Czym jest tranzystor? Budowa tranzystora

Wielkość: px
Rozpocząć pokaz od strony:

Download "Czym jest tranzystor? Budowa tranzystora"

Transkrypt

1 Czym jest tranzystor? Rezystor ogranicza prąd, kondensator gromadzi ładunek, a dioda LED świeci. To jest oczywiste, czym jednak zajmuje się tranzystor? Jest on bardzo popularnym i użytecznym elementem, jednak zwięzłe opisanie zadania, które wykonuje nie jest wcale takie łatwe. Jedno jest pewne. Tranzystory całkowicie zrewolucjonizowały dzisiejszą elektronikę. Znajdują się dosłownie wszędzie, a układy scalone składają się z milionów małych tranzystorów! Można spotkać się z tłumaczeniami, że tranzystor steruje przepływem prądu lub wzmacnia go. Oczywiście stwierdzenia te są poprawne. Jednak, gdy sam zaczynałem przygodę z elektroniką, to najlepiej przemówiło do mnie porównanie, że tranzystor to taki elektroniczny przełącznik. Dzięki niemu możemy w bezpieczny sposób (małym prądem) włączyć przepływ dużego prądu. Tak samo działa przełącznik. Gdy chcesz włączyć światło naciskasz przycisk (wykonujesz małą, bezpieczną pracę), a w przewodach zaczyna płynąć niebezpieczne 230V, które zasila żarówkę. Budowa tranzystora Tranzystory to elementy półprzewodnikowe mające, na ogół, trzy wyprowadzenia. Obudowy są różne, zależnie od parametrów i przeznaczenia tranzystora. Te najpopularniejsze, które znajdziesz w zestawie to obudowy tzw. TO92. Jak widać są one bardzo małe: Tranzystory BC546B oraz BC556B w obudowie przewlekanej. Symbol tranzystora np.: BC546B, to zupełnie coś innego od symbolu obudowy Jeden tranzystor może występować w wielu różnych obudowach, a w każdej obudowie można kupić wiele bardzo różnych układów. Pamiętaj, aby podczas zakupów sprawdzać oba parametry. Kolejna uwaga: ponieważ tranzystory cechują się wieloma parametrami, nie wypisuje się ich na obudowach nie wystarczyłoby na to miejsca. Producenci stosują oznaczenia w postaci liter i cyfr (jak, na przykład, wspomniane BC546B i BC556B), a po szczegóły odsyłają do katalogów. Wiedza ta nie jest niezbędna do wykorzystywania ich w praktyce. Poniższe opisy potraktuj jako ciekawostki, do których będzie można powrócić jeszcze raz, gdy poznasz tranzystory od strony praktycznej. Na wcześniejszym zdjęciu znajdują się tranzystory bipolarne. Oznacza to, że składają się z trzech warstw półprzewodnika, a do każdej z nich dołączona jest nóżka. Warstwy te ułożone są jedna na drugiej, tworząc układ dwóch tzw. złącz. Złącze to miejsce styku dwóch typów półprzewodnika: n oraz p. W tranzystorach bipolarnych, wszystkie trzy wyprowadzenia mają swoje nazwy: o emiter (oznaczany na schematach E) o baza (oznaczana B) o kolektor (oznaczany jako C lub K) Złącza wytwarzają się na styku bazy i emitera oraz bazy i kolektora, zatem są to złącza baza-emiter i bazakolektor. Tranzystor w przekroju widoczny jest poniżej. Emiter służy do tego, aby emitować (stąd nazwa) nośniki ładunku elektrycznego w głąb struktury tranzystora. Tutaj są to elektrony (które mają ładunek ujemny). Jeżeli do bazy przyłożymy nieduże napięcie względem emitera, to elektrony z niego zaczną się przemieszczać w stronę bazy. Jej obszar jest jednak bardzo cienki, więc duża część elektronów przelatuje do obszaru kolektora. 1

2 Przekrój tranzystora. Gdyby ten mechanizm był idealny, baza nie wyłapywałaby żadnych elektronów i nie płynąłby przez nią prąd. Niestety, część elektronów zostaje uwięziona w obszarze bazy, skąd muszą zostać zabrane. Powoduje to, że przez bazę płynie niewielki (niepożądany) prąd. Użyteczny jest natomiast prąd kolektora, do którego dociera zdecydowana większość elektronów z emitera. Ten skomplikowany proces został przedstawiony na poniższej animacji: Na tej podstawie można stwierdzić, że tranzystor jest elementem sterowanym: zmieniając prąd bazy, czyli ilość odprowadzanych elektronów, regulujemy prąd kolektora. Później przekonasz się, jakie to ma konsekwencje. Stosunek tych dwóch prądów to wzmocnienie prądowe i oznacza się je grecką literą β (beta). Jest to wielkość nieposiadająca jednostki. β = I C / I B β = prąd kolektora / prąd bazy Już niedługo, podczas eksperymentów praktycznych, zajmiemy się obliczeniem wzmocnienia prądowego. Wtedy wszystko powinno być jeszcze łatwiejsze. W katalogach stosuje się również oznaczenie h FE. Wielkość tego parametru może wynosić od kilkunastu do kilku tysięcy, zależnie od typu tranzystora. Podział tranzystorów bipolarnych Istnieją dwa typy tranzystorów bipolarnych: npn i pnp. Jest to informacja o tym, jakich typów półprzewodnika użyto do budowy poszczególnych obszarów. Powoduje to, że działają one odwrotnie w tranzystorach npn (jak ten, 2

3 omówiony wcześniej) z emitera wylatują elektrony, a do bazy przykładamy napięcie dodatnie względem niego. Natomiast w pnp emiter produkuje dziury, zaś bazie należy nadać niewielki potencjał ujemny. Ponadto, różnią się one symbolem na schematach jednym, aczkolwiek istotnym szczegółem. W tranzystorach NPN strzałka na emiterze skierowana jest na zewnątrz układu, natomiast w przypadku PNP kieruje ona do wewnątrz symbolu. Na początku zajmijmy się tranzystorem typu NPN. Proste wykorzystanie tranzystora Za nami trochę niezbędnej pogadanki o teorii. Teraz nadszedł czas, aby przetestować, jak to wszystko działa w praktyce. Tranzystory to naprawdę szeroki temat, tutaj zostanie omówione jedynie ich podstawowe zachowanie. Pierwszy układ wykorzysta tranzystor w roli bardzo prostego klucza sterującego świeceniem diody. Do złożenia układu potrzebne są następujące elementy: o tranzystor BC546B o rezystory 1kΩ i 10kΩ o dioda świecąca o bateria 9V z przewodami o płytka stykowa o miernika uniwersalny Wykorzystany tutaj tranzystor jest typu NPN. Układ jego wyprowadzeń jest następujący (możesz wspomagać się również przekrojem z początku artykułu): Schemat połączeń przedstawiony jest poniżej. Miejsca oznaczone jako amperomierze i woltomierze możesz na początku pominąć. Dopiero w dalszym kroku będziemy badać odpowiednie właściwości tranzystora. W praktyce układ wygląda tak, jak zdjęciu. Jak widać efektem tego połączenia jest świecenie diody. Niby nic nadzwyczajnego, prawda? Jednak sprawdźmy, co dokładnie dzieje się w układzie. Po podłączeniu baterii, dioda zaczyna świecić. To dlatego, że przez bazę płynie prąd (ograniczany rezystorem 10kΩ). Umożliwia to przepływ prądu kolektora, w szereg z którym włączona jest dioda. Rezystor (1kΩ) ogranicza prąd płynący przez tę diodę (aby nie uległa uszkodzeniu patrz zajęcia E03 podstaw elektroniki). Jeżeli układ już działa, to można wykonać na nim kilka pomiarów. Na początku napięcia, które zaznaczone zostały na schemacie: 3

4 Widok zmontowanego układu. Podłączając woltomierz między emiter a kolektor zmierzysz napięcie kolektoremiter. Podłączając woltomierz między bazę a emiter zmierzysz napięcie baza-emiter. Włączając miliamperomierz szeregowo z rezystorem Włączając miliamperomierz szeregowo z rezystorem 10kΩ zmierzysz prąd bazy. 1kΩ zmierzysz prąd kolektora. Teraz pora na ciekawszy pomiar, czyli pomiar prądu. Pamiętaj, że ta operacja może wymagać fizycznego przełączenia przewodów w Twoim mierniku. Wyniki pomiarów można zebrać w tabelę: Co z tych pomiarów wynika? Napięcie kolektor-emiter jest bardzo małe, rzędu kilkudziesięciu miliwoltów. Oznacza to, że tranzystor wszedł w stan nasycenia. Jest to moment, kiedy przez kolektor płynie prąd mniejszy, niż wynikałoby to ze współczynnika β dla tego tranzystora, zawiera się on w przedziale między 200, a 450. Informuje o tym litera B na końcu oznaczenia. Przeprowadźmy proste obliczenie: znamy prąd bazy, znamy wzmocnienie prądowe policzmy, jaki prąd powinien płynąć przez kolektor, aby nie był on nasycony: 4

5 Tymczasem, przez kolektor płynie zaledwie 7mA, ponieważ ogranicza go rezystor 1kΩ. Gdyby go tam nie było, przez kolektor popłynąłby wielki prąd, ale skończyłoby się to zniszczeniem diody, tranzystora, a może nawet baterii. Co się stanie, kiedy odłączysz rezystor 10kΩ od bazy? Albo podłączysz go do minusa baterii? Dioda gaśnie, ponieważ przez bazę przestaje płynąć prąd. Tranzystor działa tutaj jak wyłącznik: załączając przepływ prądu bazy o niewielkim natężeniu, jesteśmy stanie załączyć przepływ znacznie większego prądu przez kolektor. Z kolei, odłączając prąd bazy, niemal natychmiast zanika prąd kolektora. Kiedy przez kolektor płynie prąd, o tranzystorze mówi się, że jest otwarty. Wtedy napięcie na jego bazie jest o ok. 0,7V większe niż na emiterze. Z kolei, aby zamknąć tranzystor (czyli uniemożliwić przepływ prądu kolektora), należy napięcie baza-emiter zmniejszyć, najlepiej do zera. Zasada wykorzystania tranzystorów prościej się nie da Teraz pora na wyjaśnienie powyższych różnic pomiędzy tranzystorem NPN, a PNP. Niezależnie od typu tranzystora, który wykorzystujemy w celu umożliwienia przepływu dużego prądu (emiter-kolektor) musimy zamknąć obwód baza-emiter. W tranzystorach NPN emiter podłączony jest do masy układu (GND), dlatego baza musi zostać podłączona (przez rezystor ograniczający prąd) do plusa baterii (VCC). Natomiast w przypadku PNP emiter podłączony jest do VCC, więc bazę należy połączyć (przez rezystor) z masą układu (GND). Prąd przepływający przez bazę najczęściej ograniczany jest rezystorem 10kΩ Inaczej mówiąc, przepływ dużego prądu możemy aktywować przez rezystor: o masą układu (GND) w przypadku PNP o dodatnim zasilaniem (VCC) w przypadku NPN W praktyce układ sterujący diodą na tranzystorze każdego typu wygląda tak, jak poniżej: Koniecznie podłącz oba obwody! Nie powinieneś mieć już żadnego problemu z samodzielnym przeniesieniem układu na płytkę stykową. Do przeprowadzeniu testu wykorzystaj tranzystor BC546 (NPN) oraz BC556 (PNP). Zadanie 1 Wykonaj pomiary dla połączenia z tranzystorem PNP analogicznie do wcześniejszych pomiarów przeprowadzonych dla NPN. Wynikami oraz spostrzeżeniami podziel się w komentarzu! Zastosowanie tranzystorów Kiedy i po co Poniżej znajduje się fragment schematu, na którym mikrokontroler steruje buzzerem (generatorem dźwięku), który pobiera prąd ok. 50mA. Z poszczególne wyjścia mikrokontrolerów najczęściej można pobierać do 20mA, dlatego bezpośrednie podłączenie buzzera uszkodziłoby układ. Dlatego zastosowano tutaj tranzystor, który działa jak przełącznik. 5

6 W tym układzie, przez wyprowadzenie mikrokontrolera płynie jedynie niewielki prąd, rzędu 0,8mA, zaś sam buzzer jest zasilany przez tranzystor. Wystawienie stanu wysokiego załącza dźwięk, stan niski wyłącza. Aby nie wdawać się w szczegóły obliczeniowe, możesz przyjąć, że użycie rezystora 10kΩ umożliwia sterowanie obciążeniami pobierającymi nie więcej niż ok. 60mA, a rezystor 1kΩ nada się w sytuacjach, kiedy obciążenie pobiera nawet i 500mA, ale trzeba wtedy użyć innego tranzystora, np. BC337, który zdolny jest do sterowania większego prądu. Żeby zależności te były prawdziwe należy przyjąć, że mowa jest o tranzystorach mających wzmocnienie prądowe o wartości 200 lub więcej (czyli, na przykład, grupy B i C według wskazanego fragmentu katalogu), a układy zasilane są napięciem 5V. Powyższa animacja ilustruje 90% przykładów, w których będziesz wykorzystywał tranzystor jako początkujący. Dlatego zapamiętaj jak należy podłączyć tranzystor NPN i PNP w roli przełącznika. Inne rodzaje tranzystorów MOSFET Dotychczas omówiono tranzystory bipolarne, gdzie przepływ prądu kolektora jest zależny od prądu bazy. Istnieje inna grupa tranzystorów, gdzie płynący prąd zależy od wartości przyłożonego napięcia. Co ważne, ze źródła sterującego nie pobierają one żadnego prądu! Taki tranzystor jest dołączony do zestawu i nosi oznaczenie BS170. Wygląda identycznie, jak poprzednie, ale zachowuje się całkowicie inaczej. Tranzystor MOSFET BS170 jest tranzystorem unipolarny MOSFET z kanałem typu N. Nie mają one emitera, bazy i kolektora, tylko, odpowiednio, źródło, bramkę i dren. Przykładając napięcie o wartości kilku-kilkunastu woltów między bramkę, a źródło (źródło zwarte do masy), umożliwia się przepływ prądu przez otwarty kanał, czyli między drenem a źródłem. Ich znaczenie w układach pobierających relatywnie niewielkie prądy (rzędu setek miliamperów) jest niewielkie, za to przy dużych prądach zyskują na znaczeniu właśnie dzięki temu, że do ich sterowania nie jest potrzebny prąd. Dlatego na początku swojej przygody z elektroniką zapewne nie będziesz wykorzystywał MOSFETów. Zadanie 2 Zadanie drugie będzie trudne, ale ciekawe! Wykorzystamy tranzystory, aby zbudować praktyczny układ. Jednak najpierw musisz dobrze opanować zagadnienia z tej części kursu. Dlatego drugie zadanie związane z tranzystorami pojawi się jako dodatek do jednej z kolejnych części! Teraz przygotuj się do niego przyswajając materiał! Podsumowując Dowiedziałeś się, co to są tranzystory, jak są zbudowane i na jakiej zasadzie działają. Przekonałeś się, że tranzystor można użyć w roli przełącznika sterowanego stanem logicznym na wyjściu mikrokontrolera. Docenisz, to gdy zajmiesz się programowaniem układów. 6

7 Zespół Szkół Mechanicznych w Namysłowie Eksploatacja urządzeń elektronicznych Temat ćwiczenia: Czym jest tranzystor? Imię i nazwisko Nr ćw E04 Data wykonania Klasa 2TEZ Grupa Zespół OCENY Przygotowanie Wykonanie Ogólna Cel ćwiczenia: Odpowiedz na pytania. 1. Wymień rodzaje tranzystorów? 2. Wymień parametry tranzystorów. 3. Jak nazywają się elektrody tranzystora bipolarnego a jak unipolarnego. 4. Jakie znasz rodzaje połączeń tranzystorów? 5. Opisz zasadę działania tranzystora. PLAN DZIAŁANIA Przykład praktyczny Potrzebne będą: o płytka stykowa o bateria 9V wraz z klipsem o tranzystory bipolarne NPN o rezystor o wartości, R 1 =330Ω i R 2 =1kΩ, R 3 =10kΩ o przewody do płytki stykowej Wykonaj zadanie i napisz wnioski Zadanie 1 Wykonaj pomiary dla połączenia z tranzystorem PNP analogicznie do wcześniejszych pomiarów przeprowadzonych dla NPN. Wynikami oraz spostrzeżeniami podziel się w komentarzu! Zadanie 2 Zbudujemy prosty projekt. Będzie to pierwsze działające urządzenie, które stworzysz samodzielnie z garstki elementów. Wykonamy teraz przerzutnik bistabilny. O przerzutnikach można napisać wiele. My nie będziemy się zagłębiać w szczegóły. Ten projekt powinien jedynie zainteresował Cie dalszym poznawaniem elektroniki. Do tej pory elementy, które łączyłeś na płytce nie wykazywały żadnej inteligencji. Dioda świeciła, gdy podłączyłeś odpowiednio zasilanie, a tranzystor przewodził w momencie, gdy przez jego bazę przepływał stosowny prąd. W momencie odłączenia styków układ przestawał działać. Przerzutnik bistabilny będzie działał inaczej! Układ ten, mówiąc w uproszczeniu, będzie miał dwa stany i będzie niejako pamiętał ten ostatni. Brzmi zawiłe? W praktyce chodzi o układ z dwiema diodami. Gdy jeden punkt układu zewrzemy za pomocą przewodu z masą, to zapali się pierwsza dioda. Po odłączeniu tego przewodu dioda nadal będzie świeciła! Zgaśnie, gdy masa zostanie połączona z innym punktem układu. Na schemacie miejsca te zostały zaznaczone jako dwa styczniki. Czyli spróbuj samodzielnie zrozumieć jak działa ten układ. Możesz wesprzeć się książkami lub Internetem. 7

8 Przerzutnik bistabilny w praktyce. WNIOSKI I SPOSTRZEŻENIA 8

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów

Bardziej szczegółowo

Włączanie i wyłączanie tyrystora. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia;

Włączanie i wyłączanie tyrystora. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia; . Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia; Zapoznanie się z budową, działaniem i zastosowaniem tyrystora. Zapoznanie się z budową, działaniem i zastosowaniem tyrystora w obwodzie kondensatorem.

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

E104. Badanie charakterystyk diod i tranzystorów

E104. Badanie charakterystyk diod i tranzystorów E104. Badanie charakterystyk diod i tranzystorów Cele: Wyznaczenie charakterystyk dla diod i tranzystorów. Dla diod określa się zależność I d =f(u d ) prądu od napięcia i napięcie progowe U p. Dla tranzystorów

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik 1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony

Bardziej szczegółowo

Test powtórzeniowy. Prąd elektryczny

Test powtórzeniowy. Prąd elektryczny Test powtórzeniowy. Prąd elektryczny Informacja do zadań 1. i 2. Przez dwie identyczne żarówki (o takim samym oporze), podłączone szeregowo do baterii o napięciu 1,6 V (patrz rysunek), płynie prąd o natężeniu

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Tranzystory i ich zastosowania

Tranzystory i ich zastosowania Tranzystory i ich zastosowania Nie wszystkie elementy obwodu elektrycznego zachowują się jak poznane na lekcjach rezystory (oporniki omowe). Większość używanych elementów ma zmienny opór. Jak się tak bliżej

Bardziej szczegółowo

Test powtórzeniowy Prąd elektryczny

Test powtórzeniowy Prąd elektryczny Test powtórzeniowy rąd elektryczny 1 Wybierz poprawne uzupełnienia zdania. W metalach kierunek przepływu prądu jest zgodny z kierunkiem ruchu elektronów, jest przeciwny do kierunku ruchu elektronów, ponieważ

Bardziej szczegółowo

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr Tranzystor Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz1.cmr C:\Program Files (x86)\cma\coach6\full.en\cma

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw

Bardziej szczegółowo

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów

Bardziej szczegółowo

Ćwiczenie 4- tranzystor bipolarny npn, pnp

Ćwiczenie 4- tranzystor bipolarny npn, pnp Ćwiczenie 4- tranzystor bipolarny npn, pnp Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny

Bardziej szczegółowo

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Ćwiczenie 5 Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Układ Super Alfa czyli tranzystory w układzie Darlingtona Zbuduj układ jak na rysunku i zaobserwuj dla jakiego położenia potencjometru

Bardziej szczegółowo

Zasada działania tranzystora bipolarnego

Zasada działania tranzystora bipolarnego Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego

Bardziej szczegółowo

Zabezpieczenie akumulatora Li-Poly

Zabezpieczenie akumulatora Li-Poly Zabezpieczenie akumulatora Li-Poly rev. 2, 02.02.2011 Adam Pyka Wrocław 2011 1 Wstęp Akumulatory litowo-polimerowe (Li-Po) ze względu na korzystny stosunek pojemności do masy, mały współczynnik samorozładowania

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny

Bardziej szczegółowo

Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia

Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Sprawdzenie zasady superpozycji. Sprawdzenie twierdzenia Thevenina. Sprawdzenie twierdzenia Nortona. Czytanie schematów

Bardziej szczegółowo

XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D1 Nazwa zadania: Wyznaczenie napięcia. Mając do dyspozycji: trójnóżkowy element półprzewodnikowy, dwie baterie 4,5 V z opornikami zabezpieczającymi

Bardziej szczegółowo

Wykład X TRANZYSTOR BIPOLARNY

Wykład X TRANZYSTOR BIPOLARNY Wykład X TRANZYSTOR BIPOLARNY Tranzystor Trójkoocówkowy półprzewodnikowy element elektroniczny, posiadający zdolnośd wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer

Bardziej szczegółowo

Systemy i architektura komputerów

Systemy i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...

Bardziej szczegółowo

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.

Bardziej szczegółowo

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa

Bardziej szczegółowo

Obwody nieliniowe. Rysunek 1. Rysunek 2. Rysunek 3

Obwody nieliniowe. Rysunek 1. Rysunek 2. Rysunek 3 Obwody nieliniowe Rysunek 1 Rysunek 2 Rysunek 3 1. Narysuj schemat zasilania diody świecącej, której parametry graniczne przedstawiono na rysunku 1, a charakterystykę prądowo-napięciową na rysunku 2. Układ

Bardziej szczegółowo

Instrukcje do doświadczeń. Elektronika

Instrukcje do doświadczeń. Elektronika Instrukcje do doświadczeń Elektronika 1 Spis doświadczeń 1 Dioda podstawowy obwód elektryczny...7 2 Dioda badanie charakterystyki...8 3 Dioda jako prostownik...9 4 LED podstawowy obwód elektryczny...10

Bardziej szczegółowo

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Zadania z podstaw elektroniki Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Układ stanowi szeregowe połączenie pojemności C1 z zastępczą pojemnością równoległego połączenia

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

IV. TRANZYSTOR POLOWY

IV. TRANZYSTOR POLOWY 1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z

Bardziej szczegółowo

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES

Bardziej szczegółowo

Finał IV edycji konkursu ELEKTRON zadania ver.0

Finał IV edycji konkursu ELEKTRON zadania ver.0 ul. Janiszewskiego 11/17, 50-372 Wrocław www.wemif.pwr.wroc.pl www.wemif.pwr.wroc.pl/elektron.dhtml Finał IV edycji konkursu ELEKTRON zadania ver.0 1. Połącz w pary: A. Transformator B. Prądnica C. Generator

Bardziej szczegółowo

Pomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia.

Pomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia. WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Pomiar charakterystyk

Bardziej szczegółowo

Miernik elementów elektronicznych LCR MK-168

Miernik elementów elektronicznych LCR MK-168 Dane aktualne na dzień: 24-01-2017 15:14 Link do produktu: /miernik-elementow-elektronicznych-lcr-mk-168-p-3972.html Miernik elementów elektronicznych LCR MK-168 Cena Dostępność Numer katalogowy 169,00

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Poznanie budowy i zasady pracy tranzystora JFET. Pomiar charakterystyk tranzystora JFET. Czytanie schematów elektronicznych. Przestrzeganie

Bardziej szczegółowo

Przyrządy i Układy Półprzewodnikowe

Przyrządy i Układy Półprzewodnikowe VI. Prostownik jedno i dwupołówkowy Cel ćwiczenia: Poznanie zasady działania układu prostownika jedno i dwupołówkowego. A) Wstęp teoretyczny Prostownik jest układem elektrycznym stosowanym do zamiany prądu

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Temat: Układ przełączający. Cel ćwiczenia Ćwiczenie 15 Poznanie zasady pracy tranzystorowego układu przełączającego. Pomiar prądu kolektorowego, gdy tranzystor jest w stanach włączenia i wyłączenia. Czytanie

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

KIESZONKOWY MULTIMETR CYFROWY AX-MS811. Instrukcja obsługi

KIESZONKOWY MULTIMETR CYFROWY AX-MS811. Instrukcja obsługi KIESZONKOWY MULTIMETR CYFROWY AX-MS811 Instrukcja obsługi Bezpieczeństwo Międzynarodowe symbole bezpieczeństwa Ten symbol użyty w odniesieniu do innego symbolu lub gniazda oznacza, że należy przeczytać

Bardziej szczegółowo

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/5 Stabilizator liniowy Zadaniem jest budowa i przebadanie działania bardzo prostego stabilizatora liniowego. 1. W ćwiczeniu wykorzystywany

Bardziej szczegółowo

A-7. Tranzystor unipolarny JFET i jego zastosowania

A-7. Tranzystor unipolarny JFET i jego zastosowania A-7. Tranzystor unipolarny JFET i jego zastosowania 1 Zakres ćwiczenia 1.1 Pomiar charakterystyk statycznych tranzystora JFET. 1.2 Projekt, montaż i badanie układu: 1.2.1 sterowanego dzielnika napięcia,

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 11

Instrukcja do ćwiczenia laboratoryjnego nr 11 Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak

Bardziej szczegółowo

Wykład VIII TRANZYSTOR BIPOLARNY

Wykład VIII TRANZYSTOR BIPOLARNY Wykład VIII TRANZYSTOR BIPOLARNY Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu

Bardziej szczegółowo

Zespół Szkół Technicznych w Skarżysku - Kamiennej. Projekt budowy Zasilacza regulowanego. Opracował: Krzysztof Gałka kl. 2Te

Zespół Szkół Technicznych w Skarżysku - Kamiennej. Projekt budowy Zasilacza regulowanego. Opracował: Krzysztof Gałka kl. 2Te Zespół Szkół Technicznych w Skarżysku - Kamiennej Projekt budowy Zasilacza regulowanego Opracował: Krzysztof Gałka kl. 2Te 1. Wstęp Wydawać by się mogło, że stary, niepotrzebny już zasilacz komputerowy

Bardziej szczegółowo

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Budowa diody Dioda zbudowana jest z dwóch warstw półprzewodników: półprzewodnika typu n (nośnikami prądu elektrycznego są elektrony) i półprzewodnika

Bardziej szczegółowo

Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia Opracował

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Notatka lekcja_#3_1; na podstawie W.Kapica 2017 Strona 1

Notatka lekcja_#3_1; na podstawie  W.Kapica 2017 Strona 1 Na poprzednich zajęciach zajmowaliśmy się odczytywaniem sygnałów cyfrowych. Dzięki temu mogliśmy np.: sprawdzić, czy przycisk został wciśnięty. Świat, który nas otacza nie jest jednak cyfrowy, czasami

Bardziej szczegółowo

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć. Diody, tranzystory, tyrystory Materiały pomocnicze do zajęć. Złącze PN stanowi podstawę diod półprzewodnikowych. Rozpatrzmy właściwości złącza poddanego napięciu. Na poniŝszym rysunku pokazano złącze PN,

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

PL B1. POLITECHNIKA OPOLSKA, Opole, PL BUP 05/18. JAROSŁAW ZYGARLICKI, Krzyżowice, PL WUP 09/18

PL B1. POLITECHNIKA OPOLSKA, Opole, PL BUP 05/18. JAROSŁAW ZYGARLICKI, Krzyżowice, PL WUP 09/18 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230058 (13) B1 (21) Numer zgłoszenia: 422007 (51) Int.Cl. H02M 3/155 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 24.06.2017

Bardziej szczegółowo

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Poznanie zasady działania układów komparatorów. Prześledzenie zależności napięcia

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Tester elementów elektronicznych LCR oraz ESR + bateria + power bank + obudowa

Tester elementów elektronicznych LCR oraz ESR + bateria + power bank + obudowa Utworzono 01-02-2017 Tester elementów elektronicznych LCR oraz ESR + bateria + power bank + obudowa Cena : 145,00 zł Stan magazynowy : wysoki Średnia ocena : brak recenzji TESTER ELEMENTÓW ELEKTRONICZNYCH

Bardziej szczegółowo

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. WZMACNIACZ 1. Wzmacniacz elektryczny (wzmacniacz) to układ elektroniczny, którego

Bardziej szczegółowo

Temat i cel wykładu. Tranzystory

Temat i cel wykładu. Tranzystory POLTECHNKA BAŁOSTOCKA Temat i cel wykładu WYDZAŁ ELEKTRYCZNY Tranzystory Celem wykładu jest przedstawienie: konstrukcji i działania tranzystora bipolarnego, punktu i zakresów pracy tranzystora, konfiguracji

Bardziej szczegółowo

Komputerowe projektowanie układów ćwiczenia uzupełniające z wykorzystaniem Multisim/myDAQ. Katedra Mikroelektroniki i Technik Informatycznych PŁ

Komputerowe projektowanie układów ćwiczenia uzupełniające z wykorzystaniem Multisim/myDAQ. Katedra Mikroelektroniki i Technik Informatycznych PŁ Katedra Mikroelektroniki i Technik Informatycznych PŁ Laboratorium Komputerowe projektowanie układów Ćwiczenia uzupełniające z wykorzystaniem oprogramowania Multisim oraz sprzętu mydaq National Instruments

Bardziej szczegółowo

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier) 7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

Ćw. 1: Badanie diod i prostowników

Ćw. 1: Badanie diod i prostowników Ćw. 1: Badanie diod i prostowników Wstęp Celem ćwiczenia jest badanie diod i opartych na nich prostownikach stosowanych w zasilaczach. Dioda jest to elektroniczny element półprzewodnikowy zawierający jedno

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI. MINI MULTIMETR CYFROWY M M

INSTRUKCJA OBSŁUGI. MINI MULTIMETR CYFROWY M M INSTRUKCJA OBSŁUGI MINI MULTIMETR CYFROWY M - 838 M - 838+ www.atel.com.pl/produkt.php?hash=02915! 1 2 I. WPROWADZENIE Przed przystąpieniem do normalnej eksploatacji miernika, prosimy zapoznać się z możliwościami

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR BIPOLARNY Rok studiów Grupa Imię i nazwisko Data

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Eksploatacja urządzeń elektronicznych Oznaczenie kwalifikacji: E.20 Numer zadania:

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12 PL 218560 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218560 (13) B1 (21) Numer zgłoszenia: 393408 (51) Int.Cl. H03F 3/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Montaż układów i urządzeń elektronicznych Oznaczenie kwalifikacji: E.05 Numer zadania:

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów.

Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów. Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów. Cel ćwiczenia; Zaplanować pomiary w obwodach prądu stałego, dobrać metodę pomiarową do zadanej sytuacji, narysować

Bardziej szczegółowo

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia. Powtórzenie wiadomości z klasy II Przepływ prądu elektrycznego. Obliczenia. Prąd elektryczny 1. Prąd elektryczny uporządkowany (ukierunkowany) ruch cząstek obdarzonych ładunkiem elektrycznym, nazywanych

Bardziej szczegółowo

UKŁADY POLARYZACJI I STABILIZACJI PUNKTU PRACY

UKŁADY POLARYZACJI I STABILIZACJI PUNKTU PRACY P.z. K.P.. Laboratorium lektroniki 2FD 200/10/01 UKŁADY POLAYZAJI I TAILIZAJI PUNKTU PAY TANZYTOÓW 1. WTĘP Tematem ćwiczenia są podstawowe zagadnienia polaryzacji i stabilizacji punktu pracy tranzystorów

Bardziej szczegółowo

Instrukcja nr 5. Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET

Instrukcja nr 5. Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET Instrukcja nr 5 Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 5.1 Wzmacniacz różnicowy Wzmacniacz różnicowy jest

Bardziej szczegółowo

Badanie elementów składowych monolitycznych układów scalonych II

Badanie elementów składowych monolitycznych układów scalonych II 1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C

ELEMENTY ELEKTRONICZNE TS1C Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO

Bardziej szczegółowo

Co się stanie, gdy połączymy szeregowo dwie żarówki?

Co się stanie, gdy połączymy szeregowo dwie żarówki? Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Właściwy dobór rezystorów nastawnych do regulacji natężenia w obwodach prądu stałego. Zapoznanie

Bardziej szczegółowo

Nazwa kwalifikacji: Eksploatacja urządzeń elektronicznych Oznaczenie kwalifikacji: E.20 Numer zadania: 01

Nazwa kwalifikacji: Eksploatacja urządzeń elektronicznych Oznaczenie kwalifikacji: E.20 Numer zadania: 01 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Eksploatacja urządzeń elektronicznych Oznaczenie kwalifikacji: E.20 Numer zadania:

Bardziej szczegółowo

Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1

Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1 Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1 Andrzej Koźmic, Natalia Kędroń 2 Cel ogólny: Wyznaczenie charakterystyki prądowo-napięciowej opornika i żarówki Cele operacyjne: uczeń,

Bardziej szczegółowo

SDD287 - wysokoprądowy, podwójny driver silnika DC

SDD287 - wysokoprądowy, podwójny driver silnika DC SDD287 - wysokoprądowy, podwójny driver silnika DC Własności Driver dwóch silników DC Zasilanie: 6 30V DC Prąd ciągły (dla jednego silnika): do 7A (bez radiatora) Prąd ciągły (dla jednego silnika): do

Bardziej szczegółowo

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują

Bardziej szczegółowo

SDD287 - wysokoprądowy, podwójny driver silnika DC

SDD287 - wysokoprądowy, podwójny driver silnika DC SDD287 - wysokoprądowy, podwójny driver silnika DC Własności Driver dwóch silników DC Zasilanie: 6 30V DC Prąd ciągły (dla jednego silnika): do 7A (bez radiatora) Prąd ciągły (dla jednego silnika): do

Bardziej szczegółowo

Jeżeli styki zaopatrzymy w trzpień z klawiszem, aby można było dociskać je palcem, to wtedy uzyskamy zwykły przycisk impulsowy.

Jeżeli styki zaopatrzymy w trzpień z klawiszem, aby można było dociskać je palcem, to wtedy uzyskamy zwykły przycisk impulsowy. E06 Przekaźniki w praktyce. W tej części zostaną omówione przekaźniki oraz inne elementy stykowe. Dowiesz się, jak działają, jakie są ich ograniczenia, a jakie zalety. Wrócimy też na chwilę do tranzystorów.

Bardziej szczegółowo

TRANZYSTOR UNIPOLARNY MOS

TRANZYSTOR UNIPOLARNY MOS L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE TRANZYSTOR UNIPOLARNY MOS RE. 1.0 1. CEL ĆWICZENIA - zapoznanie się z działaniem tranzystora unipolarnego MOS, - wykreślenie charakterystyk napięciowo-prądowych

Bardziej szczegółowo

Podstawy elektroniki: praktyka

Podstawy elektroniki: praktyka Podstawy elektroniki: praktyka Multimetr Na Rysunku 1 możesz zobaczyć wyłączony multimetr, który potocznie nazywać będziemy miernikiem. Rysunek 1. Zdjęcie multimetru UT33D firmy UNI-T, którego używamy

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Wykład 1 Technologie na urządzenia mobilne. Wojciech Świtała

Wykład 1 Technologie na urządzenia mobilne. Wojciech Świtała Wykład 1 Technologie na urządzenia mobilne Wojciech Świtała wojciech.switala@cs.put.poznan.pl http://www.cs.put.poznan.pl/~wswitala Sztuka Elektroniki - P. Horowitz, W.Hill Układy półprzewodnikowe U.Tietze,

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Multiwibrator astabilny, aleŝ to bardzo proste

Multiwibrator astabilny, aleŝ to bardzo proste Multiwibrator astabilny, aleŝ to bardzo proste Warszawa 22.VI.2009 Celem ćwiczenia jest własnoręczne zbudowanie (zlutowanie) układu elektronicznego. Z wielkiej liczby układów elektronicznych wybraliśmy

Bardziej szczegółowo