Dialog z przyroda musi byc prowadzony w jezyku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania.
|
|
- Jarosław Kozłowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wydział Fizyki Uniwersytetu Warszawskiego a. Tw. Gödla kontra Matrix b. Moim zdaniem Rys. źródło: Internet W jaki sposób policzyć ilość operacji logicznych w mózgu? Mózg a komputer "When will computer hardware match the human brain? " Hans Moravec, Journal of Evolution and Technology 998. Vol. Siatkówka oka: powierzchnia: cm, grubość: mm, 8 neuronów, obrazów/s (rozdzielczość 6, 6 mln. kolorów) program komputerowy rozpoznający kształt, kolor, ruch MIPS ok. 6-7 MIPS (Million computer Instructions Per Second) Mózg objętość: 5 cm neuronów (ale aż 5 połączeń) ok MIPS (a być może więcej) Mózg a komputer Mózg a komputer Czy w ogóle można tak porównywać? Hardware Fizyka Software Matematyka
2 GPL, Limited Warranty etc.. Opinia prezentowana w niniejszym wykładzie jest wyłączną opinią Jacka Szczytko 6 i nie należy traktować jej, jako jakąkolwiek sugestię, zalecenie, rekomendację lub wskazówkę o jakimkolwiek charakterze do zmiany swojego zdania.. Jacek Szczytko 6 zastrzega sobie prawo do wprowadzania zmian do opinii wspomnianej w par. bez obowiązku zawiadomienia. Niniejszym Jacek Szczytko 6 wyklucza wszelką swoją odpowiedzialność, jakiejkolwiek natury, za działania lub zaniechania działań ze strony innych słuchaczy związane lub oparte na opinii przedstawionej niniejszym powyżej w par. lub cokolwiek w związku z czymkolwiek, ani żadnej rzeczy która jego jest. Co to znaczy myśleć? Co to jest świadomość? Czy maszyna może myśleć tak jak człowiek? albo dzięki algorytmowi albo symulując układ fizyczny Więcej na ten temat: Roger Penrose: Nowy umysł cesarza o komputerach, umyśle i prawach fizyki PWN 995 Dialog z przyroda musi byc prowadzony w jezyku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. Michał Heller
3 Jak myśli komputer, czyli maszyna Turinga. Pewniki:. Podstawą działania komputera są operacje LOGICZNE prawda-fałsz (-). Maszyna posiada algorytm-program* (zamienia wejściowe na wyjściowe) i pamięć. Program, to pewien zbiór operacji logicznych (czyli ZDANIE LOGICZNE) Wnioski: Maszyna może tylko wykonywać operacje, które dadzą się ZAPISAĆ w języku logiki matematycznej. Wykonując pewien program maszyna może się zatrzymać lub nie. Operacje, które maszyna może wykonać zatrzymując się noszą nazwę OBLICZALNYCH (ang. computability). *Program = tzw. stany wewnętrzne Jak myśli komputer, czyli maszyna Turinga. Jak taka maszyna wygląda? Numer instrukcji (stan) Dane Nowy stan / - / R-L-STOP / / R / / L 9 / / R 7 / / STOP / / L / / L 7 / / R / / R Numer instrukcji (stan) Dane Nowy stan / - / R-L-STOP / / R / / L 9 / / R 7 / / STOP / / L / / L 7 / / R / / R Numer instrukcji (stan) Dane Nowy stan / - / R-L-STOP / / R / / L 9 / / R 7 / / STOP / / L / / L 7 / / R / / R
4 T ///R,///L,/9//R, /7//STOP,///L,///L, Listę instrukcji również możemy zakodować w postaci liczby. Każda maszyna Turinga ma swój numerek! (inaczej: każdy program ma swój kod) Maszyna Turinga wykonuje OBLICZALNE operacje zadania obliczalne, liczby obliczalne π, e, itp, zbiory rekurencyjne A co jeśli maszyna nigdy nie zakończy rachunków? TO JEST KOMPUTER Maszyna Turinga wykonuje OBLICZALNE operacje zadania obliczalne, liczby obliczalne π, e, itp, zbiory rekurencyjne A co jeśli maszyna nigdy nie zakończy rachunków? Problem stopu, ang. Halting problem: Czy istnieje algorytm, który moglibyśmy zastosować do WSZYSTKICH maszyn Turinga i który by pozwalał przewidzieć, że dana maszyna się zatrzyma? H(n,m)= { dla dla Maszyna Turinga wykonuje OBLICZALNE operacje zadania obliczalne, liczby obliczalne π, e, itp, zbiory rekurencyjne A co jeśli maszyna nigdy nie zakończy rachunków? Problem stopu, ang. Halting problem: Czy istnieje algorytm, który moglibyśmy zastosować do WSZYSTKICH maszyn Turinga i który by pozwalał przewidzieć, że dana maszyna się zatrzyma? H(n,m)= { dla dla Entscheidungsproblem Hilberta (9 r. 98 r.) czy istnieje mechaniczna (algorytmiczna) procedura pozwalająca rozstrzygnąć wszystkie zagadnienia matematyczne należące do pewnej szerokiej, lecz dobrze zdefiniowanej klasy?
5 Odpowiedź Kurta Gödla (9 r.) i Alana Turinga (97) NIE! Inne: Church zdefiniował system logiczny wraz z twierdzeniami i nazwał go efektywną obliczalnością. Kleen wymyślił tzw. "ogólne twierdzenia rekursywne" i pracował w ramach przez nie określonych. Post miał jeszcze zupełnie inny pomysł. Można wykazać, że wszystkie te istotnie różne podejścia są równoważne, co oznacza, że możemy zająć się tylko jednym z nich. Wybierzemy najbardziej powszechną metodę - Turinga. Jeśli istniałaby uniwersalna procedura obliczenia: H(n,m)= { dla dla to obliczalne byłoby także: T n (m) H(n,m) a więc i także; (zastosowane do maszyny Turinga) T n (n) H(n,n)+ (argument przekątniowy): A skoro jest to wyrażenie obliczalne, to znaczy, że jest to wynik obliczeń pewnej k-tej maszyny Turinga na n. T n (n) H(n,n)+= T k (n) Ale dla n=k powyższe równanie jest SPRZECZNE! p += p { += (zastosowane do maszyny Turinga) (ogólnie) Nie istnieje uniwersalna procedura, która pozwalałaby z góry rozstrzygnąć, czy dany program zakończy pracę, czy nie. Natomiast możliwa byłaby procedura Jeśli: = { += H (n,m)= { dla lub dla to wtedy dla T k (k)= T k (k) H(k,k)+= (bo inne wartości prowadziłyby do sprzeczności) Algorytm jednak o tym nie może wiedzieć, bo gdyby wiedział, to H (k,k)= Czyli dla KAŻDEGO algorytmu sprawdzającego H możemy znaleźć taką maszynę TuringaT k (k) o której MY WIEMY, że T k (k)=, ale algorytm H tego nie będzie w stanie stwierdzić, bo nigdy się nie zatrzyma, bo H (k,k)=! Najtrudniejsza częśd dowodu to pokazanie w jaki sposób można zakodować poszczególne aksjomaty i reguły wnioskowania systemu formalnego (np. algebry, geometrii euklidesowej itp.) w postaci operacji arytmetycznych. System formalny spójny (niesprzeczny wewnętrznie) to taki w którym nie da się udowodnić pewnego zdania i jego zaprzeczenia jednocześnie; inaczej mówiąc w systemie spójnym zaprzeczenie zdania prawdziwego jest zawsze fałszywe. System formalny zupełny to taki, w którym możliwe jest rozstrzygnięcie o prawdziwości dowolnego prawidłowo zapisanego zdania tego systemu. Wikipedia 5
6 (ogólnie) o niezupełności stwierdza, że dowolny system formalny zawierający w sobie aksjomaty arytmetyki liczb naturalnych, jest albo zupełny albo spójny i nigdy nie posiada obu tych cech jednoczesnie. Innymi słowy, jeśli system jest niesprzeczny to istnieją zdania których prawdziwości nie da się dowieść za pomocą aksjomatów i twierdzeń rozważanego systemu formalnego. II twierdzenie Gödla o niedowodliwości spójnosci to konsekwencja wcześniejszego twierdzenia Gödla: Głosi ono, nie da się dowieść spójności (niesprzeczności) żadnego systemu formalnego zawierającego arytmetykę liczb naturalnych w ramach samego tego systemu. Aby taki dowód przeprowadzić niezbędny jest system wyższego rzędu, którego spójności w ramach jego samego również nie można dowieść i tak ad. infinituum. No i co z tego? Obydwa twierdzenia Gödla można uogólnić na dowolne systemy formalne zawierające skończoną lub rekurencyjnie przeliczalną liczbę aksjomatów o ile tylko arytmetyka liczb naturalnych wchodzi w ich skład lub zawierają one skończoną liczbę aksjomatów i umożliwiaja przeprowadzenie tzw. arytmetyzacji twierdzeń. Maszyna Turinga (KAŻDY KOMPUTER) jest właśnie takim systemem formalnym. Wikipedia No i co z tego? Obydwa twierdzenia Gödla można uogólnić na dowolne systemy formalne zawierające skończoną lub rekurencyjnie przeliczalną liczbę aksjomatów o ile tylko arytmetyka liczb naturalnych wchodzi w ich skład lub zawierają one skończoną liczbę aksjomatów i umożliwiaja przeprowadzenie tzw. arytmetyzacji twierdzeń. Maszyna Turinga (KAŻDY KOMPUTER) jest właśnie takim systemem formalnym. Czy maszyna może myśleć tak jak człowiek? Wydaje się, że umysł ludzki nie działa według algorytmu matematycznego, w każdym razie nie algorytmu opartego jedynie na liczbach naturalnych (lub wymiernych, przeliczalnych, rekurencyjnych etc.). O ile istnieją algorytmy dowodzenia (algebry, teorie, geometrie), o tyle nie istnieje algorytm znajdowania dowodów (inaczej by można było zbudować uniwersalną maszynęh(n,m)). Moim zdaniem Teorie fizyczne (mech. klasyczna, mech. kwantowa) są deterministyczne, ale nie oznacza to wcale, że zawsze są obliczalne (np. zagadnienie ch ciał lub rzeczywiste komputery!). Warunki początkowe fizycznego (realnego) układu ciał nie da się określić jedynie przez liczby wymierne (niewymierne algebraiczne, rekurencyjne itp. - przeliczalne) Pomiar w mechanice kwantowej NIE JEST deterministyczny (redukcja paczki falowej!) => Na maszynie Turinga nie da się zasymulować rzeczywistości fizycznej z nieskończoną dokładnością. (chociaż nie pokazaliśmy, że ludzkie MYŚLENIE faktycznie wymaga któregoś z powyższych warunków) 6
7 Moim zdaniem Moim zdaniem Obecne maszyny Turinga (a więc DOWOLNE komputery) mają zatem dwa problemy jeśli chciałyby myśleć po ludzku.hardware owy z fizyką.software owy z tw. Gödla Obecne maszyny Turinga (a więc DOWOLNE komputery) mają zatem dwa problemy jeśli chciałyby myśleć po ludzku.hardware owy z fizyką.software owy z tw. Gödla Science-fiction (?) Komputery oparte na algebrze nie poradzą sobie z ograniczeniami teoretycznymi (Turing, Gödel), zawsze będą mogły wykonywać tylko operacje obliczalne. Potrzebne byłyby zupełnie nowe architektury oparte na NIEOBLICZALNYCH zasadach (algorytmy uczące się w interakcji z otoczeniem? komputery kwantowe?) Dziękuję Państwu za uwagę! Rys. źródło: Internet 7
Czy komputer może myśleć? Sprawy bieżące. Sprawy bieżące. Wydział Fizyki UW. a. Tw. Gödla kontra Matrix b.
a. Tw. Gödla kontra Matrix b. Moim zdaniem Rys. źródło: Internet Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 Sprawy bieżące. Esej na temat przyszłości do 2 stycznia! 2. Nowy przedmiot Od pomysłu do patentu
Struktura danych. Sposób uporządkowania informacji w komputerze.
Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk
Alan M. TURING. Matematyk u progu współczesnej informatyki
Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać
Teoretyczne podstawy informatyki
n r fi i= 1 n r fi i= 1 r n ( x) = f ( x) + K+ f ( x) Def r 1 r n ( x) = f ( x) K f ( x) Def r 1 1 Wykład cz. 2 dyżur: poniedziałek 9.30-10.30 p. 436 środa 13.30-14.30 p. 436 e-mail: joanna.jozefowska@cs.put
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ
O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ Jakie obiekty matematyczne nazywa się nieobliczalnymi? Jakie obiekty matematyczne nazywa się nieobliczalnymi? Najczęściej: a) liczby b) funkcje
Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia
Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Zasady krytycznego myślenia (1)
Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte
Początki informatyki teoretycznej. Paweł Cieśla
Początki informatyki teoretycznej Paweł Cieśla Wstęp Przykładowe zastosowanie dzisiejszych komputerów: edytowanie tekstów, dźwięku, grafiki odbiór telewizji gromadzenie informacji komunikacja Komputery
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne
Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem
Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1
Obliczanie 1 Obliczanie Co to jest obliczanie? Czy wszystko można obliczyć? Czy to, co intuicyjnie uznajemy za obliczalne można obliczyć za pomocą mechanicznej procedury? 2 Czym jest obliczanie? Dawid
OBLICZALNOŚĆ I NIEOBLICZALNOŚĆ
OBLICZALNOŚĆ I NIEOBLICZALNOŚĆ Dwa konteksty obliczalności OBLICZALNE i NIEOBLICZALNE problemy (kontekst informatyczny) liczby (kontekst matematyczny) Problem nieobliczalny jest to problem nierozwiązywalny
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego wojtow@uw.edu.pl 1 2 1. SFORMUŁOWANIE PROBLEMU Czy są empiryczne aspekty dowodów matematycznych? Jeśli tak to jakie stanowisko filozoficzne
Twierdzenia Gödla. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Twierdzenia Gödla Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Twierdzenia Gödla Funkcje rekurencyjne 1 / 21 Wprowadzenie
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
różnych funkcji, na przykład pamięci, mowy lub działania mięśni. Założenie, że po fizycznej śmierci mózgu będą istniały świadomość i normalne uczucia
Pytanie czy ludzki mózg jest komputerem jest fundamentalne dla informatyków zajmujących się sztuczną inteligencją (Artificial Intelligence). Jest ono tez istotne w medycynie, psychologii oraz matematyce
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Teoretyczne podstawy informatyki
1 Wykład cz. 2 dyżur: środa 9.00-10.00 czwartek 10.00-11.00 ul. Wieniawskiego 17/19, pok.10 e-mail: joanna.jozefowska@cs.put poznan.pl materiały do wykładów: http://www.cs.put.poznan.pl/jjozefowska/ hasło:
Dlaczego matematyka jest wszędzie?
Festiwal Nauki. Wydział MiNI PW. 27 września 2014 Dlaczego matematyka jest wszędzie? Dlaczego świat jest matematyczny? Autor: Paweł Stacewicz (PW) Czy matematyka jest WSZĘDZIE? w życiu praktycznym nie
Dowód pierwszego twierdzenia Gödela o. Kołmogorowa
Dowód pierwszego twierdzenia Gödela o niezupełności arytmetyki oparty o złożoność Kołmogorowa Grzegorz Gutowski SMP II rok opiekun: dr inż. Jerzy Martyna II UJ 1 1 Wstęp Pierwsze twierdzenie o niezupełności
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
Arytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
O ISTOTNYCH OGRANICZENIACH METODY
O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę
XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI
XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI ZESPÓŁ APARATURY BIOCYBERNETYCZNEJ (http://www.ise.pw.edu.pl/index.php?id=138) STUDENCKIE KOŁO NAUKOWE CYBERNETYKI (http://cyber.ise.pw.edu.pl) INSTYTUT
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
INFORMATYKA a FILOZOFIA
INFORMATYKA a FILOZOFIA (Pytania i odpowiedzi) Pytanie 1: Czy potrafisz wymienić pięciu filozofów, którzy zajmowali się także matematyką, logiką lub informatyką? Ewentualnie na odwrót: Matematyków, logików
M T E O T D O ZI Z E E A LG L O G R O Y R TM
O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
O ROLI TEZY CHURCHA W DOWODZIE PEWNEGO TWIERDZENIA
ARTYKUŁY ZAGADNIENIA FILOZOFICZNE W NAUCE XXV / 1999, s. 76 81 Adam OLSZEWSKI O ROLI TEZY CHURCHA W DOWODZIE PEWNEGO TWIERDZENIA Zadaniem niniejszego artykułu jest zdanie sprawy z matematycznej roli Tezy
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Rekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
KONKURS MATEMATYCZNY KOMA 2018
ELIMINACJE SZKOLNE RACHUNEK LAMBDA NOTATKI Z WYKŁADU - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Umysł Komputer Świat TEX output: :17 strona: 1
Umysł Komputer Świat INFORMATYKA I FILOZOFIA Witold Marciszewski Paweł Stacewicz Umysł Komputer Świat O zagadce umysłu z informatycznego punktu widzenia E Warszawa Akademicka Oficyna Wydawnicza EXIT 2011
Logika i teoria mnogości Wykład 14
Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,
Elementy filozofii i metodologii INFORMATYKI
Elementy filozofii i metodologii INFORMATYKI Filozofia INFORMATYKA Metodologia Czym jest FILOZOFIA? (objaśnienie ogólne) Filozofią nazywa się Ogół rozmyślań, nie zawsze naukowych, nad naturą człowieka,
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
Lista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
Poprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
iks plus trzy dzielone na dwa iks razy iks plus pięć
ELIMINACJE SZKOLNE RACHUNEK LAMBDA NOTATKI Z WYKŁADU - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Paradoksy log o i g czne czn i inne 4 marca 2010
Paradoksy logiczne i inne 4 marca 2010 Paradoks Twierdzenie niezgodne z powszechnie przyjętym mniemaniem, rozumowanie, którego elementy są pozornie oczywiste, ale wskutek zawartego w nim błędu logicznego
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Elementy filozofii i metodologii INFORMATYKI
Elementy filozofii i metodologii INFORMATYKI Filozofia INFORMATYKA Metodologia Wykład 1. Wprowadzenie. Filozofia, metodologia, informatyka Czym jest FILOZOFIA? (objaśnienie ogólne) Filozofią nazywa się
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
AE i modele zamierzone
AE i modele zamierzone Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 PKK, 3XII2010 Jerzy Pogonowski (MEG) AE i modele zamierzone 4 PKK, 3XII2010 1 / 17 Wstęp Czy
W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)
Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie
Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
PROBLEMY NIEROZSTRZYGALNE
PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną
Arytmetyka pierwszego rz du
Arytmetyka pierwszego rz du B dziemy bada arytmetyk liczb naturalnych z z perspektywy logiki pierwszego rz du. Sªowo arytmetyka u»ywane jest w odniesieniu do ró»nych teorii dotycz cych liczb naturalnych.
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Matematyka II - Organizacja zajęć. Egzamin w sesji letniej
Matematyka II - Organizacja zajęć Wykład (45 godz.): 30 godzin - prof. zw. dr hab. inż. Jan Węglarz poniedziałek godz.11.45 15 godzin - środa godz. 13.30 (tygodnie nieparzyste) s. A Egzamin w sesji letniej
Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?
Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
Maszyny logiczne Smullyana
Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Maszyny logiczne Smullyana Funkcje rekurencyjne 1 / 29 Wprowadzenie Forever
Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych
Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są
Maszyna Turinga języki
Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Logika intuicjonistyczna
Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.
0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3.
(Aktualizacja z dnia 3 kwietnia 2013) MATEMATYKA DYSKRETNA - informatyka semestr 2 (lato 2012/2013) Zadania do omówienia na zajęciach w dniach 21 i 28 kwietnia 2013 ZESTAW NR 3/7 (przykłady zadań z rozwiązaniami)
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
O RÓŻNYCH SPOSOBACH ROZUMIENIA ANALOGOWOŚCI W INFORMATYCE
Filozofia w informatyce, Kraków, 17-18 listopada 2016 O RÓŻNYCH SPOSOBACH ROZUMIENIA ANALOGOWOŚCI W INFORMATYCE Paweł Stacewicz Politechnika Warszawska Analogowe? płyta analogowa telewizja analogowa dawne
Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Wprowadzenie do metod numerycznych. Krzysztof Patan
Wprowadzenie do metod numerycznych Krzysztof Patan Metody numeryczne Dział matematyki stosowanej Każde bardziej złożone zadanie wymaga opracowania indywidualnej metody jego rozwiązywania na maszynie cyfrowej
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów
Protokół teleportacji kwantowej
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Sławomir Kulesza. Projektowanie automatów synchronicznych
Sławomir Kulesza Technika cyfrowa Projektowanie automatów synchronicznych Wykład dla studentów III roku Informatyki Wersja 2.0, 20/12/2012 Automaty skończone Automat Mealy'ego Funkcja wyjść: Yt = f(st,
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Logika matematyczna Mathematical Logic Poziom przedmiotu: II
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Kryteria oceniania z matematyki zakres podstawowy Klasa I
Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Rachunek zdań i predykatów
Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)
Teoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Programowanie deklaratywne i logika obliczeniowa
Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,
KARTA KURSU. Teoretyczne podstawy informatyki
KARTA KURSU Nazwa Nazwa w j. ang. Teoretyczne podstawy informatyki Theoretical foundations of computer science Kod Punktacja ECTS* 5 Koordynator prof. dr hab. Jacek Migdałek Zespół dydaktyczny: prof. dr
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Matematyka I i II - opis przedmiotu
Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki. Janusz Czelakowski. Wykład 8. Arytmetyka
II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki Janusz Czelakowski Wykład 8. Arytmetyka Jak dobrze wiadomo, jednym z kluczowych praw zachodzących w dziedzinie liczb naturalnych jest Zasada Indukcji.
TEZA CHURCHA A TWIERDZENIE GÖDLA
ARTYKUŁY ZAGADNIENIA FILOZOFICZNE W NAUCE XXVI / 2000, s. 59 65 Adam OLSZEWSKI TEZA CHURCHA A TWIERDZENIE GÖDLA Jednym z najsłynniejszych intelektualnych zdobyczy, mijającego dwudziestego wieku, jest bez
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
KTO SKONSTRUUJE MYŚLĄCĄ ISTOTĘ, BĘDZIE MIAŁ WSZYSTKIE PRAWA I OBOWIĄZKI BOGA
Y ROGER PENROSE PIOTR SZYMCZAK KTO SKONSTRUUJE MYŚLĄCĄ ISTOTĘ, BĘDZIE MIAŁ WSZYSTKIE PRAWA I OBOWIĄZKI BOGA Kto skonstruuje myślącą istotę, będzie miał wszystkie prawa i obowiązki Boga - twierdzi sir Roger