WNIOSEK O UTWORZENIE MAKROKIERUNKU STUDIÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "WNIOSEK O UTWORZENIE MAKROKIERUNKU STUDIÓW"

Transkrypt

1 WNIOSEK O UTWORZENIE MAKROKIERUNKU STUDIÓW 1. Proponowany makrokierunek studiów: Energetyka i chemia jądrowa, [Nuclear power engineering and nuclear chemistry] 2.Kierunki studiów zintegrowane w ramach obszaru kształcenia makrokierunku: fizyka i chemia [physics, chemistry] 3. Jednostka(i) mająca(e) prowadzić makrokierunek : Uniwersytet Warszawski: Wydział Chemii i Wydział Fizyki, [Faculty of Chemistry, Faculty of Physics, University of Warsaw] 4. Rodzaj studiów prowadzonych w ramach makrokierunku (pierwszego stopnia/drugiego stopnia), forma studiów (stacjonarne/niestacjonarne), czas trwania studiów: Studia pierwszego stopnia, stacjonarne, 3-letnie (6 semestrów) 5. Przewidywany termin rozpoczęcia studiów: Październik Uzasadnienie merytoryczne: W perspektywie kilkudziesięciu lat energetyka jądrowa będzie stanowić główne źródło energii na świecie. Wynika to zarówno z ograniczonych zasobów surowców, jak również ze względów ekonomicznych i ekologicznych. Obecnie wszystkie rozwinięte kraje na świecie posiadają i rozbudowują sieć elektrowni jądrowych. W roku 2009 Rząd RP przyjął uchwały przewidujące powstanie pierwszych bloków jądrowych do roku Największym wyzwaniem jest prawie całkowity brak kadr i konieczność ich wykształcenia. Zapotrzebowanie na specjalistów w tej dziedzinie lawinowo rośnie nawet u takich potentatów atomowych, jak Francja. Techniki jądrowe są również szeroko stosowane w przemyśle, medycynie i badaniach naukowych. Wychodząc naprzeciw rodzącym się potrzebom, Wydział Chemii i Wydział Fizyki Uniwersytetu Warszawskiego wnioskują o utworzenie makrokierunku Energetyka i chemia jądrowa z nowym jakościowo programem odpowiadającym interdyscyplinarnemu charakterowi wiedzy dotyczącej różnych aspektów energetyki jądrowej, od podstaw naukowych, przez zastosowania, aż po aspekty społeczne, ekologiczne itp. Wykształcenie specjalistów o założonym profilu nie jest możliwe w ramach istniejących obecnie kierunków nauczania na Wydziale Chemii i Wydziale Fizyki. 7. Rekrutacja: załącznik A: A1. Wymagania stawiane kandydatom A2. Zasady rekrutacji A3. Zasady odpłatności A4. Przewidywana liczba studentów/limit przyjęć 8.Opis studiów: załącznik B: B1. Oczekiwane cele kształcenia B2. Kwalifikacje absolwenta B3. Ramowy program studiów, z uwzględnieniem punktacji ECTS B4. Szczegółowy plan studiów, z uwzględnieniem punktacji ECTS B5. Programy nauczania przedmiotów objętych planem studiów (sylabusy) 9. Informacja o jednostce prowadzącej studia: załącznik C: C1. Informacja o minimum kadrowym C2. Informacja o infrastrukturze zapewniającej prawidłową realizację celów kształcenia C3. Informacja o dostępie do biblioteki wyposażonej w literaturę związaną z makrokierunkiem C4. Informacja o prowadzonych przez jednostkę badaniach naukowych w dyscyplinie lub dziedzinie związanej z makrokierunkiem ** C5. Informacja o liczbie studentów stacjonarnych i niestacjonarnych oraz proporcji na każdych prowadzonych przez jednostkę studiach 10. Kosztorys studiów zawierający kalkulację kosztów i wysokość opłat na studiach płatnych załącznik D: Nie przewiduje się otwarcia studiów płatnych 11.Uchwała(y) rady wydziału/rad wydziałów/rady międzywydziałowej jednostki organizacyjnej wnioskująca(e) do Senatu UW o utworzenie makrokierunku oraz Porozumienia: załącznik E: E1. Uchwały ** Dotyczy studiów drugiego stopnia 1

2 E2. Porozumienie o współpracy zawarte między jednostkami UW 12. Informacja o konsultacji makrokierunku *** : załącznik F A1. Wymagania stawiane kandydatom Załącznik A Zdolności w zakresie przedmiotów ścisłych i przyrodniczych, zainteresowanie wybranym kierunkiem i spełnienie wymogów punktu A.2. A2. Zasady rekrutacji ZASADY REKRUTACJI W ROKU AKADEMICKIM 2011/2012 I. Studia pierwszego stopnia i jednolite magisterskie Prosimy o uzupełnienie poniższych danych lub podkreślenie właściwego fragmentu. 1. Ogólne dane Kierunek studiów: Energetyka i Chemia Jądrowa Rodzaj studiów: pierwszego stopnia, jednolite magisterskie Forma studiów: stacjonarne, niestacjonarne (zaoczne, wieczorowe) Czas trwania: 6 semestrów Limit miejsc: 60 Uwaga: Makrokierunek zostanie uruchomiony, jeśli zgłosi się co najmniej 20 kandydatów. 2. Opis studiów (w tym: Sylwetka absolwenta) Studia pierwszego stopnia na Wydziale Chemii i Fizyki składają się z sześciu semestrów. Realizacja programu studiów odbywa się zgodnie z regułami systemu punktów kredytowych ECTS. Student musi uzyskać 60 punktów ECTS w danym roku. Realizacja pełnego programu studiów pierwszego stopnia wymaga uzyskania minimum 180 punktów ECTS. Zaliczenie semestru/roku studiów wymaga uzyskania zaliczenia wszystkich przedmiotów przewidzianych programem i planem studiów. Uzyskanie dyplomu ukończenia studiów licencjackich wymaga uzyskania absolutorium z toku studiów (w tym przygotowanie projektu licencjackiego) oraz zdania egzaminu licencjackiego. W trakcie studiów licencjackich student może w ramach przedmiotów obowiązkowych wybierać indywidualną ścieżkę studiowania. Poza zestawem obowiązkowych przedmiotów, niezbędnych dla wszechstronnego wykształcenia, wiele pozostałych zajęć audytoryjnych i laboratoryjnych studenci wybierają sami, dbając o uzyskanie odpowiedniej liczby punktów ECTS, przypisanych do każdego przedmiotu i typu zajęć. Sylwetka absolwenta Absolwenci studiów pierwszego stopnia będą posiadać wiedzę z zakresu fizyki, chemii oraz energetyki jądrowej. Będą potrafili kompetentnie wypowiadać się w dyskusji zarówno ze specjalistami, jak i niespecjalistami. W szczególności będą przygotowani do uczestnictwa w debacie społecznej na temat energetyki jądrowej. Będą gotowi do ustawicznego samokształcenia, prowadzenia samodzielnych badań oraz do kontynuacji nauki na kolejnych stopniach studiów. Absolwenci będą przygotowani do zdania egzaminu państwowego na Inspektora Ochrony Radiologicznej 1 (IOR-1) bez uczęszczania na dodatkowe szkolenia. Znajdą oni zatrudnienie w różnych gałęziach rozwijającej się energetyki jądrowej. Potencjalni pracodawcy to firmy zajmujące się produkcją i przerobem paliwa jądrowego, operatorzy *** Dotyczy sytuacji w której inna jednostka UW prowadzi taki sam makrokierunek studiów 2

3 elektrowni jądrowej, jak Polska Grupa Energetyczna, instytucje rządowe, jak Ministerstwo Gospodarki, Państwowa Agencja Atomistyki, organizacje społeczne, ekologiczne, instytucje edukacyjne, media zajmujące się tematyką naukową i społeczną itd. Możliwe będzie też zatrudnienie we wszelkich instytucjach badawczych i przemysłowych wykorzystujących techniki jądrowe oraz, po dodatkowych szkoleniach, w placówkach zajmujących się medycyną nuklearną. Oprócz tego absolwenci znajdą pracę w różnych instytucjach wymagających umiejętności obliczeniowych, obeznania z komputerem, znajomości angielskiego itp. Obecnie popyt na specjalistów w dziedzinie energetyki jądrowej gwałtownie rośnie w kraju, w Europie i na świecie. 3. Zasady kwalifikacji (poziom podstawowy) 1) Kandydaci z nową maturą ( ) Przedmioty obowiązkowe na maturze Przedmiot dodatkowy* Przedmiot dodatkowy* Język polski Matematyka Język obcy Jeden przedmiot do wyboru przez kandydata z: chemia, fizyka i (poziom podstawowy) (poziom podstawowy) astronomia, matematyka (poziom rozszerzony) lub informatyka (poziom rozszerzony) waga = 10% waga = 20% waga = 10% waga = 60% waga =.. * Zdanie matury z przedmiotu dodatkowego na poziomie rozszerzonym jest obowiązkowe w kwalifikacji na studia. 2) Kandydaci z Maturą Międzynarodową (IB) Kandydatów z Maturą IB oraz Maturą EB obowiązywać będą takie same zasady, jak osoby z polską nową maturą (z uwzględnieniem odpowiedników następujących przedmiotów: wos, historia sztuki, historia muzyki, język polski zob. materiały pomocnicze) 3) Kandydaci ze starą maturą Zasady określone uchwałą ogólną, wspólne dla wszystkich kierunków studiów (zob. materiały pomocnicze). 4) Dodatkowy egzamin wstępny (tzw. sprawdzian predyspozycji) W przypadku gdy został przewidziany, należy wypełnić dane poniżej. Forma egzaminu /ustny, pisemny/: Zagadnienia egzaminacyjne: 5) Kandydaci z maturą zagraniczną (w tym cudzoziemcy) Limit miejsc w rekrutacji wrześniowej: 5 /w rekrutacji lipcowej kandydaci będą przyjmowani na studia w ramach ogólnego limitu miejsc/ Forma egzaminu /ustny, pisemny/: pisemny Zagadnienia egzaminacyjne: Do wyboru egzamin z chemii lub fizyki. Wymagania egzaminacyjne takie same jak dla egzaminu maturalnego z chemii/fizyki na poziomie rozszerzonym 6) Studia równoległe i przeniesienia z innych uczelni Limity miejsc: na studia równoległe: 8 na studia w trybie przeniesienia: nie dotyczy Zasady kwalifikacji: 3

4 na studia równoległe: średnia z ocen po pierwszym roku na studiach podstawowych (minimum 3,5) W przypadku gdy przewidziany został egzamin, należy wypełnić dane poniżej. Forma egzaminu /ustny, pisemny/: Zagadnienia egzaminacyjne:.. na studia w trybie przeniesienia: nie dotyczy W przypadku gdy przewidziany został egzamin, należy wypełnić dane poniżej. Forma egzaminu /ustny, pisemny/: Zagadnienia egzaminacyjne:.. 4. Informacja o odpłatności za studia Prosimy o podanie, czy studia są płatne: nie, studia są bezpłatne II. Studia drugiego stopnia - nie dotyczy 4

5 Załącznik B B1. Oczekiwane cele kształcenia Uzyskanie wiedzy w zakresie matematyki wyższej, podstaw fizyki i chemii oraz pogłębionej wiedzy z fizyki i chemii jądrowej. Umiejętność stosowania metod matematycznoprzyrodniczych oraz informatycznych do rozwiązywania problemów fizycznych, chemicznych oraz interdyscyplinarnych. Przygotowanie do kształcenia na studiach II stopnia na tym samym lub pokrewnych kierunkach. Współpraca z grupach badawczych i zespołach interdyscyplinarnych oraz wykonywanie zawodów według uprawnień właściwych dla specjalności. B2. Kwalifikacje absolwenta Po trzech latach studiów licencjackich absolwent makrokierunku "Energetyka i chemia jądrowa" będzie przygotowany do podjęcia studiów magisterskich na tym makrokierunku, na kierunku "Zastosowania fizyki w biologii i medycynie" (specjalność Fizyka medyczna), na kierunku "Fizyka" (specjalności: Fizyka jądrowa i oddziaływań fundamentalnych, Metody jądrowe fizyki ciała stałego, Fizyka biomedyczna, Modelowanie matematyczne i komputerowe procesów fizycznych, Dydaktyka i popularyzacja fizyki, Specjalność nauczycielska) oraz na kierunku "Chemia" (specjalności: Chemia jądrowa, chemia organiczna i fizyczna związków znakowanych, Modelowanie procesów chemicznych, Dydaktyka i popularyzacja chemii, Specjalność nauczycielska) Absolwent studiów I stopnia powinien móc znaleźć pracę we wszelkich instytucjach przemysłowych, medycznych i badawczych wykorzystujących techniki jądrowe, a przede wszystkim w różnych gałęziach rozwijającej się obecnie w kraju energetyki jądrowej. Potencjalne miejsca zatrudnienia to firmy-operatorzy elektrowni jak Polska Grupa Energetyczna, instytucje rządowe jak Ministerstwo Gospodarki, Państwowa Agencja Atomistyki, media zajmujące się nauką, energetyką, ekologią itp. Absolwent studiów I stopnia: ma rzetelną wiedzę w zakresie podstaw matematyki wyższej oraz głównych działów fizyki i chemii umie posługiwać się komputerem w zakresie edycji tekstów naukowych, analizy danych, wykorzystania istniejących programów obliczeniowych, programowania i metod numerycznych potrafi posługiwać się przyrządami pomiarowymi mechanicznymi, elektronicznymi itp. oraz chemicznym sprzętem laboratoryjnym, w szczególności przyrządami używanymi w fizyce i chemii jądrowej umie zaprojektować i złożyć układ pomiarowy oraz wykonać przy jego użyciu doświadczenia i pomiary zna zasady bezpiecznej pracy w laboratorium fizycznym i chemicznym umie korzystać z tradycyjnej i elektronicznej literatury naukowej, baz danych i innych źródeł wiedzy potrafi przygotowywać teksty naukowe z ilustracjami oraz wygłaszać referaty z wykorzystaniem technik multimedialnych zna język angielski na poziomie B2 Europejskiego Systemu Opisu Kształcenia Językowego Rady Europy, w szczególności język specjalistyczny z zakresu nauk matematyczno-przyrodniczych posiada umiejętność samokształcenia oraz formułowania i rozwiązywania problemów naukowych na podstawie danych doświadczalnych oraz wiedzy teoretycznej jest przygotowany do pracy w grupach badawczych oraz zespołach interdyscyplinarnych posiada gruntowną wiedzę w zakresie fizyki i chemii jądrowej oraz podstawowe wiadomości o radiobiologii i radioekologii orientuje się w różnych zastosowaniach fizyki i chemii jądrowej w przemyśle oraz 5

6 medycynie posiada rozległą wiedzę o różnych aspektach energetyki jądrowej - od podstaw naukowych po zagadnienia ekologii itp. jest przygotowany do zdania egzaminu państwowego na Inspektora Ochrony Radiologicznej 1 (IOR-1) bez dodatkowych szkoleń może podjąć studia II stopnia na dowolnych kierunkach fizycznych i chemicznych na uczelniach w kraju i za granicą może podjąć pracę zawodową: we wszelkich instytucjach wymagających obeznania z komputerem, umiejętności obliczeniowych, znajomości angielskiego itp.; jako inspektor ochrony radiologicznej; w medycynie nuklearnej (po dodatkowych szkoleniach); w różnych działach energetyki jądrowej - od operatorów elektrowni, przez agendy rządowe i administracji publicznej po media itp. 6

7 B3. Ramowy program studiów zgodny z proponowanymi standardami kształcenia dla nowego kierunku i poziomu kształcenia, z uwzględnieniem punktacji ECTS A. Przedmioty podstawowe Nazwa przedmiotu liczba godzin liczba punktów ECTS Rachunek różniczkowy i całkowy Algebra z geometrią 60 4 Analiza Programowanie i metody numeryczne 75 5 Podstawy Fizyki Współczesnej 30 2 Pracownia analizy danych 15 1 Elementy termodynamiki i fizyki statystycznej 60 5 Elementy astronomii i astrofizyki jądrowej 30 2 Wstęp do fizyki I 15 1 Wstęp do fizyki II 15 1 Wstęp do fizyki III 15 1 Podstawy fizyki subatomowej 60 4 Zastosowania fizyki jądrowej 60 4 Zaawansowana fizyka jądrowa Krystalografia z elementami teorii grup 45 3 Mechanika i chemia kwantowa z elementami spektroskopii molekularnej Chemia nieorganiczna z elementami syntezy 90 8 nieorganicznej Chemia fizyczna Chemia organiczna z elementami biochemii Biologia komórki 15 1 Analiza instrumentalna 45 3 Chemia jądrowa i radiacyjna 90 6 Ochrona radiologiczna B. Przedmioty kierunkowe Nazwa przedmiotu Liczba godzin liczba punktów ECTS Dwa wykłady specjalistyczne do wyboru (patrz lista) 60 4 Seminarium specjalizacyjne 30 2 Chemia stosowana, odpady i zarządzanie 10 1 chemikaliami Technologia chemiczna 60 6 Chemia materiałów 30 3 Mechanika i szczególna teoria względności Elektrodynamika Pracownia elektroniczna i fizyczna 60 5 Praktyki studenckie 2 Pracownia licencjacka Wyjaśnienie do Tabel A i B: przedmioty Mechanika i chemia kwantowa z elementami spektroskopii molekularnej oraz Elementy termodynamiki i fizyki statystycznej są wśród przedmiotów podstawowych w minimach programowych dla kierunku Chemia oraz kierunkowych dla kierunku Fizyka. W Tabelach A i B przedmioty te zostały umieszczone wśród podstawowych, natomiast w porównaniach standardów MNISW z programami kierunków 7

8 studiów Chemia i Fizyka (punkt B4) zostały one poprawnie umieszczone wśród podstawowych (dla kierunku Chemia) i kierunkowych (dla kierunku Fizyka). C. Przedmioty dodatkowe Nazwa przedmiotu liczba godzin liczba punktów ECTS Język obcy Egzamin certyfikacyjny z języka - 2 WF Przedmioty ogólnouniwersyteckie Łącznie: D. Praktyki Na studiach licencjackich praktyki powinny trwać nie krócej niż 3 tygodnie. Szczegółowy plan praktyk będzie zgodny z zasadami praktyk studenckich na Wydziale Fizyki lub Wydziale Chemii. Praktyki zaplanowane są po 2 roku studiów, za ich odbycie przysługuje 2 ECTS. Razem 180 ECTS, 2610 godzin 8

9 B4. Szczegółowy plan studiów zgodny z proponowanymi standardami kształcenia dla nowego kierunku i poziomu kształcenia, z uwzględnieniem punktacji ECTS: Wakacyjne zajęcia przygotowawcze (Sesja wyjazdowa sierpień-wrzesień) Przedmiot Suma godzin Matematyka 30 Fizyka 25 Chemia Wykłady Cwicz. konwersatorium. Lab. ECTS forma zaliczenia Semestr 1 (ROK 1, Semestr 1) Przedmiot Rachunek różniczkowy i całkowy Algebra z geometrią Wstęp do fizyki I Chemia organiczna z elementami biochemii Suma Wykłady Cwicz. konwersatorium. Lab. ECTS forma godzin zaliczenia Egzamin Egzamin Zaliczenie na ocenę Egzamin Język obcy (60) 2 Zaliczenie na ocenę Z. ogólnouniw. 0,5 BHP Z. ogólnouniw. 0,5 ochrona własności intelektualnej WF (30) UWAGA: suma godzin podana dla przedmiotów podstawowych i kierunkowych. Orientacyjne godziny przedmiotów dodatkowych podano w nawiasach Semestr 2 (ROK 1, Semestr 2) Przedmiot Suma godzin Wykłady Cwicz. konwersatorium. Lab. ECTS forma zaliczenia Analiza Egzamin Wstęp do fizyki II Zaliczenie na ocenę Mechanika i szczególna teoria względności w tym pokazy 45 8 Egzamin Chemia fizyczna Egzamin Pracownia analizy danych Zaliczenie na ocenę Język obcy (60) 2 Zaliczenie na ocenę Zajęcia (30) 1 Zaliczenie ogólnouniwersyteckie na ocenę WF (30)

10 Semestr 3 (ROK 2, Semestr 1) Przedmiot Suma godzin Wykłady Cwicz. konwersatorium. Lab. ECTS forma zaliczenia Elektrodynamika w tym 60 8 Egzamin pokazy Wstęp do fizyki III Zaliczenie na ocenę Podstawy Fizyki Współczesnej Zaliczenie na ocenę Chemia Egzamin nieorganiczna z elementami syntezy nieorganicznej Podstawy fizyki subatomowej Zaliczenie na ocenę Pracownia fizyczna i Egzamin elektroniczna Zajęcia (30) 2 Zaliczenie ogólnouniwersyteckie na ocenę WF (30) Semestr 4 (ROK 2, Semestr 2) Przedmiot Mechanika i chemia kwantowa z elementami spektroskopii molekularnej Zastosowania fizyki jądrowej Ochrona radiologiczna Krystalografia z elementami teorii grup Analiza instrumentalna Suma godzin Wykłady Cwicz. konwersatorium. Lab. ECTS forma zaliczenia Egzamin Egzamin Egzamin Zaliczenie na ocenę Egzamin WF (30) Egzamin - 2 Egzamin certyfikujący z języka obcego

11 Semestr 5 (ROK 3, Semestr 1) Przedmiot Elementy termodynamiki i fizyki statystycznej Zaawansowana fizyka jądrowa Chemia jądrowa i radiacyjna Programowanie i metody numeryczne Elementy astronomii i astrofizyki jądrowej Biologia komórki Suma Wykłady Cwicz. konwersatorium. Lab. ECTS forma godzin zaliczenia Egzamin Egzamin Egzamin Zaliczenie na ocenę Zaliczenie na ocenę Zaliczenie na ocenę

12 Semestr 6 (ROK 3, Semestr 2) Przedmiot Suma godzin Wykłady Ćwicz. Konw. Lab ECTS forma zaliczenia 2 Praktyki studenckie (po 2 roku studiów) Pracownia licencjacka wykonanie pracy Chemia stosowana Zaliczenie na odpady i zarządzanie ocenę chemikaliami Chemia materiałów Zaliczenie na ocenę Technologia chemiczna Zaliczenie na ocenę Seminarium specjalizacyjne Zajęcia do wyboru (60) 5 zajęcia humanistyczne Zajęcia do wyboru 60 h 60 4 Energetyka jądrowa w percepcji społeczeństwa. Podstawy Zaliczenie na ocenę Paliwo jądrowe i odpady powstające w energetyce jądrowej Efekty izotopowe w chemii Zaliczenie na ocenę Zaliczenie na ocenę Fizyka pogody i klimatu Zaliczenie na ocenę Fizyka wnętrza ziemi Zaliczenie na ocenę Eksperyment fizyczny w warunkach ekstremalnych Wstęp do fizyki środowiska Techniki jądrowe w diagnostyce i terapii medycznej Synteza radionuklidów i ich zastosowanie w medycynie jądrowej Metody jądrowe w fizyce ciała stałego Zaliczenie na ocenę Zaliczenie na ocenę Zaliczenie na ocenę Zaliczenie na ocenę Zaliczenie na ocenę Fizyka neutrin Zaliczenie na ocenę Energia i broń jądrowa Zaliczenie na ocenę UWAGA: suma godzin podana dla przedmiotów podstawowych i kierunkowych. Orientacyjne godziny przedmiotów dodatkowych podano w nawiasach Na studiach licencjackich praktyki powinny trwać nie krócej niż 3 tygodnie. Szczegółowy plan praktyk będzie zgodny z zasadami praktyk studenckich na Wydziale Fizyki lub Wydziale Chemii. Przewidujemy, że praktyki będą odbywały się w Środowiskowym Laboratorium Ciężkich Jonów Uniwersytetu Warszawskiego oraz w instytutach badawczych, takich jak IChTJ, IPJ oraz IEA. Łącznie przez 6 semestrów 180 ECTS, 2610 godzin. 12

13 B4. Porównanie standardów kształcenia MNiSW dla kierunku studiów Chemia z programem makrokierunku Energetyka i chemia jądrowa. Standardy kształcenia dla kierunku studiów Chemia wg zał. do rozporządzenia Ministra Nauki i Szkolnictwa Wyższego z dnia 12 lipca 2007 r. nr 15 Studia I lub II stopnia Ramowe treści kształcenia GRUPA TREŚCI MNiSW (chemia) MAKROKIERUNEK godziny ECTS godziny ECTS A. Podstawowych B. Kierunkowych RAZEM MNiSW (chemia) A. Grupa treści Godziny podstawowych. 720 Treści kształcenia w zakresie: ECTS 74 A. Treści zawarte w przedmiocie MAKROKIERUNEK 1. matematyki 75 1.Rachunek różniczkowy i całkowy 2.Algebra liniowa 3.Analiza 2. fizyki 45 1.Podstawy fizyki współczesnej 2.Mechanika i szczególna teoria względności 3.Elektrodynamika 4.Pracownia fizyczna i elektroniczna 5.Podstawy fizyki subatomowej 6.Zastosowania fizyki jądrowej 7.Zaawansowana fizyka jądrowa 8.Wstęp do fizyki I 9.Wstęp do fizyki II 10.Wstęp do fizyki III 3. biochemii i biologii Chemia organiczna z elementami biochemii 2. Biologia komórki 4. chemii Chemia nieorganiczna z elementami syntezy nieorganicznej 2. Chemia fizyczna 3. Analiza instrumentalna 4. Mechanika i chemia kwantowa z elementami spektroskopii molekularnej 5. Elementy termodynamiki i fizyki statystycznej 6. Krystalografia z elementami teorii grup 7. Chemia jądrowa i radiacyjna 8. Ochrona radiologiczna Godziny ECTS

14 B. Grupa treści kierunkowych. Treści kształcenia w zakresie: 1. Chemia materiałów 2. Chemia stosowana i zarządzanie chemikaliami 3. Technologia chemiczna 90 9 B. Treści zawarte w przedmiocie Chemia materiałów 30 3 Chemia stosowana odpady i zarządzanie chemikaliami 10 1 Technologia chemiczna 60 6 B4. Porównanie standardów kształcenia MNiSW dla kierunku studiów Fizyka z programem makrokierunku Energetyka i chemia jądrowa. Standardy kształcenia dla kierunku studiów Fizyka wg zał. do rozporządzenia Ministra Nauki i Szkolnictwa Wyższego z dnia 12 lipca 2007 r. nr 34 Studia I lub II stopnia Ramowe treści kształcenia GRUPA TREŚCI MNiSW (fizyka) MAKROKIERUNEK godziny ECTS godziny ECTS A. Podstawowych B. Kierunkowych RAZEM MNiSW (fizyka) A. Grupa treści podstawowych. Treści kształcenia w zakresie: Godziny 360 ECTS 41 A. Treści zawarte w przedmiocie MAKROKIERUNEK 1. matematyki Rachunek różniczkowy i całkowy 2.Algebra liniowa 3.Analiza 2. podstaw fizyki Podstawy fizyki współczesnej 2.Podstawy fizyki subatomowej 3.Zastosowania fizyki jądrowej 4.Zaawansowana fizyka jądrowa 5.Wstęp do fizyki I 6.Wstęp do fizyki II 7.Wstęp do fizyki III 8. Krystalografia z elementami teorii grup 9. Ochrona radiologiczna 3. astronomia Elementy astronomii i astrofizyki jądrowej Godziny ECTS

15 B. Grupa treści kierunkowych. Treści kształcenia w zakresie: B. Treści zawarte w przedmiocie Elektrodynamika Elektrodynamika Podstawy fizyki Mechanika i chemia kwantowa z kwantowej elementami spektroskopii molekularnej 3. Laboratorium fizyczne Pracownia fizyczna i elektroniczna Mechanika klasyczna i relatywistyczna Termodynamika i fizyka statystyczna Mechanika i szczególna teoria względności Elementy termodynamiki i fizyki statystycznej

16 B5. Programy nauczania przedmiotów objętych planem studiów (sylabusy): B5. Programy nauczania przedmiotów objętych planem studiów (sylabusy): A. Przedmioty podstawowe Wakacyjne zajęcia przygotowawcze: Fizyka (60h) Treści kształcenia: Odległość. Przesunięcie. Droga. Układ odniesienia. Czas. Szybkość procesu. Prędkość średnia, chwilowa. Ruch jednostajny prostoliniowy. Przyspieszenie. Ruch niejednostajny prostoliniowy. Ruch płaski. Ruch po okręgu. Względność ruchu. Złożenie ruchu postępowego i obrotowego. Siła. I i III zasada dynamiki. Siła ciężkości. Siły reakcji. Siła wypadkowa, równoważąca. Moment siły. Siły równoważne. Środek ciężkości, masy. II zasada dynamiki. Pęd. Tarcie kinetyczne. Siła grawitacji, ruch po orbicie kołowej. Siły pozorne. Bryła sztywna. Moment pędu. Energia mechaniczna, potencjalna, kinetyczna. Praca. Zderzenia. Ciśnienie. Temperatura. Energia wewnętrzna. Równanie Clapeyrona. Mikroskopowa interpretacja ciśnienia i temperatury. Prawo Archimedesa. Prawo Coulomba. Prawo Gaussa. Przewodniki. Potencjał. Kondensatory próżniowe. Stały prąd elektryczny. Prawo Ohma. Prawa Kirchoffa. Definicja ampera. Siła Lorentza. Ruch przewodnika w polu magnetycznym. Prądnica. Prawo Hooke'a. Energia potencjalna sprężyny. Ruch harmoniczny. Fale. Przenoszenie energii. Odbicie. Efekt Dopplera dla fal dźwiękowych. Optyka geometryczna. Zwierciadło płaskie, sferyczne. Załamanie, soczewki, przyrządy optyczne. Interferencja. Prawo rozpadu promieniotwórczego. Efekty kształcenia umiejętności i kompetencje: Celem zajęć jest przypomnienie i usystematyzowanie wiedzy studentów wyniesionej ze szkoły średniej (fizyka - poziom rozszerzony), a także nauczenie metodologii rozwiązywania prostych problemów fizycznych. Opanowanie prezentowanych zagadnień ułatwi studentowi efektywne korzystanie z kolejnych wykładów cyklu 'Fizyka'. Na ćwiczeniach będą dyskutowane i rozwiązywane zadania dotyczące prostych problemów fizycznych (usystematyzowanie wiedzy na poziomie szkoły średniej), których treść - razem z odnośnikami do polecanych podręczników - zostanie wcześniej udostępniona studentom. Proponowane będą również eksperymenty do samodzielnego wykonania. Warsztaty zapewnią możliwość dodatkowej dyskusji o fizyce. Wakacyjne zajęcia przygotowawcze: Matematyka (78h) Treści kształcenia: Elementy logiki, indukcja matematyczna, liczby wymierne i niewymierne, liczby rzeczywiste, dwumian Newtona. Funkcje liniowe i kwadratowe, wartość bezwzględna. Wielomiany, przekształcanie wyrażeń wymiernych. Funkcje potęgowe, wykładnicze i logarytmiczne, przekształcanie wyrażeń niewymiernych. Funkcje trygonometryczne. Zbiory, relacje, odwzorowania, równoliczność zbiorów. Kresy zbiorów. Ciągi, granice ciągów. Twierdzenie o trzech ciągach. Rekurencja, dwumian Newtona. Przykłady granic. Pochodne funkcji, ekstrema, badanie funkcji. Planimetria, figury podobne, twierdzenie Talesa, twierdzenie Pitagorasa, pola figur płaskich, długość okręgu i łuku. Stereometria. Wielościany, bryły obrotowe. Wektory, iloczyn skalarny, długość wektora, rzutowanie. Iloczyn wektorowy. Geometria analityczna. Parametryczny opis prostej, okrąg, elipsa, hiperbola, parabola. Ciągi liczbowe, podstawowe ciągi elementarne. Liczby zespolone. Efekty kształcenia umiejętności i kompetencje: Celem zajęć jest przypomnienie i usystematyzowanie wiedzy studentów wyniesionej ze szkoły średniej (matematyka - poziom rozszerzony), a także nauczenie metodologii rozwiązywania prostych problemów matematycznych. Na zajęciach będą dyskutowane i rozwiązywane zadania dotyczące prostych problemów matematycznych (usystematyzowanie wiedzy na poziomie szkoły średniej), których treść - razem z odnośnikami do polecanych podręczników - zostanie wcześniej udostępniona studentom. Wakacyjne zajęcia przygotowawcze: Chemia (60h) Treści kształcenia: Właściwości pierwiastków a układ okresowy. Właściwości fizykochemiczne cząsteczek związków chemicznych na podstawie ich budowy, trwałości wiązań chemicznych i rozmieszczenia przestrzennego atomów. Równowaga chemiczna. Termochemia. Właściwości roztworów. Równowagi kwasowo-zasadowe. Reakcje strąceniowe. Reakcje utleniania i redukcji. Potencjał elektrochemiczny. Efekty kształcenia umiejętności i kompetencje: Podstawowe obliczenia chemiczne na podstawie stechiometrii reakcji. Sposoby wyrażania stężeń. Zdobycie wiadomości na temat właściwości związków chemicznych i rodzajów przebiegających reakcji chemicznych oraz 16

17 podstawowych obliczeń chemicznych. SEMESTR 1 Rachunek Różniczkowy i Całkowy (180h) (90h W+ 90h Ć) Treści kształcenia: Zbiory, relacje. Liczby rzeczywiste. Ciągi i ich granice. Kryteria zbieżności. Zupełność zbioru liczb rzeczywistych. Szeregi liczbowe. Zbieżność, kryteria zbieżności. Działania na szeregach. Szeregi potęgowe. Promień zbieżności. Rozwinięcia podstawowych funkcji elementarnych. Funkcje ciągłe. Pojęcie funkcji, wielomiany, funkcje wymierne. Granica funkcji w punkcie. Właściwości funkcji ciągłych na przedziale. Rachunek różniczkowy funkcji jednej zmiennej. Pochodna. Definicja. Warunki istnienia. Twierdzenia o wartości średniej, wzór Taylora. Badanie funkcji. Całka Riemanna funkcji jednej zmiennej: Definicja całki Riemanna. Funkcja pierwotna. Podstawowe twierdzenie rach. całkowego i różniczkowego o związku całki Riemanna z funkcją pierwotną. Równania różniczkowe zwyczajne: Warunek Lipschitza, zasada Banacha. Twierdzenie o istnieniu i jednoznaczność warunku Cauchy. Sposoby zadawania warunków brzegowych (przykład: struna nieskończona w jednym wymiarze). Elementarne metody rozwiązywania. Równania różniczkowe liniowe i układy równań liniowych. Problem jednorodny i niejednorodny. Rezolwenta. Uzmiennianie stałej. Równania wyższych rzędów, Równania o stałych współczynnikach, rozwiązania postaci x(t)=exp[a(t-t 0 )]x 0 Wrońskian. Baza w przestrzeni rozwiązań. Rachunek różniczkowy i całkowy funkcji rzeczywistych wielu zmiennych: Ciągłość funkcji wielu zmiennych. Pochodna cząstkowa, kierunkowa różniczkowalność. Różniczkowanie funkcji złożonej, poziomica, gradient, wzór Taylora dla funkcji wielu zmiennych. Lokalna odwracalność. Funkcje uwikłane, pochodna funkcji uwikłanej. Ekstrema funkcji wielu zmiennych. Ekstrema lokalne i globalne. Opis krzywej i powierzchni. Ekstrema związane. Całki wielokrotne. Zbiór miary Lebesgue a zero. Zbiór Cantora (jako przykład). Całka Riemanna w R n. Tw. o zamianie zmiennych. Tw. Fubiniego. Całki niewłaściwe i całki z parametrem. Krzywe i powierzchnie w R n. Opis krzywej i powierzchni. Krzywa w trójwymiarowej przestrzeni, opis parametryczny, wektory styczny, normalny i binormalny, równania Sarreta-Freneta. Parametryczny opis powierzchni w trójwymiarowej przestrzeni. Pola skalarne i wektorowe. Gradient, dywergencja, rotacja i laplasjan. Całki niezorientowane i zorientowane po krzywych i powierzchniach. Analiza wektorowa w R n. Twierdzenia Greena (na płaszczyźnie), Gaussa i Stokesa. Algebra z geometrią (60h) (30h W+ 30h Ć) Treści kształcenia: Pojęcie grupy, grupa permutacji. Ciała, ciało liczb zespolonych. Definicja przestrzeni wektorowej. Liniowa niezależność, baza. Podprzestrzenie wektorowe, sumy, iloczyny i przestrzeń ilorazowa. Przestrzeń wektorowa macierzy, rząd i wyznacznik macierzy. Odwzorowania liniowe, macierz odwzorowania liniowego w bazach uporządkowanych, przekształcenia odwrotne, wartości i wektory własne, wielomian charakterystyczny. Układy równań liniowych. Formy liniowe, przestrzeń sprzężona, odwzorowania sprzężone, dwoistość. Odwzorowania i formy wieloliniowe. Pojęcie formy kwadratowej. Przestrzenie unitarne, iloczyn skalarny, odwzorowania unitarne, baza ortogonalna. Pojęcie normy, metryka wyznaczona przez normę. Nierówność Schwarza, ortonormalizacja Gramma-Schmidta. Przekształcenia hermitowskie, twierdzenie spektralne, sprzężenie hermitowskie odwzorowania liniowego. Iloczyn tensorowy przestrzeni wektorowych. Pojęcie przestrzeni afinicznej i euklidesowej, układy współrzędnych. Podrozmaitości stopnia 2 w przestrzeni E n, punkt, prosta, para prostych, stożek. elipsa, hiperbola, parabola, płaszczyzna, para płaszczyzn przecinających się, elipsoida, hiperboloida, paraboloida, walec. Wstęp do fizyki I (15h)(15h W) Treści kształcenia: Mechanika Podstawowe wielkości fizyczne pomiar. Międzynarodowy układ jednostek SI. Wektory i wielkości wektorowe w fizyce. Ruch prostoliniowy. Ruch w dwóch i trzech wymiarach. Siła i ruch. Zasady dynamiki Newtona. Energia kinetyczna, praca. Energia potencjalna, zachowanie energii. Zderzenia. Ruch obrotowy brył sztywnych. Statyka i dynamika płynów. Drgania mechaniczne i fale. Oddziaływanie grawitacyjne, pole grawitacyjne. Transformacja Lorentza. Efekty kształcenia umiejętności i kompetencje: rozumienie podstawowych zjawisk fizycznych w przyrodzie z zakresu mechaniki klasycznej; formułowanie problemu oraz wykorzystywanie metodyki badań fizycznych (eksperymentalnych i teoretycznych) do jego rozwiązywania. 17

18 Chemia organiczna z elementami biochemii (120h) (W. 30h, Lab. 90h) Treści kształcenia: Hybrydyzacja atomu węgla (sp, sp 2, sp 3 ) i rodzaje izomerii determinowane przez określony typ hybrydyzacji; izomeria szkieletowa, geometryczna, optyczna. Oznaczenia konfiguracji E/Z i R/S; konformacje związków alifatycznych (etan, butan) i cyklicznych (cykloheksan i jego 1,2 i 1,3 dipodstawione pochodne); efekty elektronowe (indukcyjny i mezomeryczny) oraz steryczne w chemii organicznej; elektroujemność, wiązanie spolaryzowane, moment dipolowy cząsteczki; pojecie kwasów i zasad w chemii organicznej definicje podstawowe. ALKANY. Nomenklatura i stereochemia alkanów. Otrzymywanie alkanów (reakcje Wurtza, Careya, Kolbego, reakcje uwodornienia otrzymywanych pochodnych deuterowanych). Reakcje alkanów (selektywne utlenianie, halogenowanie); pojęcie homolizy i heterolizy; podział na reakcję rodnikowe i jonowe; struktura i stabilność rodników. ALKENY. Nomenklatura i otrzymywanie alkenów; reakcje cis i trans eliminacji; stereochemia; mechanizm i wymogi stereoelektronowe dla reakcji E-2 i E-1; reakcje alkenów; pojęcie karbokationu i względna stabilność karbokationów; reguła Markownikowa i efekty powodujące niezgodne z regułą Markownikowa kierunek addycji; reakcje addycji do podwójnego wiązania tj. addycja halogenu, halogeno-wodoru, wody, kwasu siarkowego, borowodoru; reakcja epoksydowania, oksyrtęciowania, synteza cis i trans dioli; przebieg stereochemiczny wyżej wymienionych addycji; ozonoliza; alkany i alkeny wstępujące w przyrodzie (feromony). Alkiny - otrzymywanie i reakcja. WĘGLOWODORY AROMATYCZNE (areny); pojecie aromatyczności i antyaromatyczności. Podstawienie elektro- i nukleofilowe w pierścieniu aromatycznym. Mechanizm podstawienia elektrofilowego; wpływ kierujący podstawników, sterowanie kierunkiem reakcji podstawienia (blokowanie, aktywacja); tworzenie odczynnika elektrofilowego; reaktywność łańcucha bocznego (utlenianie, halogenowanie). CHLOROWCOPOCHODNE: nomenklatura, otrzymywanie halogenków alkilowych (halogenowanie węglowodorów alifatycznych, halogenowanie pozycji allilowej); wymiana grupy hydroksylowej na halogen (reakcja z kwasami halogenowodorowymi, reakcja z tetrahalogenkami węgla wobec trifenylofosfiny, wymiana na halogen estrów kwasów sulfonowych). Reakcje halogenopochodnych; związki metalo organiczne (Grignarda, Gilmana); substytucja nukleofilowa S N 1 i S N 2. Chlorowcopochodne występujące w naturze. ALKOHOLE i ich analogi siarkowe: nomenklatura, otrzymywanie alkoholi (cis addycja do alkenów, redukcja ketonów, aldehydów, estrów i kwasów karboksylowych); eliminacja cząsteczki wody; estryfikacja mechanizmy; utleniane alkoholi. AMINY; nomenklatura; względna zasadowość amin; wpływ budowy na zasadowość; otrzymywanie amin: redukcja nitryli, amidów, nitrozwiązków, oksymów; reakcje substytucji Gabryjela i Mitsunobu, synteza azydkowa, reduktywne aminowanie; przegrupowanie Hoffmanna. Reakcje amin: alkilowanie, acylowanie, reakcje amin z kwasem azotawym; zastosowanie w syntezie organicznej soli diazoniowych; próba Hinsberga. Aminy występujące w naturze alkaloidy. ALDEHYDY I KETONY; nomenklatura, otrzymywanie adehydów i ketonów: utlenianie alkoholi; wykorzystanie chlorków kwasowych (reakcja Rosenmunda) oraz addycja związków kadmoorganicznych i miedzioorganicznych; addycja wody do alkinów; reakcje aldehydów i ketonów: addycja nukleofilowa do adehydów i ketonów (addycja związków Grignarda, wody, cyjanowodoru, alkoholi, kwaśnego siarczanu sodu, amin); redukcja do alkoholi oraz redukcja Wolffa-Kiżnera; reakcja kondensacji aldolowej oraz reakcja Cannizarro; addycja do - nienasyconych aldehydów i ketonów. Reakcja haloformowa. KWASY KARBOKSYLOWE i ich pochodne; nomenklatura, otrzymywanie kwasów karboksylowych (utlenianie alkoholi i aldehydów oraz węglowodorów aryloalkilowych); hydroliza trihalogenopochodnych; wykorzystanie związków metaloorganicznych do syntezy kwasów; hydroliza nitryli; reakcje kwasów karboksylowych: redukcja grupy karboksylowej; synteza chlorków, bezwodników i estrów kwasów karboksylowych; zdolność acylowania pochodnych kwasów; wpływ budowy związku na moc kwasu; -halogenowanie kwasów karboksylowych; kondensacja Claisena i acyloinowa. KARBOANIONY w chemii organicznej; pojęcie karboanionu i anionu enolanowego; syntezy oparte o malonian dietylu, acetylooctan etylu, ditian; otrzymywanie aldehydów, ketonów oraz podstawionych kwasów karboksylowych. Asymetryczne alkilowanie ketonów STEROWANIE PRZEBIEGIEM REAKCJI CHEMICZNYCH; aktywacja lub blokowanie wybranej pozycji w cząsteczce; grupy ochronne; wykorzystanie kontroli kinetycznej i termodynamicznej reakcji; wykorzystanie wymogów stereoelektronowych reakcji; selektywność determinowana doborem odczynnika; selektywność determinowana innymi czynnikami (zawada sterycznawiązania wodorowe) STRATEGIA SYNTEZY: analiza retrosyntetyczna, zasada kolejnych uproszczeń struktury; zasada minimalnej ilości etapów; synteza liniowa i zbieżna; reguły dyskonekcji; 18

19 reakcje Umpolung. ZWIĄZKI HETEROCYKLICZNE trój-, cztero-, pięcio- i sześcioczłonowe z jednym heteroatomem; nomenklatura, otrzymywanie i reakcje WĘGLOWODANY; przedstawienie konfiguracji monosacharydów; homochiralność; anomeryzacja; efekt anomeryczny; mutarotacja; reakcje monosachrydów; disacharydy; substancje grupowe krwi. AMINIKWASY I BIAŁKA; budowa aminokwasów, punkt izoelektryczny; syntezy aminokwasów; enancjoselektywna synteza aminokwasów; peptydy i białka; synteza wiązania peptydowego; konformacje białek; enzymy; związki supramolekularne i metaloorganiczne. Efekty kształcenia umiejętności i kompetencje:po wysłuchaniu cyklu wykładów student powinien posiadać podstawowa wiedzę o reaktywności związków organicznych, powinien rozumieć zależności pomiędzy budową a reaktywnością molekuł organicznych. Powinien też zaprojektować syntezę prostych związków organicznych. Chemia organiczna z elementami biochemii - Pracownia z chemii organicznej (90h) Treści kształcenia: Podstawowe informacje o BHP, ćwiczenia wstępne z podstawowych operacji chemicznych (krystalizacja, destylacja, destylacja pod zmniejszonym ciśnieniem, ekstrakcja, chromatografia pokazy i ćwiczenia). Preparaty proste, jednoetapowe, w celu nabycia indywidualnych, podstawowych umiejętności na pracowni z chemii organicznej (budowa aparatury, użycie mieszadła magnetycznego lub mechanicznego itp.). Preparaty wieloetapowe (literaturowe) wykorzystujące współczesne metody syntezy organicznej (reakcje Dielsa Aldera, Wittiga i Hornera Emmonsa, Hecka, Suzuki, metatatezy, reakcja Sharplessa). Próba samodzielnego (oczywiście pod kontrolą asystenta) zaplanowania syntezy dla związku wykazującego interesujące właściwości fizykochemiczne lub biologiczne. Efekty kształcenia umiejętności i kompetencje: Student powinien posiadać podstawowa wiedzę o planowaniu, syntezie i izolacji związków organicznych. SEMESTR 2 Analiza (135h) (75h W+ 60h Ć) Treści kształcenia: Lokalna i globalna aproksymacja funkcji. Przybliżenie przez wielomiany Taylora. Liczby i wielomiany Bernoulliego. Procedura Newtona. Równomierna zbieżność ciągów funkcji, kryteria Cauchy i Abela. Funkcje jednej zmiennej zespolonej. Odwzorowania konforemne, funkcje wieloznaczne i powierzchnia Riemanna, punkty rozgałęzienia i cięcia. Różniczkowalność w sensie zespolonym, analityczność. Pochodna funkcji zespolonej i wzory Cauchy-Riemanna, funkcje harmoniczne. Całki konturowe na płaszczyźnie zespolonej Twierdzenia Cauchy i Morery, wzory Cauchy, lemat Jordana. Szeregi Taylora i Laurenta. Przedłużenie analityczne. Klasyfikacja punktów osobliwych. Twierdzenie o residuach i jego zastosowania. Zastosowanie do obliczania całek z funkcji jednoznacznych i wieloznacznych, residuum logarytmiczne i w nieskończoności, dowód podstawowego twierdzenia algebry. Wartość główna całki, związki dyspersyjne i transformata Hilberta. Funkcje Eulera gamma i beta, wzór Stirlinga. Szeregi Fouriera. Szeregi funkcyjne i ich zbieżność: punktowa, jednostajna i w sensie wartości średniej. Szeregi Fouriera. Lemat Riemanna, warunki i twierdzenie Dirichleta, twierdzenie Parsevala. Transformata Fouriera, prosta i odwrotna transformata Fouriera, twierdzenie Parsevala. Właściwości transformaty. Zastosowanie do liniowych równań różniczkowych cząstkowych (np. równania dyfuzji). Elementy teorii dystrybucji. Dystrybucje jako granice ciągów funkcji, delta Diraca i podstawowe właściwości. Laplasjan potencjału kulombowskiego i model ładunku punktowego. Elementy teorii przestrzeni Gilberta. loczyn skalarny, odległość i norma. Operatory normalne, hermitowskie, unitarne i rzutowe. Rozkład jedynki. Twierdzenie spektralne i funkcja od operatora. Zagadnienie Sturma -- Liouville'a Zagadnienie własne dla równań różniczkowych. Wielomiany ortogonalne. Wielomiany ortogonalne jako wynik ortogonalizacji Grama-Schmidta w przestrzeni Hilberta. Definicja wielomianów ortogonalnych poprzez funkcję tworzącą i ich powiązanie z wielomianami otrzymanymi w wyniku ortogonalizacji Grama-Schmidta. Wzory Rodriguesa. Wstęp do fizyki II (15h)(15h W) Treści kształcenia: Elektryczność i magnetyzm Ładunek elektryczny, pole elektryczne. Prawo Coulomba. Prawo Gaussa. Potencjał elektryczny. Dielektryk w polu elektrycznym. Kondensatory. Prąd elektryczny, prawa przepływu prądu. Obwody elektryczne. Pola magnetyczne. Prawo Ampera. Indukcja i indukcyjność. Drgania elektromagnetyczne. Prąd zmienny. Równania Maxwella. Fale elektromagnetyczne. Optyka fala świetlna na granicy 19

20 dwóch ośrodków. Polaryzacja światła. Dyfrakcja i interferencja światła. Prędkość światła. Współczynnik załamania światła jego dyspersja. Klasyczne i nieklasyczne źródła światła. Detektory optyczne. Efekty kształcenia umiejętności i kompetencje: rozumienie podstawowych zjawisk fizycznych w przyrodzie z zakresu elektrodynamiki i optyki; formułowanie problemu oraz wykorzystywanie metodyki badań fizycznych (eksperymentalnych i teoretycznych) do jego rozwiązywania. Mechanika i szczególna teoria względności (105h) (60h + pokazy, 45h Ć) Treści kształcenia: Mechanika Newtonowska, aksjomaty Newtona, prawa zachowania, układ wielu punktów materialnych, zagadnienie dwóch ciał, dynamika układów o zmiennej masie. Opis ruchu w układach nieinercjalnych. Więzy i siły reakcji, równania Lagrange a I rodzaju, zasada d Alemberta. Równania Lagrange a II rodzaju, zmienne cykliczne i stałe ruchu. Funkcja Hamiltona i równania Hamiltona. Zasada Hamiltona i Jacobiego. Kinematyka i dynamika ciała sztywnego, równania Eulera. Małe drgania, drgania wymuszone. Dynamika nieliniowa, pojęcie chaosu, metody opisu systemów chaotycznych, kroki Poicarégo, analiza spektralna. Charakterystyki i wymiary chaotycznych atraktorów. Przykłady zastosowań dynamiki nieliniowej. Podstawy hydrodynamiki. Podstawy teorii elastyczności, tensor odkształceń i naprężeń, stałe elastyczne w mediach anizotropowych, fale dźwiękowe. Wprowadzenie do szczególnej teorii względności, transformacja Galileusza i Lorentza. Kinematyka relatywistyczna, równania dynamiki w przypadku relatywistycznym. Podstawy dynamiki molekularnej. Efekty kształcenia - umiejętności i kompetencje: Zaznajomienie studentów z podstawowymi pojęciami mechaniki klasycznej i możliwości samodzielnego rozwiązywania prostych problemów. Po wysłuchaniu wykładu student będzie zaznajomiony z najważniejszymi pojęciami mechaniki klasycznej, będzie zdolny do dalszego samodzielnego kształcenia w tej dziedzinie oraz będzie posiadał umiejętność samodzielnego rozwiązywania podstawowych problemów mechaniki klasycznej Chemia Fizyczna (105 h), (W 30 h, Ć 15 h, Lab 60 h) Chemia Fizyczna: Wykład Treści kształcenia: Funkcje stanu. Zasady termodynamiki. Termochemia - entalpia, molowa pojemność cieplna; prawo Hessa. Energia swobodna, entalpia swobodna. Zależność entalpii swobodnej od temperatury i ciśnienia. Potencjał chemiczny czystej substancji i substancji w mieszaninie. Potencjał chemiczny w układzie rzeczywistym - lotność, aktywność, współczynniki aktywności. Mieszaniny cieczy - opis termodynamiczny. Termodynamika przemian fazowych. Warunki równowagi w układach wielofazowych i wieloskładnikowych. Diagramy fazowe w układach jedno i wieloskładnikowych. Entalpia swobodna reakcji. Równowaga chemiczna. Wpływ ciśnienia i temperatury na stan równowagi. Zjawiska transportu w roztworach i w gazach (dyfuzja, migracja, przepływ lepki). Podstawy elektrochemii roztworów elektrolitów, przewodnictwo, potencjał membranowy. Przyczyny powstawania różnicy potencjałów na granicy faz. Półogniwa, rodzaje i zachodzące w nich reakcje, równanie Nernsta. Ogniwa galwaniczne w stanie równowagi i w czasie pracy. Elektroliza. Termodynamika fazy powierzchniowej. Zjawiska na granicy różnych faz, energia powierzchniowa, napięcie powierzchniowe, zjawiska kapilarne, adsorpcja, dyfuzja powierzchniowa, aktywność katalityczna powierzchni. Mechanizmy tworzenia i rozwijania powierzchni. Koloidy i surfaktanty właściwości, zastosowania, procesy agregacji. Podstawy kinetyki chemicznej: szybkość i rząd reakcji. Równania kinetyczne i wykresy charakterystyczne dla reakcji o różnej rzędowości. Wyznaczanie stałych szybkości i rzędu reakcji. Reakcje złożone. Przybliżenie stanu stacjonarnego. Teoria zderzeń aktywnych. Teoria stanu przejściowego. Podstawy kinetyki elektrochemicznej. Efekty kształcenia umiejętności i kompetencje: Student powinien wykazać się umiejętnością opisu matematycznego procesów fizykochemicznych za pomocą praw termodynamiki, termochemii i elektrochemii oraz interpretacji fenomenologicznej i molekularnej tych procesów. Chemia Fizyczna: Ćwiczenia rachunkowe: Treści kształcenia: Wyznaczanie wartości funkcji termodynamicznych oraz ich zmian związanych ze zmianami parametrów fizycznych układu lub zachodzenia w nim przemian fizycznych lub reakcji chemicznych. Równowagi chemiczne w układach wieloskładnikowych. Analiza rachunkowa procesów zachodzących na granicach faz. Obliczanie kinetycznych parametrów reakcji chemicznych. Obliczanie wielkości opisujących właściwości 20

21 elektrochemiczne roztworów elektrolitów i układów elektrodowych (aktywność jonów, przewodnictwo, potencjał elektrod w stanie równowagi, siła elektromotoryczna ogniw, wykorzystanie danych z pomiarów elektrochemicznych do określenia parametrów układu w stanie równowagi). Analiza rachunkowa kinetyki procesów elektrodowych przebiegających w różnych warunkach fizykochemicznych. Efekty kształcenia umiejętności i kompetencje: Nabycie umiejętności rozwiązywania obliczeniowych problemów fizykochemicznych oraz rachunkowego opracowywania wyników pomiarów Chemia Fizyczna: Laboratorium spis ćwiczeń do wyboru: Równowaga ciecz-para w układzie jednoskładnikowym Równowaga ciecz-para w układzie dwuskładnikowym Badanie funkcji termodynamicznych dwuskładnikowych układów nieelektrolitów w oparciu o metodę udziałów grupowych UNIFAC Badanie równowagi między fazą stałą i ciekłą Wyznaczanie objętości molowej roztworu Pomiary kalorymetryczne efektów cieplnych w roztworach Wyznaczanie ciepła i temperatury przemiany fazowej przy pomocy różnicowego kalorymetru dynamicznego (DSC) Diagramy fazowe w układach trójskładnikowych - krzywa binoidalna Badanie właściwości elektrochemicznych ogniw za pomocą współczesnego miernika mokroprocesorowego Wyznaczanie termodynamicznych parametrów reakcji chemicznych Wyznaczanie współczynników aktywności elektrolitów Pomiar przewodnictwa roztworów elektrolitów Wyznaczanie charakterystyki prądowo-napięciowej ogniw na przykładzie ogniwa Daniella i Leclanchego Wyznaczanie parametrów kinetycznych reakcji elektrodowej za pomocą metod elektrochemicznych Potencjał membranowy- badanie właściwości jonowymiennych membrany nafionowej Wyznaczanie parametrów równania Arrheniusa oraz entalpii i entropii tworzenia kompleksu aktywnego z pomiarów stałej szybkości reakcji. Wpływ stężenia katalizatora na stałą szybkości reakcji Wpływ siły jonowej roztworu na stałą szybkości reakcji Badanie kinetyki termicznego rozkładu soli Komputerowa symulacja kinetyki reakcji chemicznych Wyznaczanie momentów dipolowych Wyznaczanie izotermy adsorpcji Gibbsa dla granicy faz ciecz-powietrze przez pomiar napięcia powierzchniowego Badanie adsorpcji i właściwości katalitycznych anionu fosforanomolibdenowego metodami elektrochemicznymi. Pomiar lepkości cieczy Pomiary nefelometryczne koloidów Wyznaczanie stężenia krytycznego micelizacji Wyznaczanie izotermy adsorpcji błękitu metylenowego na węglu aktywnym metodą spektrofotometryczną Efekty kształcenia umiejętności i kompetencje: Nabycie umiejętności posługiwania się aparaturą do badań zjawisk fizykochemicznych, planowania i wykonywania eksperymentu oraz opracowywania i przedstawiania wyników doświadczalnych Pracownia analizy danych (15h) (6h W+ 9h Ć) Treści kształcenia: Graficzna analiza i prezentacja wyników pomiarów: histogramy, wykresy, w tym z wykorzystaniem skal funkcyjnych (liniowo-logarytmicznej, logarytmiczno-logarytmicznej itp.). Pomiar, dokumentacja przebiegu pomiarów, rodzaje błędów pomiarowych, niepewność pomiaru. Przykłady rozkładów prawdopodobieństwa, rozkład normalny (Gaussa) jako model rozkładu prawdopodobieństwa błędów przypadkowych. Bezpośredni pomiar pojedynczej wielkości fizycznej: seria równoważnych pomiarów, wyznaczanie wyniku końcowego i jego niepewności, uwzględnienie dokładności przyrządów, poprawki związane ze znanymi źródłami błędów systematycznych. Zagadnienia estymacji parametrów: metoda najmniejszych kwadratów, pomiary o różnej dokładności (średnia ważona i jej niepewność), dopasowanie 21

PROGRAM STUDIÓW I STOPNIA ENERGETYKA I CHEMIA JĄDROWA

PROGRAM STUDIÓW I STOPNIA ENERGETYKA I CHEMIA JĄDROWA PROGRAM STUDIÓW I STOPNIA na kierunku ENERGETYKA I CHEMIA JĄDROWA prowadzonych na Wydziałach Chemii i Fizyki Uniwersytetu Warszawskiego Wakacyjne zajęcia przygotowawcze (wrzesień) Matematyka Fizyka 25

Bardziej szczegółowo

PROGRAM STUDIÓW I STOPNIA ENERGETYKA I CHEMIA JĄDROWA

PROGRAM STUDIÓW I STOPNIA ENERGETYKA I CHEMIA JĄDROWA PROGRAM STUDIÓW I STOPNIA na kierunku ENERGETYKA I CHEMIA JĄDROWA prowadzonych na Wydziałach Chemii i Fizyki Uniwersytetu Warszawskiego W trakcie studiów I stopnia student kierunku Energetyka i Chemia

Bardziej szczegółowo

PROGRAM STUDIÓW I STOPNIA na kierunku ENERGETYKA I CHEMIA JĄDROWA. prowadzonych na Wydziałach Chemii i Fizyki Uniwersytetu Warszawskiego

PROGRAM STUDIÓW I STOPNIA na kierunku ENERGETYKA I CHEMIA JĄDROWA. prowadzonych na Wydziałach Chemii i Fizyki Uniwersytetu Warszawskiego PROGRAM STUDIÓW I STOPNIA na kierunku ENERGETYKA I MIA JĄDROWA prowadzonych na Wydziałach Chemii i Fizyki Uniwersytetu Warszawskiego W trakcie studiów I stopnia student kierunku Energetyka i Chemia Jądrowa

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

STUDIA I STOPNIA NA KIERUNKU FIZYKA UW

STUDIA I STOPNIA NA KIERUNKU FIZYKA UW STUDIA I STOPNIA NA KIERUNKU FIZYKA UW I. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat akademicki). II. SYLWETKA

Bardziej szczegółowo

Ad. pkt 5. Uchwała w sprawie zatwierdzenia zmodyfikowanego programu studiów I i II stopnia o kierunku "Energetyka i Chemia Jądrowa".

Ad. pkt 5. Uchwała w sprawie zatwierdzenia zmodyfikowanego programu studiów I i II stopnia o kierunku Energetyka i Chemia Jądrowa. Ad. pkt 5. Uchwała w sprawie zatwierdzenia zmodyfikowanego programu studiów I i II stopnia o kierunku "Energetyka i Chemia Jądrowa". PROGRAM STUDIÓW I STOPNIA na kierunku ENERGETYKA I CHEMIA JĄDROWA prowadzonych

Bardziej szczegółowo

Karta modułu/przedmiotu

Karta modułu/przedmiotu Karta modułu/przedmiotu Informacje ogólne o module/przedmiocie 1. Kierunek studiów: Analityka Medyczna 2. Poziom kształcenia: jednolite studia magisterskie 3. Forma studiów: stacjonarne 4. Rok: II 5. Semestr:

Bardziej szczegółowo

STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW

STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW I.CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku astronomia UW trwają trzy lata i kończą się nadaniem tytułu licencjata. II.SYLWETKA ABSOLWENTA

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU Fizyka. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki

Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Załącznik nr 1 Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów chemia należy do obszaru

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 06.1-WM-MiBM-P-09_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa maszyn / Automatyzacja i organizacja procesów

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia: Informacje ogólne Fizyka 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych, Zakład

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE dla studentów K MISMaP ubiegających się o DYPLOM MAGISTERSKI na Wydziale Fizyki UW zrealizowany w ramach K MISMaP

WYMAGANIA PROGRAMOWE dla studentów K MISMaP ubiegających się o DYPLOM MAGISTERSKI na Wydziale Fizyki UW zrealizowany w ramach K MISMaP 1 Zasady przyjmowania absolwentów studiów licencjackich na studia 2 UCHWAŁA NR 2/2003 RADY WYDZIAŁU FIZYKI UNIWERSYTETU WARSZAWSKIEGO z dnia 17 listopada 2003 r. w sprawie minimów programowych dla studentów

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 13.2-WI-INFP-F Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Sieciowe systemy informatyczne

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

KARTA KURSU. Student posiada podstawową wiedzę z zakresu fizyki, matematyki i chemii nieorganicznej.

KARTA KURSU. Student posiada podstawową wiedzę z zakresu fizyki, matematyki i chemii nieorganicznej. Kierunek, stopień, tok studiów, rok akademicki, semestr Biologia, licencjat, studia stacjonarne, 2017/2018, II KARTA KURSU Nazwa Chemia organiczna I Nazwa w j. ang. Koordynator dr Waldemar Tejchman Zespół

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna Rok akademicki: 2018/2019 Kod: BIT-1-101-s Punkty ECTS: 6 Wydział: Geologii, Geofizyki i Ochrony Środowiska Kierunek: Informatyka Stosowana Specjalność: Poziom studiów:

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 2 2 Kod modułu 04-A-MAT2-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW

STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW Ι.CHARAKTERYSTYKA STUDIÓW Studia indywidualne pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :

Bardziej szczegółowo

INŻYNIERIA NANOSTRUKTUR. 3-letnie studia I stopnia (licencjackie)

INŻYNIERIA NANOSTRUKTUR. 3-letnie studia I stopnia (licencjackie) INŻYNIERIA NANOSTRUKTUR 3-letnie studia I stopnia (licencjackie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Absolwent studiów I stopnia kierunku Inżynieria Nanostruktur: posiada znajomość matematyki wyższej w zakresie

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Matematyka 3 2 Kod modułu kształcenia 04-ASTR1-MatIII60-2Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów Astronomia

Bardziej szczegółowo

STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU ASTRONOMIA UW

STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU ASTRONOMIA UW STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU ASTRONOMIA UW I.CHARAKTERYSTYKA STUDIÓW Studia indywidualne pierwszego stopnia na kierunku astronomia UW trwają trzy lata i kończą się nadaniem tytułu licencjata

Bardziej szczegółowo

STUDIA I STOPNIA NA KIERUNKU FIZYKA UW

STUDIA I STOPNIA NA KIERUNKU FIZYKA UW STUDIA I STOPNIA NA KIERUNKU FIZYKA UW 1. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat akademicki). 2. SYLWETKA

Bardziej szczegółowo

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19 Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........

Bardziej szczegółowo

STUDIA I STOPNIA NA MAKROKIERUNKU INŻYNIERIA NANOSTRUKTUR UW

STUDIA I STOPNIA NA MAKROKIERUNKU INŻYNIERIA NANOSTRUKTUR UW 1. CELE KSZTAŁCENIA STUDIA I STOPNIA NA MAKROKIERUNKU INŻYNIERIA NANOSTRUKTUR UW Absolwent studiów I stopnia makrokierunku Inżynieria Nanostruktur: posiada znajomość matematyki wyższej w zakresie niezbędnym

Bardziej szczegółowo

Opis przedmiotu: Matematyka I

Opis przedmiotu: Matematyka I 24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Matematyka 2 Rok akademicki: 2012/2013 Kod: JFM-1-201-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia Forma

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :

Bardziej szczegółowo

Szczegółowy program właściwy dla standardowej ścieżki kształcenia na kierunku astronomia. Semestr I. 60 120 14 Egzamin. 45 75 9 Egzamin 75 2.

Szczegółowy program właściwy dla standardowej ścieżki kształcenia na kierunku astronomia. Semestr I. 60 120 14 Egzamin. 45 75 9 Egzamin 75 2. B3. Program studiów liczba punktów konieczna dla uzyskania kwalifikacji (tytułu zawodowego) określonej dla rozpatrywanego programu kształcenia - 180 łączna liczba punktów, którą student musi uzyskać na

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW

STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW 1. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku astronomia UW trwają trzy lata i kończą się nadaniem tytułu licencjata. 2. SYLWETKA ABSOLWENTA

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Studia w systemie 3+2 Propozycja zespołu Komisji ds. Studenckich i Programów Studiów

Studia w systemie 3+2 Propozycja zespołu Komisji ds. Studenckich i Programów Studiów Studia w systemie 3+2 Propozycja zespołu Komisji ds. Studenckich i Programów Studiów Polecenie Rektora nakłada na Wydział obowiązek przygotowania programu studiów w systemie 3-letnich studiów licencjackich

Bardziej szczegółowo

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 4

KARTA KURSU. Kod Punktacja ECTS* 4 KARTA KURSU Nazwa Nazwa w j. ang. Chemia organiczna Organic chemistry Kod Punktacja ECTS* 4 Koordynator dr Waldemar Tejchman Zespół dydaktyczny dr Waldemar Tejchman Opis kursu (cele kształcenia) Celem

Bardziej szczegółowo

Zasady studiów magisterskich na kierunku astronomia

Zasady studiów magisterskich na kierunku astronomia Zasady studiów magisterskich na kierunku astronomia Sylwetka absolwenta Absolwent jednolitych studiów magisterskich na kierunku astronomia powinien: posiadać rozszerzoną wiedzę w dziedzinie astronomii,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak WYDZIAŁ Podstawowych Problemów Techniki KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy chemii ogólnej Nazwa w języku angielskim General chemistry Język wykładowy polski Kierunek studiów Optyka Specjalność

Bardziej szczegółowo

KARTA KURSU. Chemia fizyczna I. Physical Chemistry I

KARTA KURSU. Chemia fizyczna I. Physical Chemistry I Biologia, I stopień, studia stacjonarne, 2017/2018, II semestr KARTA KURSU Nazwa Nazwa w j. ang. Chemia fizyczna I Physical Chemistry I Koordynator Prof. dr hab. Maria Filek Zespół dydaktyczny Prof. dr

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I WYDZIAŁ MECHANICZNY (w j. angielskim) Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim FIZYKA OGÓLNA Nazwa w języku angielskim GENERAL PHYSICS Kierunek studiów (jeśli dotyczy) MiBM Specjalność

Bardziej szczegółowo

KIERUNEK CHEMIA - STUDIA STACJONARNE Specjalizacja nauczycielska - dwie specjalności "Chemia z fizyką"

KIERUNEK CHEMIA - STUDIA STACJONARNE Specjalizacja nauczycielska - dwie specjalności Chemia z fizyką KIERUNEK CHEMIA - STUDIA STACJONARNE Specjalizacja nauczycielska - dwie specjalności "Chemia z fizyką" 009/010 - I i II *) rok; Siatka godzin zgodna z Rozporządzeniem Ministra Nauki i Szkolnictwa WyŜszego

Bardziej szczegółowo

STUDIA I STOPNIA NA MAKROKIERUNKU INŻYNIERIA NANOSTRUKTUR UW

STUDIA I STOPNIA NA MAKROKIERUNKU INŻYNIERIA NANOSTRUKTUR UW 1. CELE KSZTAŁCENIA STUDIA I STOPNIA NA MAKROKIERUNKU INŻYNIERIA NANOSTRUKTUR UW Absolwent studiów I stopnia makrokierunku Inżynieria Nanostruktur: posiada znajomość matematyki wyższej w zakresie niezbędnym

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia Uniwersytet Śląski w Katowicach str.. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 207/208Z 3. Poziom kształcenia studia pierwszego stopnia (inżynierskie) 4. Profil kształcenia ogólnoakademicki 5. Forma

Bardziej szczegółowo

Zasady studiów magisterskich na kierunku fizyka

Zasady studiów magisterskich na kierunku fizyka Zasady studiów magisterskich na kierunku fizyka Sylwetka absolwenta Absolwent studiów magisterskich na kierunku fizyka powinien: posiadać rozszerzoną w stosunku do poziomu licencjata - wiedzę w dziedzinie

Bardziej szczegółowo

Program studiów studia I stopnia, kierunek: Chemia medyczna. studia inżynierskie o profilu ogólnoakademickim

Program studiów studia I stopnia, kierunek: Chemia medyczna. studia inżynierskie o profilu ogólnoakademickim Program studiów studia I stopnia, kierunek: Chemia medyczna studia inżynierskie o profilu ogólnoakademickim Legenda: W- wykład; P- proseminarium; Ć ćwiczenia; L laboratorium * : egz (egzamin pisemny),

Bardziej szczegółowo

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

KIERUNEK CHEMIA - STUDIA STACJONARNE Specjalność nauczycielska w zakresie chemii i fizyki

KIERUNEK CHEMIA - STUDIA STACJONARNE Specjalność nauczycielska w zakresie chemii i fizyki KIERUNEK CHEMIA - STUDIA STACJONARNE Specjalność nauczycielska w zakresie chemii i fizyki 010/011 - I, II i III rok; Siatka godzin zgodna z Rozporządzeniem Ministra Nauki i Szkolnictwa WyŜszego z dnia

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Znajomość matematyki i fizyki na poziomie podstawowym szkoły ponadgimnazjalnej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Znajomość matematyki i fizyki na poziomie podstawowym szkoły ponadgimnazjalnej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Fizyka 2. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: Rok I/Semestr I 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN:

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA M1 Nazwa w języku angielskim ALGEBRA M1 Kierunek studiów (jeśli dotyczy): Matematyka Stopień studiów

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16

Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16 Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16 Semestr 1M Przedmioty minimum programowego na Wydziale Chemii UW L.p. Przedmiot Suma godzin Wykłady Ćwiczenia Prosem.

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Matematyka I Rok akademicki: 2013/2014 Kod: EIB-1-110-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:

Bardziej szczegółowo

KARTA KURSU. Physics. Kod Punktacja ECTS* 4

KARTA KURSU. Physics. Kod Punktacja ECTS* 4 KARTA KURSU Nazwa Nazwa w j. ang. Fizyka Physics Kod Punktacja ECTS* 4 Koordynator Dr Dorota Wierzuchowska Zespół dydaktyczny Dr hab. prof. UP Czesław Kajtoch Opis kursu (cele kształcenia) Przypomnienie

Bardziej szczegółowo

Objaśnienia oznaczeń w symbolach K przed podkreślnikiem kierunkowe efekty kształcenia W kategoria wiedzy

Objaśnienia oznaczeń w symbolach K przed podkreślnikiem kierunkowe efekty kształcenia W kategoria wiedzy Efekty kształcenia dla kierunku studiów FIZYKA - studia II stopnia, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia w obszarze nauk ścisłych Kierunek studiów fizyka należy do obszaru

Bardziej szczegółowo

Karta modułu/przedmiotu

Karta modułu/przedmiotu Karta modułu/przedmiotu Informacje ogólne o module/przedmiocie. Poziom kształcenia: jednolite studia magisterskie 1. Kierunek studiów: analityka medyczna 3. Forma studiów: stacjonarne 4. Rok: II 5. Semestr:

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus)

Opis poszczególnych przedmiotów (Sylabus) Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: Ma 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Eksploatacja Systemów Mechatronicznych

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK205 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 06.4-WI-EKP-Fiz-S16 Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska Energetyka komunalna Profil

Bardziej szczegółowo

SYLABUS PRZEDMIOTU - Matematyka

SYLABUS PRZEDMIOTU - Matematyka SYLABUS PRZEDMIOTU - Matematyka I. Informacje ogólne 1. Nazwa przedmiotu: Matematyka 2. Kod przedmiotu: 02-MATB, 02-MATL, 02-MATLM 3. Rodzaj modułu kształcenia obowiązkowy 4. Kierunek studiów: Chemia (specjalności:

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Program studiów studia I stopnia, kierunek: CHEMIA MEDYCZNA studia inżynierskie o profilu ogólnoakademickim

Program studiów studia I stopnia, kierunek: CHEMIA MEDYCZNA studia inżynierskie o profilu ogólnoakademickim Program studiów studia I stopnia, kierunek: CHEMIA MEDYCZNA studia inżynierskie o profilu ogólnoakademickim Legenda: W- wykład; P- proseminarium; Ć ćwiczenia; L laboratorium * : egz (egzamin pisemny),

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów CHEMIA studia drugiego stopnia profil ogólnoakademicki

Efekty kształcenia dla kierunku studiów CHEMIA studia drugiego stopnia profil ogólnoakademicki Załącznik nr 2 Efekty kształcenia dla kierunku studiów CHEMIA studia drugiego stopnia profil ogólnoakademicki Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów chemia należy do obszaru kształcenia

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania

Bardziej szczegółowo

PROGRAM STUDIÓW. WYDZIAŁ: Podstawowych Problemów Techniki KIERUNEK: Matematyka stosowana

PROGRAM STUDIÓW. WYDZIAŁ: Podstawowych Problemów Techniki KIERUNEK: Matematyka stosowana WYDZIAŁ: Podstawowych Problemów Techniki KIERUNEK: Matematyka stosowana PROGRAM STUDIÓW należy do obszaru w zakresie nauk ścisłych, dziedzina nauk matematycznych, dyscyplina matematyka, z kompetencjami

Bardziej szczegółowo

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna

Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna 1. CHARAKTERYSTYKA STUDIÓW Specjalność Fizyka matematyczna ma charakter interdyscyplinarny. Obejmuje wiedzę

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Wykłady z fizyki i ćwiczenia rachunkowe dla studentów chemii

Wykłady z fizyki i ćwiczenia rachunkowe dla studentów chemii Wykłady z fizyki i ćwiczenia rachunkowe dla studentów chemii W: prof. dr hab.tadeusz Paszkiewicz Ćw.: Dr Andrzej Bąk Katedra Fizyki Wydział Matematyki i Fizyki Stosowanej Politechniki Rzeszowskiej http://fizmoodle.prz.edu.pl

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA (EiT I stopień) Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Semestr I. Semestr zimowy. Wykład Ćwiczenia Laboratorium Projekt Inne

Semestr I. Semestr zimowy. Wykład Ćwiczenia Laboratorium Projekt Inne KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Fizyka Nazwa w języku angielskim Physics Obowiązuje od roku akademickiego 2016/2017 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: EIT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: EIT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Fizyka 1 Rok akademicki: 2013/2014 Kod: EIT-1-205-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Informatyka Specjalność: - Poziom

Bardziej szczegółowo

Dokumentacja związana z programem studiów na kierunku FIZYKA prowadzonym na Wydziale Matematyczno-Przyrodniczym. Szkoła Nauk Ścisłych

Dokumentacja związana z programem studiów na kierunku FIZYKA prowadzonym na Wydziale Matematyczno-Przyrodniczym. Szkoła Nauk Ścisłych Załącznik nr 2.1 do Uchwały Nr 2/2017 Senatu UKSW z dnia 19 stycznia 2017 r Dokumentacja związana z programem studiów na kierunku FIZYKA prowadzonym na Wydziale Matematyczno-Przyrodniczym. Szkoła Nauk

Bardziej szczegółowo