Fizyka Materii Skondensowanej.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka Materii Skondensowanej."

Transkrypt

1 Fizyka Materii Skondensowanej Uniwersytet Warszawski 11

2 GryPlan 4.1 Mechanika kwantowa. Stany. Studnia kwantowa, Stany atomu wodoru. Symetrie stanów Pole magnetyczne, sprzężenie spin orbita, J, L, S 18.1 Dipolowe przejścia optyczne. Reguły wyboru, czas życia 5.1 Lasery współczynniki Einsteina 8.11 Optyka powtórzenie, klasyczny współczynnik załamania PONIEDZIAŁEK RANO KOLOKWIUM, sala Cyklotron A, godz. 9:-1: Wiązania chemiczne i cząsteczki, hybrydyzacje.11 Przejścia optyczne w cząsteczkach, widma oscylacyjno-rotacyjne 9.11 Ciało stałe, kryształy, krystalografia, sieci Bravais 6.1 Pasma, tw. Blocha, masa efektywna, przybliżenie kp 13.1 KOLOKWIUM.1 Elektrony i dziury cz Elektrony i dziury cz. Nanotechnologia 1.1 Urządzenia półprzewodnikowe. Diody, tranzystory, komputery 17.1 Fizyka subatomowa

3 Optyka - powtórzenie Propagacja fali elektromagnetycznej. Natężenie fali. Oddziaływanie fali e-m z ośrodkiem, Odbicie plazmowe, klasyczny współczynnik załamania, kształt linii widmowych, poszerzenia.

4 Optyka - powtórzenie Równania Maxwella: ε divε rotε rotβ divβ ρ Β t Ε µ ε + µ t j

5 Optyka - powtórzenie Równanie falowe: ( rotβ) Ε rot( rotε) µ ε t t µ t j Ε µ ε t Ε Β µ ε t Β c 1 µ ε

6 Optyka - powtórzenie Równanie falowe: Natężenie fali czyli moc przenoszona na jednostkę powierzchni wyraża się przez wektor Poytinga [W/m ]: S 1 µ Ε Β DC Power flow in a concentric cable Independent E and B fields

7 Optyka - powtórzenie Fala elektromagnetyczna w próżni Równania Maxwella: B E rote t E B rotb ε µ t E E µ ε t Β Β µ ε t Równania falowe: Prędkość fali elektromagnetycznej: c 1 µ ε Współczynnik załamania: c 3 1 n 1 8 m s ω k c Fala elektromagnetyczna w dielektryku Równania Maxwella: B E rote t E B rotb ε µ µε t E E µ ε µε t Β Β µ ε µε t Równania falowe: Prędkość fali elektromagnetycznej: υ 1 µ ε µε Współczynnik załamania: n c υ µε c n k nω c

8 Optyka - powtórzenie Fala elektromagnetyczna w próżni Fala elektromagnetyczna w dielektryku Równania Maxwella: B E rote t E B rotb ε µ t E E µ ε t Β Β µ ε t Równania falowe: Prędkość fali elektromagnetycznej: c 1 µ ε Współczynnik załamania: c m s Równania Maxwella: B E rote t E B rotb ε µ µε t E E µ ε µε t Β Β µ ε µε t Równania falowe: Ale w jaki sposób ośrodek oddziałuje z falą elektromagnetyczną? Czy e (a więc n) jest stałe? n 1 k ω c Prędkość fali elektromagnetycznej: υ 1 µ ε µε Współczynnik załamania: n c υ µε c n k nω c

9

10 Wojtek Wasilewski

11 Wojtek Wasilewski

12 Wojtek Wasilewski

13 Wojtek Wasilewski

14 Wojtek Wasilewski

15 Zjawisko Mossbauera Explain it! The most important thing is, that you are able to explain it! You will have exams, there you have to explain it. Eventually, you pass them, you get your diploma and you think, that's it! No, the whole life is an exam, you'll have to write applications, you'll have to discuss with peers... So learn to explain it! You can train this by explaining to another student, a colleague. If they are not available, explain it to your mother or to your cat! Rudolf Ludwig Mössbauer ur. 199 Za Wikipedią

16 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Dielektryk: E

17 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Dielektryk: E P polaryzacja ośrodka D ε E + P x -q +q p qx moment dipolowy atomu (cząsteczki)

18 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Rozważamy przestrzeń wypełnioną oscylatorami o częstotliwości rezonansowej i współczynniku tłumienia ; oscylatory mają masę m, ładunek q są poruszane przez oscylujące pole elektryczne E. x -q +q p qx moment dipolowy atomu (cząsteczki) ( ) polaryzacja ośrodka P N p N E E ε α ε χ polaryzowalność podatność dielektryczna

19 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Rozważamy przestrzeń wypełnioną oscylatorami o częstotliwości rezonansowej i współczynniku tłumienia ; oscylatory mają masę m, ładunek q są poruszane przez oscylujące pole elektryczne E. x -q +q stąd ( + χ ) E ε ε E D ε E + P ε 1 Tego szukamy: n ε 1+ χ P ( t) N p( t) Nqx( t) χ E( t) ε x ( t) Musimy wyznaczyć!

20 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Rozważamy przestrzeń wypełnioną oscylatorami o częstotliwości rezonansowej i współczynniku tłumienia ; oscylatory mają masę m, ładunek q są poruszane przez oscylujące pole elektryczne E. d dt x d x + γ dt + ω x siła sprężysta q Ee m iωt siła wymuszająca tłumienie Rozwiązanie dla stanu ustalonego: x x e iω t

21 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Rozwiązanie dla stanu ustalonego: x Podstawiamy: Amplituda: x exp( iωt) ( ) ω + iγω + ω x x qe qe m ( ) ω + γω m ω i

22 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Dostajemy: n n ε L Nqx Nq ε ε L + ε L + ε E ε m n' iκ Dla jednej częstości oscylatora w e L 1, ale dla wielu jest to w przybliżeniu stała suma wkładów od pozostałych. ( ω ω + iγω). κ n' ε Nq m γω ε ( ω ω ) + γ ω L Nq + ε m ( ω ω ω ω ) + γ E E exp[ i( ω t knz) ] E exp[ i( ωt kn' z + ikκz) ] π E exp κ z exp i ω t λ ω [ ( kn' z) ]

23 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): Dostajemy: ) ( ω γ ω ω γω ε κ + m Nq ) ( 1 ' ω γ ω ω ω ω ε + + m Nq n. związki dyspersyjne Kramersa - Kroniga Obszar dyspersji anomalnej

24 Fala w ośrodku wypełnionym oscylatorami: Część rzeczywista opisuje zmianę wektora falowego czynnika oscylującego fali elektromagnetycznej, - rzeczywisty współczynnik załamania ośrodka. Jeżeli przez ośrodek fala propaguje się bez absorpcji, to nn. Część urojona współczynnika załamania charakteryzuje absorpcję ośrodka. Wielkość dn' dω nazywana jest dyspersją ośrodka. Poza rezonansem jest ona funkcją dodatnią - dyspersja normalna. Dla częstości bliskich częstości rezonansowej dyspersja ma znak ujemny - dyspersja anomalna.

25 Fala w ośrodku wypełnionym oscylatorami: Przykład wody:.

26 Fala w ośrodku wypełnionym oscylatorami: Kilka rezonansów w ośrodku: H O.

27 Fala w ośrodku wypełnionym oscylatorami: Kilka rezonansów w ośrodku: H O. ε L Dla jednej częstości oscylatora w e L 1, ale dla wielu jest to w przybliżeniu stała suma wkładów od pozostałych.

28 Prawo Lamberta-Beera : Pole elektryczne fali przechodzącej przez ośrodek: π E E exp ω λ Natężenie [ i( ωt kn' z + ikκz) ] E exp κ z exp[ i( t kn' z) ] w, k - fala w próżni I E E 4π o exp κ z λ I( z) I exp( αz) Współczynnik absorpcji α κk k k, długość fali w próżni

29 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): d x dt dx + γ dt + ω x qe m e Rozważamy przestrzeń wypełnioną oscylatorami o częstotliwości rezonansowej i współczynniku tłumienia ; oscylatory mają masę m, ładunek q są poruszane przez oscylujące pole elektryczne E. iωt Rozwiązanie dla stanu ustalonego typu: x x e iωt

30 Fala w ośrodku wypełnionym oscylatorami (model Lorentza): d x dt dx + γ dt + ω x qe m e Rozważamy siła tłumienie przestrzeń wypełnioną oscylatorami o częstotliwości rezonansowej i harmoniczna współczynniku tłumienia ; oscylatory mają masę m, ładunek q są poruszane przez oscylujące pole elektryczne E. iωt siła wymuszająca Rozwiązanie dla stanu ustalonego typu: x x e iωt

31 Fala w ośrodku (różnym): d x dt d x dt d x dt dx qe + γ + ω x dt m dx + γ + ω x dt qe iωt + + e m e iωt Model Lorentza Widmo emisji Fala w plazmie Rozwiązanie dla stanu ustalonego typu: x x e iωt

32 Np. kształt i szerokość linii emisyjnych Przejście między dwoma poziomami układu kwantowego może być z dobrym przybliżeniem opisane za pomocą modelu oscylatora harmonicznego: d x dt dx + γ + ω x dt x -q +q ( t) qx( t) p Widmo emisji Tym razem atomy (cząsteczki) zostały (jakoś) pobudzone do drgań i starają się powrócić do swojej równowagi tracąc energię na emisję promieniowania elektromagnetycznego ( tłumienie ). P moment dipolowy atomu (cząsteczki) ( t) N p( t) Nqx( t) χ E( t) ε

33 Np. kształt i szerokość linii emisyjnych Analiza tego tłumienia oscylacji daje wgląd w mikroskopowe zjawiska zachodzące podczas (i w okolicach) emisji promieniowania elektromagnetycznego! Charakter zaniku promieniowania w czasie ma wpływ na jego widmo (w domenie częstości). x -q +q Tym razem atomy (cząsteczki) zostały (jakoś) pobudzone do drgań i starają się powrócić do swojej równowagi tracąc energię na emisję promieniowania elektromagnetycznego ( tłumienie ).

34 Np. kształt i szerokość linii emisyjnych Widmo - transformata Fouriera: Szerokość połówkowa linii: drgania tłumione (naturalna szerokość linii) poszerzenie ciśnieniowe poszerzenie dopplerowskie (profil Voigta)

35

36 Np. kształt i szerokość linii emisyjnych Widmo - transformata Fouriera: Szerokość połówkowa linii: FWHM Full Width Half Maximum I( ω) I 1 ( ω ω ) + ( γ / )

37 Np. kształt i szerokość linii emisyjnych Widmo - transformata Fouriera: Szerokość połówkowa linii: FWHM Full Width Half Maximum I( ω) I 1 ( ω ω ) + ( γ / )

38 Np. propagacja fali w plazmie: d x dt + + qe m e iωt j σ E swobodne ładunki zjonizowane gazy, (np. w lampach gazowych, w atmosferach gwiazd i jonosferach planet), plazma, plazma w ciele stałym - czyli gaz swobodnych nośników znajdujący się w metalach lub półprzewodnikach, ciecze - jak elektrolity czy roztopione przewodniki. Rozwiązanie dla stanu ustalonego: x x e iωt

39 Np. propagacja fali w plazmie: d x dt + + qe m e iωt j σ E swobodne ładunki zjonizowane gazy, (np. w lampach gazowych, w atmosferach gwiazd i jonosferach planet), plazma, plazma w ciele stałym - czyli gaz swobodnych nośników znajdujący się w metalach lub półprzewodnikach, ciecze - jak elektrolity czy roztopione przewodniki. Rozwiązanie dla stanu ustalonego: x x e iωt

40 Kształt linii absorpcyjnej [ ] z I z I ) ( )exp ( ), ( ω α ω ω Prawo Lamberta-Beera: Prof. T. Stacewicz gdzie absorbancja a współczynnik absorpcji (w przypadku kształtu lorencowskiego): Gdy jesteśmy blisko rezonansu, gdy, współczynnik absorpcji upraszcza się do postaci opisywanej kształtem Lorenza. ) ( ) ( ) ( ω ω κ ω α k ) ( ) ( ω γ ω ω γω ε ω κ + m Nq ) / ( ) ( 8 ) ( γ ω ω γ ω ε ω κ + m Nq

41 Efekt Dopplera Relatywistyczny efekt Dopplera (dla światła): 1+ υ / c ν obserw. ν źródła ν źródła + 1 υ / c ( 1 υ / c) υ > gdy źródło się zbliża. Prof. T. Stacewicz

42 Efekt Dopplera Wizja artysty przedstawia planety orbitujące wokół PSR Wikipedia Aleksander Wolszczan

43 Efekt Dopplera Wolszczan, A., & Frail, D. A. A Planetary System around the Millisecond Pulsar PSR , Nature, 355, 145.

44 Efekt Dopplera Masses and Orbital Inclinations of Planets in the PSR B157+1 System Maciej Konacki and Alex Wolszczan The Astrophysical Journal, 591:L147-L15, 3 July 1 Best-fit daily averaged time-of-arrival residuals for three timing models of PSR B157+1 observed at 43 MHz.

45 Efekt Dopplera Przesunięcie ku czerwieni linii spektralnych w zakresie światła widzialnego supergromady odległych galaktyk (po prawej) w porównaniu do Słońca (po lewej) Wikipedia

46 Kształt linii absorpcyjnej

47 Poszerzenie dopplerowskie Na skutek efektu Dopplera poruszający się obiekt absorbuje lub promieniuje falę o częstości przesuniętej względem częstości własnej obiektu spoczywającego: A (1+V Z /c) V Z jest składową prędkości wzdłuż kierunku rozchodzenia się promieniowania W temperaturze T zależność między liczbą cząstek o masie m a prędkością V Z jest opisywana przez rozkład Maxwella : n i i ( VZ ) dvz exp V N π [ ( ) ] VZ VP dvz p Ten opis jest słuszny dla układu w równowadze termodynamicznej. W przypadku gdy rozkład prędkości nie jest termiczny (np. w wiązkach atomowych) należy zastosować inną funkcję, właściwą dla danego układu kt V P m Prof. T. Stacewicz

48 Poszerzenie dopplerowskie Po podstawieniu poprzedniego równania otrzymujemy rozkład liczby cząstek promieniujących z daną częstością : n i ( ω ) dω N c i V p ω / ( / )( ')/ π e [ c V P ω ω ω ] dω Ponieważ natężenie promieniowania jest proporcjonalne do ilości promieniujących cząstek, mamy gaussowski kształt linii spektralnej. Po unormowaniu powyższej funkcji : Szerokość linii dopplerowskiej wynosi c( ω ω I ( ω ) I exp ω V P δω D V P ln ω c ω c 8kT ln m Prof. T. Stacewicz

49 Poszerzenie dopplerowskie W gazach atomowych i molekularnych: naturalne szerokości linii wynoszą od kilku do kilkunastu megaherców, na skutek ruchów cieplnych cząstek linie te ulegają poszerzeniu kilkadziesiąt do kilkuset razy. Prof. T. Stacewicz

50 Poszerzenie dopplerowskie Kształt lini dopplerowskej jest gaussowski tylko przy założeniu, że naturalna szerokość linii jest bardzo mała (ściślej, że jest detlą Diraca). Jeśli weźmiemy pod uwagę szerokość naturalną linii widmowej (np. w bardzo chłodnych gazach) otrzymamy profil Voigta.

51 Profil Voigta Rozważmy układ oscylatorów tłumionych. każdy z nich charakteryzuje się widmem Lorentza, którego szerokość nie może być zaniedbana. na skutek ruchu cieplnego i efektu Dopplera częstość centralna każdego oscylatora ulega przesunięciu do wartości i. Wypadkowe natężenie promieniowania jest sumą natężeń pochodzących od poszczególnych oscylatorów: 1 I( ω) I i ( ω ω ) + ( γ / ) C i która w przypadku ciągłego, maxwellowskiego rozkładu prędkości przechodzi w całkę, dając splot funkcji Gaussa i Lorentza [( c / )( ω ω ') / ω ] I( ω) V e P ( ω ω') i + ( γ / ) dω' C γnic 3 V π ω P Prof. T. Stacewicz

52 Profil Voigta Prof. T. Stacewicz

53 Zjawisko Mossbauera "for his researches concerning the resonance absorption of gamma radiation and his discovery in this connection of the effect which bears his name" Rudolf Ludwig Mössbauer ur. 199

54 Zjawisko Mossbauera Explain it! The most important thing is, that you are able to explain it! You will have exams, there you have to explain it. Eventually, you pass them, you get your diploma and you think, that's it! No, the whole life is an exam, you'll have to write applications, you'll have to discuss with peers... So learn to explain it! You can train this by explaining to another student, a colleague. If they are not available, explain it to your mother or to your cat! Rudolf Ludwig Mössbauer ur. 199 Za Wikipedią

55 Zjawisko Mossbauera Jądro (a więc cały atom) emitując fotony o energii E doznaje pewnego odrzutu. Jego energię można wyznaczyć z prawa zachowania pędu: odrzut atomu masa atomu E R E γ pc p Eγ M Mc Zgodnie z zasadą zachowania energii emitowany foton ma energię mniejszą o E R od energii wzbudzenia jądra E, gdyż ta część energii zostaje zużyta na odrzut. Z kolei w trakcie absorpcji jądro pochłania foton, czego skutkiem jest również odrzut. Wynika stąd, iż niedopasowanie energetyczne między fotonami emitowanymi a absorbowanymi wynosi E R

56 Zjawisko Mossbauera linia emisyjna linia absorpcyjna intensywność Rudolf Ludwig Mössbauer ur. 199 E - E R E E + E R

57 Zjawisko Mossbauera To przejście jest odpowiednio wąskie (czyli długożyciowe) E R p M E τ 1 14,4 kev 7 s Γ 1 τ Γ 1 1 E Eγ Mc 8 ev,ev ALE: w przypadku kryształu pęd przejmuje CAŁA sieć, więc można przyjąć, że absorpcja jest bezodrzutowa

58 Zjawisko Mossbauera Efekt Doplera: ν ν 1 obserw. ν źródła υ / c 6,67 1 Źródło 57 Co Absorbent 57 Fe Detektor γ υ υ

59 Zjawisko Mossbauera Efekt Doplera: mm/s! ν ν 1 obserw. ν źródła υ / c 6,67 1 Źródło 57 Co Absorbent 57 Fe Detektor γ υ υ

60 Zjawisko Mossbauera Spitit i Opportunity

61 Zjawisko Mossbauera Spitit i Opportunity

62 Zjawisko Mossbauera Rozszczepienie poziomów energetycznych jądra 57 Fe na skutek efektu Zeemana.

63 Zjawisko Mossbauera Test Ogólnej Teorii Względności Harvard Tower Experiment OTW

64 Zjawisko Mossbauera ν obserw. ν ν / ν E E E E E mgh down down źródła 1 + 4,9 1 E c E E E E gh c 15 14,4keV 11 gh g,6m 3,5 1 ev c up up Przesunięcie ku czerwieni spowodowane polem grawitacyjnym Ziemi (Ogólna Teoria Względności) ( 11 3,5 1 ev) 15 14,4keV 15 ( 5,1 ±,5) 1 4,9 1 Zysk energii spadającego fotonu Wynik pomiaru

65 Zjawisko Mossbauera Robert Pound, stationed at the top of a tower in a Harvard physics building (top), communicated by phone with Glen Rebka in the basement during calibrations for their experiment. The team verified Einstein's prediction that gravity can change light's frequency

66 Zjawisko Mossbauera Test Ogólnej Teorii Względności Harvard Tower Experiment OTW

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 15 Wstęp do Optyki i Fizyki Materii Skondensowanej Proponowane podręczniki: P. W. Atkins, Chemia

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej -3-9 Wstęp do Optyki i Fizyki Mateii Skondensowanej Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Wojciech.Wasilewski@fuw.edu.pl Wstęp do Optyki i Fizyki Mateii Skondensowanej Poponowane

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 4, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 4, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 24.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner wykład 3 przypomnienie źródła

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm

Bardziej szczegółowo

ZJAWISKA KWANTOWO-OPTYCZNE

ZJAWISKA KWANTOWO-OPTYCZNE ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 4, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 4, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 4, 13.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz wykład 3 przypomnienie

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014. Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego

Bardziej szczegółowo

Model oscylatorów tłumionych

Model oscylatorów tłumionych Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Fizyka Materii Skondensowanej.

Fizyka Materii Skondensowanej. Fizyka Materii Skondensowanej Jacek.Szczytko@fuw.edu.pl Konrad.Dziatkowski@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/fms Uniwersytet Warszawski 0 GryPlan 4.0 Mechanika kwantowa. Stany. Studnia kwantowa,

Bardziej szczegółowo

Solitony i zjawiska nieliniowe we włóknach optycznych

Solitony i zjawiska nieliniowe we włóknach optycznych Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora . Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-6

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM Z PRZEDMIOTU METODY REZONANSOWE ĆWICZENIE NR MR-6 JAKOŚCIOWA I ILOŚCIOWA ANALIZA

Bardziej szczegółowo

Zespolona funkcja dielektryczna metalu

Zespolona funkcja dielektryczna metalu Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

E 2 E = 2. Zjawisko Mössbauera. Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu:

E 2 E = 2. Zjawisko Mössbauera. Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu: Zjawisko Mössbauera Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu: E = E + E + T = p + p i f γ R 0 γ R E = E E γ T = E T Energia fotonu: jest więc

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Równania Maxwella. roth t

Równania Maxwella. roth t , H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D

Bardziej szczegółowo

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1 Wykład 8 Właściwości materii Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 18 listopada 2014 Biophysics 1 Właściwości elektryczne Właściwości elektryczne zależą

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 3 Tomasz Kwiatkowski 2010-10-20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 3 1/22 Plan wykładu Linie widmowe Linie Fraunhofera Prawa Kirchhoffa Analiza widmowa Zjawisko

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Ośrodki dielektryczne optycznie nieliniowe

Ośrodki dielektryczne optycznie nieliniowe Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 2 Fala świetlna

Metody Optyczne w Technice. Wykład 2 Fala świetlna Metody Optyczne w Technice Wykład Fala świetlna d d Różniczkowanie d d ( ) ( + ) ( ) lim 0 ( ) g( ) + h( ) ( ) g ( ) h ( ) ( ) g[ h( ) ] dg d + dh d d d dg d h + dh d g d d dh d dg dh n ( ) A ( ) Asin

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Spektroskopia. mössbauerowska

Spektroskopia. mössbauerowska Spektroskopia Spektroskopia Mӧssbauerowska mössbauerowska Adrianna Rokosa Maria Dawiec 1. Zarys historyczny 2. Podstawy teoretyczne 3. Efekt Mössbauera 4. Spektroskopia mössbauerowska 5. Zastosowanie w

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech

Fizyka 2 Wróbel Wojciech Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1 Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo