Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii"

Transkrypt

1 Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii

2 Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można scharakteryzować rozkład wartości cechy liczbowej w badanej zbiorowości. Poszczególne rodzaje statystyk opisują: przeciętny poziom wartości cechy w badanej zbiorowości (miary położenia); rozproszenie danych (miary zmienności); asymetrię rozkładu danych (miary asymetrii).

3 Podział statystyk opisowych ze względu na sposób wyznaczania Miary klasyczne (średnia, odchylenie standardowe i inne) są wyznaczane na podstawie wszystkich obserwacji - w związku z tym są nieodporne na obserwacje odstające. Miary pozycyjne (minimum, maksimum, mediana, kwartyle, centyle) są wyznaczane na podstawie pozycji zajmowanej przez odpowiednie obserwacje i w związku z tym nie są zależne od ewentualnych obserwacji ekstremalnych.

4 Miary położenia Do najczęściej wyznaczanych miar położenia, zawierających informację o przeciętnym poziomie wartości danych cechy w badanej zbiorowości należą: średnia arytmetyczna; inne rodzaje średnich (harmoniczna, geometryczna); wartość najmniejsza i największa (minimum i maksimum); wartość środkowa mediana; wartość najczęstsza moda; kwartyle; centyle.

5 Średnia arytmetyczna Średnia arytmetyczna jest najbardziej popularną miarą przeciętnego poziomu cechy liczbowej. Poniżej opisano sposób wyznaczania średniej dla szczegółowego szeregu statystycznego. Wartość cechy (x i ) x 1 x 2 x 3 x 4 x n-3 x n-2 x n-1 x n x x x n 1 n 1 n n i 1 x i x 9?

6 Mediana wartość środkowa Alternatywną metodą opisu danych liczbowych jest wartość środkowa (mediana), która odpowiada poziomu jednostki znajdującej się w środku badanej zbiorowości, jeśli chodzi o poziom rozważanej cechy. Aby wyznaczyć medianę szereg szczegółowy należy uporządkować (rosnąco) i wskazać wartość środkowego obiektu. Wartość cechy (x i ) x 1 x 2 x 3 x 4 x n-3 x n-2 x n-1 x n Uproszczona definicja i interpretacja mediany może polegać na stwierdzeniu, iż 50% pomiarów jest od niej mniejszych a 50% pomiarów większych. Me

7 Co jest lepsze mediana czy średnia? Mediana i średnia mogą mieć bardzo zbliżone wartości, mogą też się bardzo wyraźnie różnić. W praktyce zalecamy wyznaczanie obu tych wartości jednocześnie i wyciąganie wniosków na podstawie ich jednoczesnego oglądu zł 1200 zł 1400 zł 1700 zł zł Zarobki w pewnej firmie Średnia = 7060 zł Mediana =1400 zł Po podwyżce płac 1000 zł 1200 zł 1400 zł 1700 zł zł Średnia = zł Mediana =1400 zł Nie zawsze średnie zarobki odzwierciedlają dobrze rzeczywistość jeżeli tylko można dowiedz się także ile wynosi mediana.

8 Centyle Mediana jest wartością, którą znajdujemy w wyniku poszukiwania odpowiedzi na pytanie: poniżej (powyżej) jakiej wartości sytuuje się 50% pomiarów. W wielu sytuacjach analityka interesuje też kwestia poniżej (powyżej) jakiej wartości znajduje się inna część pomiarów (1%, 5%, 10% czy 25%). Stwierdzenie to określa grupę miar zwanych centylami. Centyl rzędu p (c p ) (0 < p < 1) jest to taka liczba, że poniżej niej znajduje się p-ta część pomiarów zaś powyżej (1-p)-ta część pomiarów. Wartość p jest też często podawana w procentach.

9 Klasyfikacja centyli Niektóre centyle, z uwagi na popularność zastosować mają swoje własne nazwy: c 50 to mediana; c 25 to kwartyl dolny (Q 25 ) a c 75 to kwartyl górny (Q 75 ); c 10, c 20,, c 90 to tak zwane decyle (oznaczane też d 1,, d 9 ).

10 Statystyki opisowe w programie STATISTICA Statystyki opisowe w programie STATISTICA najlepiej wyznaczać za pomocą analizy wywoływanej za pomocą poleceń STATYSTYKA / STATYSTYKI PODSTAWOWE I TABELE / STATYSTYKI OPISOWE. Po wybraniu zmiennej (lub wielu zmiennych) typu liczbowego, dla których chcemy wyznaczyć wartości statystyk opisowych należy ustalić listę wyliczanych parametrów (zakładka WIĘCEJ).

11 Przykład Analiza dotyczy zbioru danych Środki z UE. Celem analizy jest opis poziomu wykorzystania środków unijnych w gminach woj. podkarpackiego w latach (dla każdego roku osobno). Podczas rozwiązywania przykładu wykorzystane zostaną zarówno poznane uprzednio narzędzia grupowania danych jak i statystyki opisowe. PORÓWNYWALNOŚĆ DANYCH Dane o wykorzystaniu środków z UE zawarte w pliku Środki z UE należy najpierw doprowadzić do porównywalności dokonać przeliczenie na jednego mieszkańca. W tym celu dodajemy na końcu arkusza cztery nowe kolumny, nazywamy je odpowiednio: Środki z UE na 1 mieszk. (2006),, Środki z UE na 1 mieszk. (2009) i wyznaczamy ich wartości za pomocą odpowiednich formuł (wskazówka: dla roku 2006 formuła będzie mieć postać: =v22/v2

12 Wyznaczanie miar położenia W oknie STATYSTYKI OPISOWE wybieramy nowoutworzone zmienne, w zakładce WIĘCEJ ustalamy zakres statystyk opisowych do wyznaczenia.

13 Wyniki Wywołujemy tabelę wynikową, dokonujemy formatowania wyników a następnie ich interpretacji. Na podstawie wartości średniej i mediany stwierdzamy, iż wskaźnik wykorzystania środków unijnych w roku 2009 był wyższy niż w pozostałych latach. Porównując wartość średniej i mediany stwierdzamy, iż rozkład wskaźnika wykorzystania środków z UE na 1 mieszk. jest nierównomierny średnia jest większa od mediany, a więc istnieje relatywnie duża liczba gmin o niskim poziomie wykorzystania środków i nieliczni liderzy. Na podstawie wartości modalnej, minimum oraz liczności modalnej stwierdzamy, iż udział gmin nie pozyskujących żadnych środków z UE jest w kolejnych latach coraz niższy W 2006 w co czwartej gminie pozyskano więcej niż 47 złotych na osobę zaś w 2009 wskaźnik ten wyniósł już 177 zł. W 2009 roku 10% najlepszych gmin charakteryzowało się poziomem wykorzystania środków z UE na poziomie co najmniej 362 zł Poziom wskaźnika w najlepszej gminie był w roku 2009 zdecydowanie wyższy niż w poprzednich latach

14 Ilustracja graficzna wykres ramka-wąsy Wartości statystyk opisowych można zilustrować za pomocą wykresu typu ramka-wąsy. Wykres ten w podstawowej formie można wykonać w oknie analiz STATYSTYKI OPISOWE. W zakładce opcje ustalamy typ wykresu ramka-wąsy: W zakładce podstawowe wywołujemy wykres, który po sformatowaniu wygląda tak

15 Niekonwencjonalne grupowanie danych Inny sposób opisu danych może polegać na zgrupowaniu gmin ze względu na poziom środków z UE i podaniu liczności każdej z takich grup w latach Biorąc pod uwagę fakt dużej asymetrii wartości wskaźnika, zastosowano przedziały o nierównych długościach: < 10 zł; [10 zł; 50 zł); [50 zł; 100 zł); [100 zł; 200 zł); 200 zł Możliwość grupowania w przedziałach o niejednakowej długości jest dostępna w programie STATISTICA przy okazji tworzenia wykresów.

16 Histogramy wielokrotne i opcja granice Histogramy wielokrotne pozwalają na przedstawienie rozkładu kilku cech jednocześnie warunkiem wszakże jest, że są to cechy posiadające zbliżony zakres (i znaczenie) wartości. Wybieramy polecenie WYKRESY / WYKRESY 2W / HISTOGRAMY po czym wybieramy wskaźniki wykorzystania z lat jako zmienne i ustawiamy opcję wykresu na WIELOKROTNY. W zakładce WIĘCEJ ustawiamy sposób grupowania (PRZEDZIAŁY) na GRANICE i za pomocą przycisku określ granice wprowadzamy wartości odpowiadające przedziałom zaproponowanym na poprzedniej stronie.

17 Wykres Po wywołaniu wykresu i sformatowaniu uzyskujemy kompletną prezentację graficzną wraz z informacjami o liczbie gmin znajdujących się w poszczególnych kategoriach. Zaletą programu STATISTICA jest możliwość modyfikacji sposobu tworzenia wykresu. Jeżeli na przykład stwierdzilibyśmy, że chcemy dodać jeszcze jeden przedział dla wskaźnika wykorzystania środków z UE możemy to bez trudu uczynić. W tym celu wywołujemy wszystkie opcje wykresu a następnie zakładkę HISTOGRAM i modyfikujemy wprowadzone granice.

18 Jak się to ma do zasad podanych na wykładzie nr 3? Na wykładzie nr 3 podano ogólne zasady opisywania danych przekrojowych (i innych typów danych). Wynikało z nich, że dane przekrojowe najlepiej opisywać w postaci szeregów szczegółowych uporządkowanych. Jednakże drugim czynnikiem wpływającym na dobór metody opisu danych statystycznych jest ich liczność. W przypadku gmin woj. podkarpackiego, których jest 159 (od roku ), prezentacja wszystkich danych w postaci szeregu uporządkowanego nie jest możliwa. Dlatego też posłużono się dodatkowo statystykami opisowymi oraz metodami grupowania danych. Nie znaczy to jednak, że wykorzystanie szeregu uporządkowanego jest niemożliwe

19 Wykres słupkowy pokażmy najlepszych Przedstawienie w formie graficznej, czy tabelarycznej, wartości wskaźnika wykorzystania środków z UE na jednego mieszkańca dla wszystkich gmin jest niemożliwe, gdyż taka prezentacja będzie po prostu nieczytelna. Zasadne wydaje się natomiast zaprezentowanie poziomu wskaźnika dla pewnej liczby (np. 25) najlepszych gmin. Dokonamy takiej prezentacji dla danych z roku W tym celu sortujemy dane malejąco według wartości wskaźnika z roku 2009, następnie wybieramy polecenie WYKRESY / WYKRESY 2W / WYKRESY SŁUPKOWE i wybieramy odpowiednią zmienną. Aby utworzyć wykres tylko dla 25 najlepszych gmin (aktualnie przypadków nr 1-25 w arkuszu danych) korzystamy z narzędzia selekcji przypadków, ustawiając warunki w następujący sposób:

20 Wykres słupkowy pokażmy najlepszych W ramach ćwiczeń proszę sporządzić analogiczne prezentacje dla danych z roku 2006, 2007 i 2008.

21 Miary zmienności i asymetrii W wielu sytuacjach wyznaczenie samych miar położenia nie pozwala w wyczerpujący sposób opisać rozkładu wartości cechy liczbowej. W takiej sytuacji można zastosować dodatkowo dwie grupy miar: miary zmienności; miary asymetrii.

22 Miary zmienności Miary zmienności pozwalają ocenić nie tylko przeciętny poziom danej cechy lecz także ich rozproszenie wokół wartości przeciętnej. Do najbardziej popularnych miar zmienności należą: wariancja i odchylenie standardowe; współczynnik zmienności; rozstęp; rozstęp kwartylowy.

23 Odchylenie standardowe Odchylenie standardowe jest wyliczane jako przeciętne odchylenie pomiarów od wartości średniej. Poniżej opisano szczegółowo procedurę wyznaczania odchylenia standardowego. Wartość cechy (x i ) x 1 x 2 x 3 x 4 x 5 x 12 Odchylenia od średniej Suma odchyleń od średniej zawsze wynosi 0 Kwadraty odchyleń od średniej Średnie kwadratowe odchylenie od średniej nazywane jest wariancją (s 2 ) a jej pierwiastek odchyleniem standardowym (s). s s ,24

24 Właściwości odchylenia standardowego Znajomość odchylenia standardowego i wartości średniej pozwala oszacować położenie większości pomiarów. Dla bardzo wielu danych (co wynika z odpowiednich twierdzeń matematycznych) są bowiem spełnione relacje. ( x s, x s) Przedział zwany typowym przedziałem zmienności zawiera zwykle ok. 68% pomiarów. ( x 2s, x 2s) Przedział zwany rozszerzonym przedziałem zmienności zawiera zwykle ok. 95% pomiarów. ( x 3s, x 3s) Przedział zawiera zwykle ok. 99,7% pomiarów, czyli niemal wszystkie wartości. Pomiary wykraczające poza ten zakres są często określane mianem obserwacji odstających (nietypowych) i niejednokrotnie eliminuje się je z analiz, gdyż mogą zaburzać badane relacje. Powyższe stwierdzenia są prawdziwe, gdy dane rozkładają się w sposób symetryczny (lub doń zbliżony) wokół wartości średniej. Dla tzw. rozkładów asymetrycznych, liczba obserwacji zawierających się w podanych wyżej przedziałach może być radykalnie inna.

25 Współczynnik zmienności W przypadku porównywania zmienności wielkości wyrażonych w różnych jednostkach (na przykład dochody mieszkańców różnych państw) albo charakteryzujących się różnymi poziomami wartości średniej, konieczne jest wyznaczenie względnego poziomu zmienności. W tym celu wyznacza się tzw. współczynnik zmienności (V). s V 100% x

26 Rozstęp kwartylowy Na poprzednim wykładzie pokazano jak na wartość średnią wpływa nawet jedna obserwacja nietypowa (odstająca). Również odchylenie standardowe, w przypadku występowania obserwacji nietypowych może przybierać bardzo duże wartości a zakres typowego przedziału zmienności pozbawiony będzie sensu. W takiej sytuacji wyznaczać można tzw. rozstęp kwartylowy, który definiowany jest jako różnica między kwartylem górnym i dolnym. R Q Q 75 Q 25

27 Inne miary zmienności Bardzo elementarną miarą zmienności, która jednakże bywa niejednokrotnie używana do opisu danych jest rozstęp, określany jako różnica pomiędzy wartością maksymalną i minimalną. R x max x min Inne miary zmienności (na przykład służące do badania zróżnicowania dochodów) są opierane na stosunku wybranych centyli. c / c 99 1 xmax / x min Relacja zarobków 1% najbogatszych i 1% najbiedniejszych członków danego społeczeństwa Poziom zarobków w najbogatszym mieście wojewódzkim w Polsce do zarobków w mieście najbiedniejszym

28 Miary zmienności w programie STATISTICA Statystyki opisowe w programie STATISTICA najlepiej wyznaczać za pomocą analizy wywoływanej za pomocą poleceń STATYSTYKA / STATYSTYKI PODSTAWOWE I TABELE / STATYSTYKI OPISOWE. Po wybraniu zmiennej (lub wielu zmiennych) typu liczbowego, dla których chcemy wyznaczyć wartości statystyk opisowych należy ustalić listę wyliczanych parametrów (zakładka WIĘCEJ).

29 Przykład (plik danych: Wskaźniki UE-27) Celem analizy będzie porównanie zmienności w poziomie PKB na 1 mieszk. w państwach Unii Europejskiej w roku 2000 i W szczególności rozważona zostanie kwestia zróżnicowania pomiędzy poziomem PKB w poszczególnych państwach. Porównywalność danych wszystkie dane mają charakter wskaźników, więc można je analizować bez żadnych wstępnych przekształceń W oknie analizy STATYSTYKI OPISOWE wybieramy zmienne zawierające informacje o PKB per capita w roku 2000 i 2007 a następnie w zakładce WIĘCEJ ustalamy listę statystyk do policzenia, wybierając: średnią; medianę; minimum i maksimum; odchylenie standardowe; współczynnik zmienności; rozstęp kwartylowy.

30 Wyniki Po wywołaniu wyników i ich wstępnym sformatowaniu MIARY POŁOŻENIA MIARY ZMIENNOŚCI Na podstawie wartości średniej i mediany stwierdzamy, że PKB per capita wzrósł w państwach UE w latach (co jest niemal oczywiste i nie jest zbyt odkrywczym wnioskiem). Co ważniejsze zauważamy dosyć dużą różnicę pomiędzy wartością mediany i średniej, co sugeruje, że w UE występują państwa zdecydowanie odstające in plus od pozostałych, jeśli chodzi o PKB. Na podstawie oglądu minimum i maksimum stwierdzamy, że PKB per capita w najgorszym państwie wzrosło ponad 2 razy, zaś w najbogatszym mniej więcej 1,5 razy. Czyli tempo bogacenia się społeczeństw biedniejszych było szybsze co jest zjawiskiem pożądanym Analiza miar zmienności pozwala stwierdzić, iż nierównomierność w poziomie rozwoju państw UE pomiędzy rokiem 2000 i 2007 nieco się zmniejszyła.

31 Prezentacja graficzna Uzupełnieniem wartości statystyk opisowych może być prezentacja poziomu PKB w formie szeregu uporządkowanego, przedstawionego za pomocą wykresów słupkowych lub liniowych.

32 Prezentacja graficzna Jeżeli interesuje nas tylko ogólna informacja o rozkładzie PKB per capita w grupie państw UE możemy zgrupować dane w formie histogramu.

33 Asymetria rozkładu danych W analizie statystycznej istnieją pewne procedury, w których wymagane jest aby dane miały określony typ rozkładu (lub przynajmniej były doń zbliżone). Na przykład wyznaczanie omówionego wcześniej typowego przedziału zmienności traci sens dla danych wykazujących bardzo dużą asymetrię. Dlatego też wskazana jest umiejętność oceny poziomu asymetrii za pomocą odpowiedniego współczynnika. Informacja o rodzaju asymetrii jest też interesująca sama w sobie pozwala lepiej zrozumieć zjawisko opisywane za pomocą cechy liczbowej. Dla przykładu, podczas badania poziomu wykorzystania środków unijnych w gminach woj. podkarpackiego może nas szczególnie interesować, czy rozkład wskaźnika uzyskanych środków na 1 mieszk. jest symetryczny.

34 Graficzna analiza asymetrii (1) SILNA ASYMETRIA PRAWOSTRONNA Średnia = 299 zł Mediana = 181 zł Skośność = 2,46 Miara asymetrii nazwana jest w programie STATISTICA skośnością i można ją wyznaczyć za pomocą analizy STATYSTYKI OPISOWE. Rozkład wykorzystania środków z UE w gminach woj. podkarpackiego charakteryzuje się bardzo silną asymetrię prawostronną (jest wydłużony w prawą stronę). W praktyce oznacza to, że występują pojedyncze wartości wysokie i bardzo wysokie, nieliczne wartości na poziomie średnim i zdecydowana większość wartości na poziomie niskim i bardzo niskim (w większości gmin pozyskano niewiele środków z UE)

35 Graficzna analiza asymetrii (2) ROZKŁAD (w przybliżeniu) SYMETRYCZNY Średnia = 11,0 Mediana = 11,1 Skośność = 0,08 Miara asymetrii nazwana jest w programie STATISTICA skośnością i można ją wyznaczyć za pomocą analizy STATYSTYKI OPISOWE. Rozkład wskaźnika bezrobocia wśród mężczyzn w gminach woj. podkarpackiego jest bardzo zbliżony do symetrycznego. Średni wskaźnik bezrobocia i wartość środkowa są niemal identyczne. Podobna liczba gmin charakteryzuje się wysokim i niskim bezrobociem.

36 Graficzna analiza asymetrii (3) ROZKŁAD ASYMETRYCZNY LEWOSTRONNIE Średnia = 74,5 Mediana = 76,7 Skośność = -1,02 Miara asymetrii nazwana jest w programie STATISTICA skośnością i można ją wyznaczyć za pomocą analizy STATYSTYKI OPISOWE. Rozkład oczekiwanego czasu trwania życia mężczyzn z państwach UE w 2007 roku charakteryzował się asymetrią lewostronną w większości państw wskaźnik ten jest na wysokim bądź bardzo wysokim poziomie a w nielicznych jest na poziomie średnim bądź niskim.

37 Interpretacja wskaźnika skośności A 0 Współczynnik skośności równy w przybliżeniu 0 pozwala stwierdzić, iż mamy do czynienia z symetrycznym rozkładem danych. Wtedy średnia i wartość środkowa są do siebie zbliżone i można je stosować zamiennie. x Me A > 0 Współczynnik skośności większy od 0 oznacza asymetrię prawostronną. O silnej asymetrii prawostronnej będziemy mówić, gdy A > 1. Wartość średnia jest wyższa niż mediana. x Me A < 0 Współczynnik skośności mniejszy od 0 oznacza asymetrię lewostronną. O silnej asymetrii lewostronnej będziemy mówić, gdy A < -1. Wartość średnia jest niższa niż mediana. x Me

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu

Bardziej szczegółowo

Wykład 3: Prezentacja danych statystycznych

Wykład 3: Prezentacja danych statystycznych Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba 2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji

Bardziej szczegółowo

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Ćwiczenia 1-2 Analiza rozkładu empirycznego Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych

Bardziej szczegółowo

Wykład 2: Arkusz danych w programie STATISTICA

Wykład 2: Arkusz danych w programie STATISTICA Wykład 2: Arkusz danych w programie STATISTICA Nazwy przypadków Numer i nazwa zmiennej Elementy arkusza danych Cechy statystyczne Zmienne (kolumny) Jednostki statystyczne Przypadki (wiersze) Tworzenie

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA

Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA Podstawowe informacje wykładowca: dr Marek Sobolewski konsultacje: środa 8.40-10.10, czwartek 8.40-10.10 (p. L-400) strona

Bardziej szczegółowo

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii. Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka

Bardziej szczegółowo

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. 1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004

Bardziej szczegółowo

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X) STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku.

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Zakład Ubezpieczeń Społecznych Departament Statystyki Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Warszawa 2010 I. Badana populacja. W marcu 2010 r. emerytury

Bardziej szczegółowo

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować? 1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Statystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR

Statystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR Statystyka Opisowa WK1.2017 Andrzej Pawlak Intended Audience: PWR POJĘCIA STATYSTYKI 1. Zbiór danych liczbowych pokazujących kształtowanie się określonych zjawisk i procesów (roczniki statystyczne). 2.

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

Analiza statystyczna w naukach przyrodniczych

Analiza statystyczna w naukach przyrodniczych Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.

Bardziej szczegółowo

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji i podwyższeniu świadczeń najniższych w marcu 2017

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Wprowadzenie do zagadnień statystycznych

Wprowadzenie do zagadnień statystycznych Wprowadzenie do zagadnień statystycznych Jednym z podstawowych celów nauki jest wyjaśnianie i przewidywanie wyników obserwacji zdarzeń i relacji przyczynowych, jakie między nimi zachodzą. Pomocna w tych

Bardziej szczegółowo

4.2. Statystyczne opracowanie zebranego materiału

4.2. Statystyczne opracowanie zebranego materiału 4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2014 roku. Warszawa 2014 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2015 roku. Warszawa 2015 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego plik

Bardziej szczegółowo

Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:

Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2

Bardziej szczegółowo

Wykład 1: O statystyce i analizie danych

Wykład 1: O statystyce i analizie danych Wykład 1: O statystyce i analizie danych wykładowca: dr Marek Sobolewski konsultacje: poniedziałek 10.30-12.00, czwartek 9.00-10.30 (p. L-400) strona internetowa: www.msobolew.sd.prz.edu.pl prowadzący

Bardziej szczegółowo

Wykład 6/7/8: Graficzna analiza danych

Wykład 6/7/8: Graficzna analiza danych Wykład 6/7/8: Graficzna analiza danych Wprowadzenie Prezentacje graficzne (wykresy) stanowią alternatywną w stosunku do opisu słownego i tabelarycznego formę opisu danych statystycznych. Wbrew spotykanej

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej

Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Wykład 1 Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Informacje o przedmiocie prowadzący: strona internetowa: wykład ćwiczenia forma zaliczenia: dr Marek Sobolewski www.msobolew.sd.prz.edu.pl

Bardziej szczegółowo

Wydział Nauki o Zdrowiu. Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska

Wydział Nauki o Zdrowiu. Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska Podstawy Biostatystyki Wydział Nauki o Zdrowiu Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska Treść wykładu W1-W Statystyka opisowa. Podstawowe pojęcia statystyki. Prezentacja

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

ZARZĄDZANIE DANYMI W STATISTICA

ZARZĄDZANIE DANYMI W STATISTICA Wprowadzenie do STATISTICA Krzysztof Regulski AGH, WIMiIP ZARZĄDZANIE DANYMI W STATISTICA 1) Zastosowanie: STATISTICA umożliwia w zakresie zarządzania danymi m.in.: scalanie plików sprawdzanie danych sortowanie

Bardziej szczegółowo

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. [1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Analiza statystyczna. Ogólne własności funkcji. Funkcja liniowa. Równania i nierówności liniowe

Analiza statystyczna. Ogólne własności funkcji. Funkcja liniowa. Równania i nierówności liniowe Analiza statystyczna Ogólne własności funkcji. Funkcja liniowa. Równania i nierówności liniowe Dokument zawiera opracowanie wyników analizy statystycznej e-sprawdzianu Edyta Landkauf, Zdzisław Porosiński

Bardziej szczegółowo

Temat: ANALIZA PRÓBNEGO EGZAMINU GIMNAZYJNEGO DIAGRAM PUDEŁKOWY

Temat: ANALIZA PRÓBNEGO EGZAMINU GIMNAZYJNEGO DIAGRAM PUDEŁKOWY Jolanta Dobrzyńska Gimnazjum nr 1 w Sochaczewie SCENARIUSZ LEKCJI 11.03.2003r. Temat: ANALIZA PRÓBNEGO EGZAMINU GIMNAZYJNEGO DIAGRAM PUDEŁKOWY Program nauczania: Matematyka 2001. Czas trwania lekcji: 45

Bardziej szczegółowo

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II Podział zmiennych Zmienne zależne zmienne, które są przedmiotem badania, których związki z innymi zmiennymi chcemy określić Zmienne

Bardziej szczegółowo

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności Miary zmienności: Miary zmienności Klasyczne Wariancja Odchylenie standardowe Odchylenie przeciętne Współczynnik zmienności Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności 2 Spróbujmy zastanowić

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

Plan wynikowy i przedmiotowy system oceniania

Plan wynikowy i przedmiotowy system oceniania Plan wynikowy i przedmiotowy system oceniania Przedmiot: Pracownia ekonomiczna Klasa II Technikum Ekonomiczne Nr programu nauczania: 341[02]/MEN/2008.05.20 (technik ekonomista) Podręcznik: R. Seidel, S.

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

DZISIAJ. Jeszcze trochę o PROJEKTACH JAK PREZENTOWAĆ: JAK OBLICZAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH PODSTAWOWE MIARY

DZISIAJ. Jeszcze trochę o PROJEKTACH JAK PREZENTOWAĆ: JAK OBLICZAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH PODSTAWOWE MIARY PREZENTACJA DANYCH DZISIAJ Jeszcze trochę o PROJEKTACH Następnie metodą prób b i błęb łędów: JAK PREZENTOWAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH JAK OBLICZAĆ: PRZEDZIAŁY Y UFNOŚCI PODSTAWOWE

Bardziej szczegółowo

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ WAŻNE INFORMACJE: 1. Sprawdzane będą wyłącznie wyniki w oznaczonych polach, nie czytam tego co na marginesie, nie sprawdzam pokreślonych i niedbałych pól. 2. Wyniki proszę podawać z dokładnością do dwóch

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

AMBITNYCH RZECZOZNAWCÓW

AMBITNYCH RZECZOZNAWCÓW ADRESACI APLIKACJI. TO NIE JEST APLIKACJA DLA WSZYSTKICH. TA APLIKACJA JEST KIEROWANA DO AMBITNYCH RZECZOZNAWCÓW, KTÓRZY MAJĄC RZETELNĄ INFORMACJĘ PROWADZĄ PROCES WYCENY NIERUCHOMOŚCI W OPARCIU O PRZESŁANKI

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - struktura

ANALIZA SPRZEDAŻY: - struktura KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - struktura - koncentracja - kompleksowa analiza - dynamika Spis treści Wstęp 3 Analiza struktury 4 Analiza koncentracji 7 Kompleksowa

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

AMBITNYCH RZECZOZNAWCÓW

AMBITNYCH RZECZOZNAWCÓW ADRESACI APLIKACJI. TO NIE JEST APLIKACJA DLA WSZYSTKICH. TA APLIKACJA JEST KIEROWANA DO AMBITNYCH RZECZOZNAWCÓW, KTÓRZY MAJĄC RZETELNĄ INFORMACJĘ PROWADZĄ PROCES WYCENY NIERUCHOMOŚCI W OPARCIU O PRZESŁANKI

Bardziej szczegółowo