji Widmo - transformata Fouriera: Szerokość połówkowa linii: FWHM Full Width Half Maximum I ω = I 0 1 ω ω γ /19/
28 Poszerzenie linii widmowych Widmo emisji Widmo - transformata Fouriera: Full Width Half Maximum 10/19/
29 Poszerzenie linii widmowych Widmo emisji Widmo - transformata Fouriera: Full Width Half Maximum 10/19/
30 Poszerzenie linii widmowych Poszerzenie dopplerowskie Relatywistyczny efekt Dopplera (dla światła): ν obserw. = ν źródła 1 v/c 1 + v/c ν źródła 1 v/c v > 0 gdy źródło się oddala. ω = 2πν 10/19/
31 Przesunięcie linii widmowych Poszerzenie dopplerowskie Relatywistyczny efekt Dopplera (dla światła): ω obserw. = ω źródła 1 + v/c 1 v/c ω źródła 1 + v/c v > 0 gdy źródło się oddala. 10/19/
32 Poszerzenie linii widmowych Poszerzenie dopplerowskie Na skutek efektu Dopplera poruszający się obiekt absorbuje lub promieniuje falę o częstości przesuniętej względem częstości własnej ν 0 (lub ω 0 ) obiektu spoczywającego: ω = ω 0 1 v/c 1 + v/c ω 0 1 v/c v v z ω = ω 0 1 v z /c v z = dv z = v z jest składową prędkości wzdłuż kierunku rozchodzenia się promieniowania W temperaturze T zależność między liczbą cząstek o masie m a prędkością v z jest opisywana przez rozkład Maxwella : 2 n i v z dv z = dv z v p = 2k BT m N i v p π exp v z v p Ten opis jest słuszny dla układu w równowadze termodynamicznej. W przypadku gdy rozkład prędkości nie jest termiczny (np. w wiązkach atomowych) należy zastosować inną funkcję, właściwą dla danego układu. 10/19/
33 Poszerzenie linii widmowych Poszerzenie dopplerowskie Na skutek efektu Dopplera poruszający się obiekt absorbuje lub promieniuje falę o częstości przesuniętej względem częstości własnej ν 0 (lub ω 0 ) obiektu spoczywającego: ω = ω 0 1 v/c 1 + v/c ω 0 1 v/c ω = ω 0 1 v z /c v z = dv z = v z jest składową prędkości wzdłuż kierunku rozchodzenia się promieniowania v v z W temperaturze T zależność między liczbą cząstek o masie m a prędkością v z jest opisywana przez rozkład Maxwella : 2 n i v z dv z = dv z v p = 2k BT m N i v p π exp v z v p Ten opis jest słuszny dla układu w równowadze termodynamicznej. W przypadku gdy rozkład prędkości nie jest termiczny (np. w wiązkach atomowych) należy zastosować inną funkcję, właściwą dla danego układu. v z = c ω ω 0 ω 0 dv z = c ω 0 dω 10/19/
34 Poszerzenie linii widmowych Poszerzenie dopplerowskie n i v z dv z = N i v p π exp v z v p 2 dv z v p = 2k BT m Po podstawieniu otrzymujemy rozkład liczby cząstek promieniujących z daną częstością : n i ω dω = N ic/ω v p π exp c ω 0 ω dω v p ω 0 Ponieważ natężenie promieniowania jest proporcjonalne do ilości promieniujących cząstek, mamy gaussowski kształt linii spektralnej. Po unormowaniu powyższej funkcji : 2 I ω ~n i ω I ω = I 0 exp c v p ω 0 ω ω 0 2 dω Szerokość linii dopplerowskiej wynosi v p γ D = 2 ln 2 ω 0 c = ω 0 c 8k B T ln 2 m ω 0 10/19/
35 Poszerzenie linii widmowych Poszerzenie dopplerowskie Ponieważ natężenie promieniowania jest proporcjonalne do ilości promieniujących cząstek, mamy gaussowski kształt linii spektralnej. Po unormowaniu powyższej funkcji : I ω ~n i ω I ω = I 0 exp c v p ω 0 ω ω 0 Szerokość linii dopplerowskiej wynosi 2 dω v p γ D = 2 ln 2 ω 0 c = ω 0 c 8k B T ln 2 m I ω + Δω 2 = I 0 2 Δω = ω 0 2 ln 2 c v p = ω 0 8 ln 2 k BT mc 2 10/19/
36 Poszerzenie linii widmowych Poszerzenie dopplerowskie Szer. naturalna ( Hz) << szer. dopplerowska (10 9 Hz) Kształt linii = splot profilu Dopplera D ω i Lorentza L ω I ω = න D ω L ω ω dω 10/19/
37 Poszerzenie linii widmowych Poszerzenie dopplerowskie W gazach atomowych i molekularnych: naturalne szerokości linii wynoszą od kilku do kilkunastu megaherców, na skutek ruchów cieplnych cząstek linie te ulegają poszerzeniu kilkadziesiąt do kilkuset razy. Kształt lini dopplerowskej jest gaussowski tylko przy założeniu, że naturalna szerokość linii jest bardzo mała (ściślej, że jest detlą Diraca). Jeśli weźmiemy pod uwagę szerokość naturalną linii widmowej (np. w bardzo chłodnych gazach) otrzymamy profil Voigta. I ω = න D ω L ω ω dω 10/19/
38 Poszerzenie linii widmowych Poszerzenie jednorodne i niejednorodne Poszerzenie jednorodne - prawdopodobieństwo oddziaływania ze światłem o danej częstości jest jednakowe dla wszystkich atomów (cząsteczek), np.: poszerzenie naturalne poszerzenie ciśnieniowe Poszerzenie niejednorodne - prawdopodobieństwo oddziaływania jest różne dla różnych grup atomów (cząsteczek): poszerzenie dopplerowskie - prawdopodobieństwo oddziaływania zależy od składowej prędkości w kierunku obserwatora Poszerzenie niejednorodne można zredukować, np. selektywnie wzbudzając cząsteczki o określonej prędkości. 10/19/
39 Poszerzenie linii widmowych Spektroskopia subdopplerowska Poszerzenie niejednorodne można zredukować, np. selektywnie wzbudzając cząsteczki o określonej prędkości. 10/19/
40 Poszerzenie linii widmowych Spektroskopia subdopplerowska 10/19/
41 Poszerzenie linii widmowych Spektroskopia subdopplerowska 10/19/
42 Poszerzenie linii widmowych Spektroskopia subdopplerowska dip Lamba 10/19/
43 Klasyczny model współczynnika załamania Widmo emisji Prawo Lamberta-Beera: I z, ω = I 0 ω e αωz gdzie absorbancja a współczynnik absorpcji (w przypadku kształtu lorencowskiego): κ = Nq2 2ε 0 m γω ω 0 2 ω γ 2 ω 2 Gdy jesteśmy blisko rezonansu, gdy, współczynnik absorpcji upraszcza się do postaci opisywanej kształtem Lorenza. n = 1 + Nq2 2ε 0 m ω 0 2 ω 2 ω 0 2 ω γ 2 ω 2 I( ) /19/
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 15 Wstęp do Optyki i Fizyki Materii Skondensowanej Proponowane podręczniki: P. W. Atkins, Chemia
Fizyka Materii Skondensowanej.
Fizyka Materii Skondensowanej Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Uniwersytet Warszawski 11 GryPlan 4.1 Mechanika kwantowa. Stany. Studnia kwantowa, Stany atomu wodoru. Symetrie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG
Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
Rozmycie pasma spektralnego
Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 4, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 24.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner wykład 3 przypomnienie źródła
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 4, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 4, 13.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz wykład 3 przypomnienie
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Model oscylatorów tłumionych
Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne
(program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis
2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora
. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera
Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej
Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Zagadnienie do ćwiczeń na 2 Pracowni Fizycznej Dr Urszula Majewska
Ćwiczenie nr 1-4pkt Wyznaczanie współczynników załamania ośrodków ciekłych i gazowych za pomocą interferometru 1. Interferencja światła Drgania harmoniczne Faza drgań Faza fali Kiedy stosujemy prawa fizyki
Właściwości światła laserowego
Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Zagadnienia na egzamin ustny:
Zagadnienia na egzamin ustny: Wstęp 1. Wielkości fizyczne, ich pomiar i podział. 2. Układ SI i jednostki podstawowe. 3. Oddziaływania fundamentalne. 4. Cząstki elementarne, antycząstki, cząstki trwałe.
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ
SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy.
W pierwszej części są przedstawione podstawowe wiadomości z mechaniki, nauki o cieple, elektryczności i magnetyzmu oraz optyki. Podano także przykłady zjawisk relatywistycznych, a na końcu książki zamieszczono
Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
LASERY PODSTAWY FIZYCZNE część 1
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki dr inż. Jerzy Andrzej Kęsik LASERY PODSTAWY FIZYCZNE część 1 SPIS TREŚCI 1. Wstęp. Mechanizm fizyczny wzmacniania
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I
I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I C ZĘŚĆ I I I Podręcznik dla nauczycieli klas III liceum ogólnokształcącego i
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki GENERACJA II HARMONICZNEJ ŚWIATŁA Zadanie VI Zakład Optoelektroniki Toruń 004 I. Cel zadania Celem
Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil
Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia
Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr
Solitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
ZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Podstawy spektroskopii molekularnej.
Prof. Dr Halina Abramczyk Technical University of Lodz, Faculty of Chemistry Institute of Applied Radiation Chemistry Poland, 93-590 Lodz, Wroblewskiego 15 Phone:(+ 48 42) 631-31-88; fax:(+ 48 42) 684
Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
SPIS TREŚCI ««*» ( # * *»»
««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.
Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca
Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Atomy w zewnętrznym polu magnetycznym i elektrycznym
Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii
Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka
ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA
ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO
- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k
Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki Uniwersytetu Warszawakiego przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Program nauczania dla szkół ponadgimnazjalnych z fizyki z astronomią o zakresie rozszerzonym K. Kadowski Operon 593/1/2012, 593/2/2013, 593/3/2013,
KLASA I / II Program nauczania dla szkół ponadgimnazjalnych z fizyki z astronomią o zakresie rozszerzonym K. Kadowski Operon 593/1/2012, 593/2/2013, 593/3/2013, Wiadomości wstępne 1. Podstawowe pojęcia
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Trzy rodzaje przejść elektronowych między poziomami energetycznymi
Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów
Podstawy fizyki wykład 9
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.
1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz