PRACA MIĘŚNI W WARUNKACH DYNAMICZNYCH - BIOMECHANIKA RUCHÓW BALISTYCZNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRACA MIĘŚNI W WARUNKACH DYNAMICZNYCH - BIOMECHANIKA RUCHÓW BALISTYCZNYCH"

Transkrypt

1 PRACA MIĘŚNI W WARUNKACH DYNAMICZNYCH - BIOMECHANIKA RUCHÓW BALISTYCZNYCH Jan Gajewski Ruchami balistycznymi nazywane są szybkie ruchy sterowane ante factum według wyuczonego stereotypu ruchowego (Lindstedt i wsp. 2002). Zaliczamy do nich rzuty, skoki, kopnięcia, ciosy itp. Zwykle wykonanie takich ruchów wiąże się z wykonaniem zamachu. Zamach jest to gwałtownie wyhamowany ruch skierowany przeciwnie do zamierzonego ruchu balistycznego (Walshe i wsp. 1998, Takarada i wsp. 1997). Jaka jest zatem przyczyna, dla której korzystne jest wykonanie dodatkowego ruchu? Z doświadczenia wiadomo, że zamach pozwala na rozwinięcie większej prędkości w ruchu właściwym. Jak w takim razie wygląda mechanizm takiego efektu? W piśmiennictwie problem ten omawiany był już niejednokrotnie, z reguły w kontekście działania cyklu rozciągnięcie-skurcz. Po raz pierwszy poruszyli go Cavagna i wsp. (1967). Od tego czasu pojawiło się wiele nowych danych i opinii. Celem prezentowanej pracy jest przedstawienie dostępnej wiedzy na temat efektu zamachu w ruchach balistycznych i podjęcie próby interpretacji zjawiska integrującej prezentowane przez badaczy poglądy. Mięśnie są siłownikami jednostronnego działanie. Mogą rozwijać siłę ściągającą ku sobie przyczepy mięśnia. W zależności od wielkości i kierunku oddziaływań zewnętrznych pobudzone mięśnie rozwijające siłę mogą się skracać, wydłużać lub nie zmieniać swojej długości. Względny ruch przyczepów stanowi kryterium, według którego można sklasyfikować warunki pracy mięśni. I tak: - warunki, w których przyczepy pracujących mięśni zbliżają się do siebie nazywane są warunkami koncentrycznymi. - warunki, w których mimo rozwijania przez mięśnie sił ich przyczepy oddalają się od siebie pod wpływem działania sił zewnętrznych określane są jako ekscentryczne. Można również zauważyć, że w warunkach koncentrycznych mięśnie napędzają ruch, a w warunkach ekscentrycznych dochodzi do hamowania ruchu. W takim razie zamach można rozumieć jako ekscentryczną fazę ruchu poprzedzającą bezpośrednio fazę koncentryczną. Wykonanie zamachu sprawia, że wykorzystane zostają następujące zjawiska: 3

2 - przedłużenie czasu rozwijania siły i wykorzystanie charakterystyka czasowa rozwijania siły mięśniowej (Gordon i wsp. 2000, Bojsen-Moller i wsp. 2005, Mallisoux i wsp. 2005), - zmianę kąta, pod jakim ustawione są wypustki miozynowe (Ettema i wsp. 1990, Gordon i wsp. 2000), - wykorzystanie energii sprężystej zgromadzonej w mięśniach i ścięgnach (Takarada i wsp. 1997, Komi 2000), - wykorzystanie dodatkowego pobudzenia działanie odruchu na rozciąganie (Walshe i wsp. 1998, Rossignol i wsp. 2005). Przedłużenie czasu działania siły uzyskiwane jest przez poprzedzenie ruchu właściwego fazą ekscentryczną. Warto zauważyć, że zarówno podczas hamowania, jaki i następującego po nim rozpędzania działają te same mięśnie. Warunkiem rozwinięcia przez mięsień siły maksymalnej jest otrzymanie przez odpowiednie motoneurony maksymalnego pobudzenia z ośrodkowego układu nerwowego i przekazanie go do włókien mięśniowych. Wartość siły rozwijanej przez mięsień zależna jest przy tym od czasu. Mięsień nie działa natychmiastowo. Odpowiedź siłowa na zadane bodźce nerwowe generowana jest z pewną inercją. Narastanie siły od zera do wartości maksymalnej odbywa się czasie, którego wartość zależy głównie od - składu włókien mięśniowych (proporcji włókien ST i FT) w badanym mięśniu, - temperatury mięśnia, - zmęczenia - zarówno w układzie nerwowym (zmiany przewodnictwa), jak i samym mięśniu (obniżenie stężeń substratów energetycznych). Zatem wykonanie zamachu przedłuża około dwukrotnie czas wykonania ruchu, co pozwala na rozwinięcie przez mięśnie znacznie większej siły podczas koncentrycznej fazy ruchu. Zmniejszenie kąta, pod jakim ustawione są wypustki miozynowe prowadzi do zwiększenia wartości składowej osiowej siły mięśniowej. Zjawisko to wykorzystywane jest nie tylko w ruchach balistycznych, również podczas ćwiczeń określanych jako stretching. Jeżeli przyjmiemy, że siła generowana przez pojedyncze wiązanie jest stała, to pochylenie mostka sprawia, że składowa skierowana równolegle do osi mięśnia wzrasta, a składowa prostopadła maleje. Rozciągnięcie pobudzonych mięśni wzmaga więc rozwijaną przez nie 4

3 siłę. Jak już poprzednio pokazano, w warunkach ekscentrycznych maksymalna siła mięśni przekracza nawet siłę rozwijaną w warunkach statyki. W warunkach dynamicznych, kiedy rozwijaniu siły przez mięsień towarzyszy zmiana jego długości pojawia się kolejny czynnik limitujący wartość siły maksymalnej. Z fizyki wiadomo, że moc można przedstawić jako iloczyn siły i prędkości: P = Fv. Gdyby więc siła maksymalna pozostawała niezależna od prędkości, przy coraz większych prędkościach skurczu wartość mocy rosłaby proporcjonalnie. Okazuje się, że wartość mocy rozwijanej przez mięśnie ograniczona jest wydajnością źródeł energetycznych. Jeżeli weźmiemy również pod uwagę fakt, iż podczas skurczu mięśnie wydzielają ciepło, to korzystając z pierwszej zasady termodynamiki (bilans energii wewnętrznej) można, na drodze teoretycznej, sformułować następujące równanie: (F+a)(v+b)=const. Zależność ta nosi nazwę równania charakterystycznego Hilla i została opublikowana przez niego w 1938 roku. Moc rozwijana przez mięśnie, jako iloczyn momentu sił i prędkości kątowej osiąga w warunkach koncentrycznych maksimum. Położenie tego maksimum uzależnione jest od składu włókien mięśniowych. U osób o predyspozycjach szybkościowych maksimum przesunięte jest w stronę większych prędkości kątowych. W warunkach ekscentrycznych wartość bezwzględna mocy rośnie gwałtownie wraz ze wzrostem bezwzględnej wartości prędkości kątowej ruchu. Właśnie w takich warunkach, podczas silnego przeciwdziałania siłom zewnętrznym może dojść do groźnych urazów. Wartość maksymalnego momentu sił mięśniowych zależy od kąta stawowego. Teraz okazuje się, że zależy ona również od czasu i prędkości kątowej obrotu w stawie. Zależności te nakładają się na siebie i w każdym momencie wszystkie wymienione czynniki łącznie limitują zdolność do rozwijania momentu maksymalnego. Często wypadkową zależność przedstawia się w postaci iloczynowej: M(,,t) = f( ) ( ) (t) 5

4 Mięśnie rozciągnięte przez siły zewnętrzne gromadzą energię sprężystości. W przypadku zamachu, owymi siłami zewnętrznymi są siły bezwładności powstające w wyniku gwałtownego hamowania. Energia sprężystości jest energią potencjalną określaną dla ciała odkształcanego sprężyście. O energii zgromadzonej w mięśniach decyduje wielkość odkształcenia (dla sprężyn liniowych energia proporcjonalna jest do kwadratu odkształcenia) oraz sztywność każdego z kompleksów ścięgno-mięsień zaangażowanych w ruch. Im większa jest sztywność układu tym więcej energii może on zgromadzić przy danym wydłużeniu. Zgromadzona energia zostaje uwolniona w koncentrycznej fazie ruchu wspomagając aktywne działanie mięśni. Sztywność mięśni może zmieniać się nawet kilkudziesięciokrotnie i w dużym stopniu zależy od ich aktualnej długości oraz rozwijanej siły. Istnieje zatem możliwość regulowania ilości energii zgromadzonej w rozciąganych mięśniach. Mięśnie oprócz normalnych włókien zawierają również tak zwane włókna intrafuzalne nazywane wrzecionami mięśniowymi. Wrzeciona są niezwykle wrażliwymi czujnikami reagującymi na nagłe zmiany swojej długości. Rozciągnięte generują impulsy nerwowe, które, jako informacja zwrotna, trafiają do motoneuronów. Motoneurony otrzymują więc oprócz pobudzenia z ośrodkowego układu nerwowego sumujące się z nim pobudzenie pochodzące z wrzecion. Największe jednostki motoryczne charakteryzują się, jak wiemy, bardzo wysokimi progami pobudzenia i reagują dopiero na ów sumaryczny sygnał sterujący. Prowadzi to w efekcie do rozwinięcia przez mięsień odpowiednio większej siły. Szacuje się, że sygnały z wrzecion odpowiedzialne są za około 30% rozwijanej przez mięśnie siły. Eskalacja siły ma jednak swoją granicę. W ścięgnach znajdują się bowiem organy Golgiego, które, gdy napinająca je siła przekracza dopuszczalną wartość, powodują przesłanie sygnałów hamujących dalsze pobudzanie motoneuronów. Jak się wydaje, tak zwane ćwiczenia plyometryczne (np. dynamicznie wykonywane skoki lub zeskoki) nie tyle wzmagają czułość wrzecion, co raczej osłabiają hamujące działanie organów ścięgnistych Golgiego. Ponieważ ścięgna mają znacznie większą sztywność niż niepobudzone mięśnie zdolne są do zgromadzenia dużej energii, pod warunkiem, że szeregowo połączone z nimi mięśnie osiągną, choć na krótki czas dużą sztywność. Efekt ten wynika z tego, że jeżeli sprężyny zostają połączone szeregowo, to o ich wypadkowej sztywności decyduje przede wszystkim element mniej sztywny. Czas, w którym mięsień osiąga dużą sztywność jest stosunkowo krótki i dzięki znacznemu zwiększeniu napięcia mięśnia w wyniku oddziaływania pobudzenia pochodzącego z wrzecion kończy się w momencie zakończenia fazy ekscentrycznej. 6

5 Utrzymanie napięcia mięśnia uzyskanego w ten sposób wykorzystywane jest w fazie koncentrycznej ruchu. Oddziaływanie wszystkich wymienionych czynników w na pracę mięśni w warunkach dynamicznych jest faktem niepodlegającym dyskusji. Przedmiotem kontrowersji jest jednak wielkość wkładu każdego z nich w wypadkowy efekt zamachu. Z pewnością czynniki te nie oddziałują niezależnie. Tylko napięte mięśnie są w stanie zakumulować energię sprężystą, ale są odpowiednio napięte dzięki odruchowi na rozciąganie i przedłużeniu czasu rozwijania siły w fazie ekscentrycznej, w której dochodzi do zmiany kątów, pod jakimi działają mostki. Piśmiennictwo Lindstedt S.T., Reich S.T., Keim P., LaStayo P.C. Do muscles function as adaptable locomotor springs? J Exp Biol 205: , 2002 Walshe A.D., Wilson G. J., Ettema G.J.C. Stretch-shorten cycle compared with isometric preload: contributions to enhanced muscular performance. J Appl Physiol 84 :97-106, 1998 Gordon A.M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev 80: , 2000 Ettema G.J.C., Van Soest A.J., Huijing P.A. The role of series elastic structures in prestretchinduced work enhancement during isotonic and isokinetic contractions. J Exp Biol 154: , 1990 Takarada Y., Hirano Y., Ishige Y., Ishii N. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement. J Appl Physiol 83: , 1997 Komi P.V. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech 33: , 2000 Walshe A.D., Wilson G.J., Ettema G.J.C. Stretch-shorten cycle compared with isometric preload: contributions to enhanced muscular performance J Appl Physiol 84: , 1998 Rossignol S., Dubuc R., And Gossard J.-P. Dynamic sensorimotor interactions in locomotion. Physiol Rev 86: ,

BIOMECHANIKA RUCHÓW BALISTYCZNYCH

BIOMECHANIKA RUCHÓW BALISTYCZNYCH BIOMECHANIKA RUCHÓW BALISTYCZNYCH Jan Gajewski Akademia Trenerska 2010 1 RUCHY BALISTYCZNE szybkie ruchy sterowane ante factum według wyuczonego stereotypu ruchowego. Zaliczamy do nich rzuty, skoki, kopnięcia,

Bardziej szczegółowo

SIŁA 2015-04-15. Rodzaje skurczów mięśni: SKURCZ IZOTONICZNY ZDOLNOŚĆ KONDYCYJNA

SIŁA 2015-04-15. Rodzaje skurczów mięśni: SKURCZ IZOTONICZNY ZDOLNOŚĆ KONDYCYJNA SIŁA ZDOLNOŚĆ KONDYCYJNA Rodzaje skurczów mięśni: skurcz izotoniczny wiąże się ze zmianą długości mięśnia przy stałym poziomie napięcia mięśniowego. Występuje gdy mięsień może się skracać, ale nie generuje

Bardziej szczegółowo

MIĘŚNIE Czynności i fizjologia mięśni

MIĘŚNIE Czynności i fizjologia mięśni Biomechanika sportu MIĘŚNIE Czynności i fizjologia mięśni CZYNNOŚCI MIĘŚNIA W opisie czynności mięśnia i siły przez niego wyzwolonej odwołujemy się do towarzyszącej temu zmianie jego długości. Zmiana długości

Bardziej szczegółowo

Zdolności KOMPLEKSOWE ZWINNOŚĆ

Zdolności KOMPLEKSOWE ZWINNOŚĆ Zdolności KOMPLEKSOWE Zwinność i Szybkość ZWINNOŚĆ umożliwia wykonywanie złożonych pod względem koordynacyjnym aktów ruchowych, szybkie przestawianie się z jednych ściśle skoordynowanych ruchów na inne

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

Zastosowanie treningu plajometrycznego w piłce nożnej

Zastosowanie treningu plajometrycznego w piłce nożnej Zastosowanie treningu plajometrycznego w piłce nożnej Prezentacja wykonana na potrzeby Szkoły Trenerów PZPN Autor Piotr Kwiatkowski Plajometryka - definicje Plajometryka jest rodzajem (ćwiczenia) treningu

Bardziej szczegółowo

biologiczne mechanizmy zachowania seminarium + laboratorium M.Eng. Michal Adam Michalowski

biologiczne mechanizmy zachowania seminarium + laboratorium M.Eng. Michal Adam Michalowski biologiczne mechanizmy zachowania seminarium + laboratorium M.Eng. Michal Adam Michalowski michal.michalowski@uwr.edu.pl michaladamichalowski@gmail.com michal.michalowski@uwr.edu.pl https://mmichalowskiuwr.wordpress.com/

Bardziej szczegółowo

Dobór silnika serwonapędu. (silnik krokowy)

Dobór silnika serwonapędu. (silnik krokowy) Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy

Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy Akademia Wychowania Fizycznego we Wrocławiu Wydział Wychowania Fizycznego Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy Dr hab. Krzysztof Maćkała AWF Wrocław 2 Wprowadzenie

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

UKŁAD MIĘŚNIOWY. Slajd 1. Slajd 2. Slajd 3 MIOLOGIA OGÓLNA BUDOWA MIĘŚNIA

UKŁAD MIĘŚNIOWY. Slajd 1. Slajd 2. Slajd 3 MIOLOGIA OGÓLNA BUDOWA MIĘŚNIA Slajd 1 Slajd 2 Slajd 3 MIOLOGIA OGÓLNA UKŁAD MIĘŚNIOWY Mięśnie tworzą czynny narząd ruchu. Zbudowane są z tkanki mięśniowej poprzecznie prążkowanej sterowanej przez ośrodkowy układ nerwowy. Ze względu

Bardziej szczegółowo

Trener Marcin Węglewski ROZGRZEWKA PRZEDMECZOWA W PIŁCE NOŻNEJ

Trener Marcin Węglewski ROZGRZEWKA PRZEDMECZOWA W PIŁCE NOŻNEJ ROZGRZEWKA PRZEDMECZOWA W PIŁCE NOŻNEJ Na optymalne przygotowanie zawodników do wysiłku meczowego składa się wiele czynników. Jednym z nich jest dobrze przeprowadzona rozgrzewka. (Chmura 2001) Definicja

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

(13) B1 PL B1 B23D 15/04. (54)Nożyce, zwłaszcza hydrauliczne RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11)

(13) B1 PL B1 B23D 15/04. (54)Nożyce, zwłaszcza hydrauliczne RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 165304 (13) B1 (21) Num er zgłoszenia: 289293 Urząd Patentowy (22) Data zgłoszenia: 26.02.1991 Rzeczypospolitej Polskiej (51)Int.Cl.5: B23D 15/04

Bardziej szczegółowo

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym 1. Definicja sprzężenia zwrotnego Sprzężenie zwrotne w układach elektronicznych polega na doprowadzeniu części sygnału wyjściowego z powrotem do wejścia. Częśd sygnału wyjściowego, zwana sygnałem zwrotnym,

Bardziej szczegółowo

1. Wstęp. dr inż. Piotr Pawełko / Przed przystąpieniem do realizacji ćwiczenia patrz punkt 4!!!

1. Wstęp. dr inż. Piotr Pawełko / Przed przystąpieniem do realizacji ćwiczenia patrz punkt 4!!! Laboratorium nr3 Temat: Sterowanie sekwencyjne półautomatyczne i automatyczne. 1. Wstęp Od maszyn technologicznych wymaga się zapewnienia ściśle określonych kolejności (sekwencji) działania. Dotyczy to

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

3 zasada dynamiki Newtona

3 zasada dynamiki Newtona Siła a Reakcji Podłoża Ground Reaction Force (GRF) 3 zasada dynamiki Newtona Cięż ężar pudełka generuje w podłożu u siłę reakcji, która jest równa r cięż ężarowi co do wartości, ale ma przeciwny zwrot.

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Sprawozdanie Ćwiczenie nr 14 Sprężyna

Sprawozdanie Ćwiczenie nr 14 Sprężyna Sprawozdanie Ćwiczenie nr 14 Sprężyna Karol Kraus Budownictwo I rok Studia niestacjonarne Gr. I A 1.Wstęp teoretyczny Celem wykonanego zadania jest wyznaczenie stałej sprężystości metodą statyczną i dynamiczna,

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Zasady dynamiki przypomnienie wiadomości z klasy I

Zasady dynamiki przypomnienie wiadomości z klasy I Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem

Bardziej szczegółowo

Przykłady: zderzenia ciał

Przykłady: zderzenia ciał Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski

Bardziej szczegółowo

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest poznanie kinematyki i dynamiki ruchu w procesie przemieszczania wstrząsowego oraz wyznaczenie charakterystyki użytkowej

Bardziej szczegółowo

Specjalizacja Fitness Ćwiczenia Siłowe

Specjalizacja Fitness Ćwiczenia Siłowe Akademia Wychowania Fizycznego i Sportu w Gdańsku Katedra: Sportu Zakład: Fitness i Sportów Siłowych Specjalizacja Fitness Ćwiczenia Siłowe Osoby prowadzące przedmiot: (Czcionka Times New Roman- 18) 1.

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Temat: Układy pneumatyczno - hydrauliczne

Temat: Układy pneumatyczno - hydrauliczne Copyright by: Krzysztof Serafin. Brzesko 2007 Na podstawie skryptu 1220 AGH Temat: Układy pneumatyczno - hydrauliczne 1. Siłownik z zabudowanym blokiem sterującym Ten ruch wahadłowy tłoka siłownika jest

Bardziej szczegółowo

Opis urządzeń. Zawór korygujący z charakterystyką liniową Zastosowanie

Opis urządzeń. Zawór korygujący z charakterystyką liniową Zastosowanie Zawór korygujący z charakterystyką liniową 975 001 Zastosowanie Cel Konserwacja Zalecenie montażowe Dla przyczep wymagających dostosowania odmiennego stopnia zużycia okładzin hamulcowych na różnych osiach.

Bardziej szczegółowo

PL 203749 B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL 17.10.2005 BUP 21/05. Bogdan Sapiński,Kraków,PL Sławomir Bydoń,Kraków,PL

PL 203749 B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL 17.10.2005 BUP 21/05. Bogdan Sapiński,Kraków,PL Sławomir Bydoń,Kraków,PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203749 (13) B1 (21) Numer zgłoszenia: 367146 (51) Int.Cl. B25J 9/10 (2006.01) G05G 15/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Silniki prądu stałego. Wiadomości ogólne

Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego charakteryzują się dobrymi właściwościami ruchowymi przy czym szczególnie korzystne są: duży zakres regulacji prędkości obrotowej i duży moment

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

PL B1. ANEW INSTITUTE SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Kraków, PL BUP 22/14. ANATOLIY NAUMENKO, Kraków, PL

PL B1. ANEW INSTITUTE SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Kraków, PL BUP 22/14. ANATOLIY NAUMENKO, Kraków, PL PL 222405 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222405 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 403693 (22) Data zgłoszenia: 26.04.2013 (51) Int.Cl.

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Biomechanika Inżynierska

Biomechanika Inżynierska Biomechanika Inżynierska wykład 4 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska Biomechanika Inżynierska 1 Modele ciała człowieka Modele: 4 6 10 14 Biomechanika Inżynierska 2 Modele

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 10/05

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 10/05 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 206258 (13) B1 (21) Numer zgłoszenia: 363412 (51) Int.Cl. F16F 13/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 12.11.2003

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Anna Słupik. Układ czucia głębokiego i jego wpływ na sprawność ruchową w wieku podeszłym

Anna Słupik. Układ czucia głębokiego i jego wpływ na sprawność ruchową w wieku podeszłym Anna Słupik Układ czucia głębokiego i jego wpływ na sprawność ruchową w wieku podeszłym 16.05.2007 Struktura układu czucia głębokiego Receptory w strukturach układu ruchu: mięśnie + ścięgna więzadła torebka

Bardziej szczegółowo

Scenariusz lekcji fizyki Temat: SIŁA SPRĘŻYSTOŚCI I JEJ ZALEŻNOŚĆ OD BEZWZGLĘDNEGO PRZYROSTU DŁUGOŚCI SPRĘŻYNY.

Scenariusz lekcji fizyki Temat: SIŁA SPRĘŻYSTOŚCI I JEJ ZALEŻNOŚĆ OD BEZWZGLĘDNEGO PRZYROSTU DŁUGOŚCI SPRĘŻYNY. Scenariusz lekcji fizyki Temat: SIŁA SPRĘŻYSTOŚCI I JEJ ZALEŻNOŚĆ OD BEZWZGLĘDNEGO PRZYROSTU DŁUGOŚCI SPRĘŻYNY. I klasa Gimnazjum Towarzystwa Salezjańskiego Nauczyciel fizyki prowadzący lekcje: Bożena

Bardziej szczegółowo

Zdzisław Marek Zagrobelny Woźniewski W ro c ła w iu

Zdzisław Marek Zagrobelny Woźniewski W ro c ła w iu Zdzisław Zagrobelny Marek Woźniewski Wrocławiu Akademia Wychowania Fizycznego we Wrocławiu Zdzisław Z agrobelny M arek W oźeiewsm BIOMECHANIKA KLINICZNA część ogólna Wrocław 2007 Spis treści Podstawy biomfci

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Dwa w jednym teście. Badane parametry

Dwa w jednym teście. Badane parametry Dwa w jednym teście Rys. Jacek Kubiś, Wimad Schemat zawieszenia z zaznaczeniem wprowadzonych pojęć Urządzenia do kontroli zawieszeń metodą Boge badają ich działanie w przebiegach czasowych. Wyniki zależą

Bardziej szczegółowo

PNF Stretching. Physiotherapy & Medicine

PNF Stretching. Physiotherapy & Medicine PNF Stretching Metoda ta wykorzystuje wzorce nerwowo-mięśniowe poszczególnych grup mięśniowych aby poprawić giętkość oraz elastyczność. Obecnie jest to najszybsza i najbardziej efektywna droga do zwiększenia

Bardziej szczegółowo

PL B1. ADAPTRONICA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łomianki, PL BUP 16/11

PL B1. ADAPTRONICA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łomianki, PL BUP 16/11 PL 219996 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219996 (13) B1 (21) Numer zgłoszenia: 390194 (51) Int.Cl. G01P 7/00 (2006.01) G01L 5/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan Dynamika układów mechanicznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele układów mechanicznych opisują ruch ciał sztywnych obserwowany względem przyjętego układu odniesienia Ruch ciała w przestrzeni

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Fizyczne właściwości materiałów rolniczych

Fizyczne właściwości materiałów rolniczych Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka

Bardziej szczegółowo

OSIE ELEKTRYCZNE SERII SHAK GANTRY

OSIE ELEKTRYCZNE SERII SHAK GANTRY OSIE ELEKTRYCZNE SERII SHAK GANTRY 1 OSIE ELEKTRYCZNE SERII SHAK GANTRY Osie elektryczne serii SHAK GANTRY stanowią zespół zmontowanych osi elektrycznych SHAK zapewniający obsługę dwóch osi: X oraz Y.

Bardziej szczegółowo

Specyfika elektroenergetycznej automatyki zabezpieczeniowej tową regulacją

Specyfika elektroenergetycznej automatyki zabezpieczeniowej tową regulacją 1 / 57 transformatorów w z kątowk tową regulacją Piotr Suchorolski, Wojciech Szweicer, Hanna Dytry, Marcin Lizer Instytut Energetyki 2 / 57 Plan prezentacji 1. Co to jest EAZ? 2. Układy regulacji związane

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

BIOLOGICZNE MECHANIZMY ZACHOWANIA I UKŁADY WYKONAWCZE SYSTEM MOTORYCZNY. SYSTEMY ZSTĘPUJĄCE Korowe ośrodki motoryczne

BIOLOGICZNE MECHANIZMY ZACHOWANIA I UKŁADY WYKONAWCZE SYSTEM MOTORYCZNY. SYSTEMY ZSTĘPUJĄCE Korowe ośrodki motoryczne BIOLOGICZNE MECHANIZMY ZACHOWANIA I UKŁADY WYKONAWCZE SYSTEM MOTORYCZNY SYSTEMY ZSTĘPUJĄCE Korowe ośrodki motoryczne Kora motoryczna (planowanie, inicjacja i kierowanie ruchami dowolnymi) Ośrodki pnia

Bardziej szczegółowo

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.

Bardziej szczegółowo

Biologiczne mechanizmy zachowania - fizjologia. zajecia 2 :

Biologiczne mechanizmy zachowania - fizjologia. zajecia 2 : Biologiczne mechanizmy zachowania - fizjologia zajecia 2 : 15.10.15 Kontakt: michaladammichalowski@gmail.com https://mmichalowskiuwr.wordpress.com/ I gr 08:30 10:00 II gr 10:15 11:45 III gr 12:00 13:30

Bardziej szczegółowo

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D)

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Metody pośrednie Metody bezpośrednie czasowa częstotliwościowa kompensacyjna bezpośredniego porównania prosta z podwójnym całkowaniem z potrójnym

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo