ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZESZYT DO ĆWICZEŃ Z BIOFIZYKI"

Transkrypt

1 ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. Grupa:. Regulamin zajęć dydakycznych z biofizyki znajduje się na sronie Zakładu Biofizyki 1

2 SPIS TREŚCI ZAGADNIENIA DO ĆWICZEŃ Z OPTYKI..3 Ćwiczenie nr 1.1. Wyznaczanie sężeń rozworów za pomocą refrakomeru i polarymeru 4 Ćwiczenie nr 1.6. Osłabienie wiązki świała laserowego przy przejściu przez ciała sałe. Wyznaczanie współczynnika eksynkcji ZAGADNIENIA DO ĆWICZEŃ Z ELEKTROMEDYCYNY.11 Ćwiczenie nr 2.1. Oscyloskop Ćwiczenie nr 2.5. Pomiar prędkości przepływu krwi za pomocą ulradźwięków...17 ZAGADNIENIA DO ĆWICZEŃ Z PROMIENIOTWÓRCZOŚCI Ćwiczenie nr 3.1 Radioakywność. Pomiar akywności z użyciem wzorca. Podsawy dozymerii 24 Ćwiczenie nr 3.2, 3.3. Oddziaływanie foonów z maerią i cząsek naładowanych z maerią

3 OPTYKA WYTYCZNE DO SPORZĄDZENIA RAPORTU Z CZĘŚCI ĆWICZENIOWEJ 1. Zeszy do Ćwiczeń z Biofizyki należy wydrukować w formacie A4, spiąć, obłożyć (bindowanie lub skoroszy) i podpisać. 2. Rapor powinien być czyelny, bez skreśleń. 3. Wszelkie rysunki muszą być wykonywane ołówkiem. Obliczenia wraz z prawidłowymi jednoskami mogą być wykonywany długopisem lub ołówkiem. 4. W razie konieczności poprawy raporu, wszelkie koreky muszą być wykonane poniżej części zaznaczonej jako błędna (w miarę wolnego miejsca) lub na nowych karkach (doklejonych). 5. Dane do końcowej abeli: daa oraz imię i nazwisko wykonującego muszą być wypełnione długopisem. ZAGADNIENIA DO ĆWICZEŃ Z OPTYKI Ćwiczenie nr 1.1. Wyznaczanie sężeń rozworów za pomocą refrakomeru i polarymeru. 1. Zasada Fermaa 2. Zjawisko odbicia, załamania i dyspersji świała. 3. Zasada działania świałowodu, endoskopia. 4. Zasada działania refrakomeru. 5. Meody polaryzacji świała. 6. Dwójłomność opyczna. 7. Ciała opycznie czynne. 8. Prawo Malusa. 9. Izomeria opyczna. 10. Zasosowanie polarymerii w diagnosyce. 11. Meoda najmniejszych kwadraów wyznaczania równania prosej. 12. Sężenia: wagowo-wagowe, wagowo-objęościowe, molowe, normalne. Ćwiczenie nr 1.6. Osłabienie wiązki świała laserowego przy przejściu przez ciała sałe. Wyznaczanie współczynnika eksynkcji. 1. Zasada działania lasera. 2. Właściwości świała laserowego. 3. Rodzaje laserów. 4. Zasosowanie laserów w medycynie. 5. Zjawisko dyfrakcji. 6. Siaka dyfrakcyjna. 7. Zjawisko inerferencji. 8. Oddziaływanie promieniowania elekromagneycznego z maerią. 9. Funkcja logarymiczna i wykładnicza. LITERATURA: Wybrane zagadnienia z biofizyki pod red. prof. S. Miękisza Biofizyka pod red. prof. F. Jaroszyka Elemeny fizyki, biofizyki i agrofizyki pod red. prof. S. Przesalskiego Podsawy biofizyki" pod red. prof. A. Pilawskiego 3

4 ĆWICZENIE NR 1.1 Wyznaczanie sężeń rozworów za pomocą refrakomeru i polarymeru a) Przygoowanie rozworów. przygoować rozwory cukru w wodzie o sężeniach (wagowo-wagowych) 5%, 10%, 15%, 20%, 25%, 30%, po 50 gramów każdego z rozworów. grupę ćwiczeniową dzielimy na dwie podgrupy. Każda z podgrup przygoowuje rozwór sacharozy (50 gram) o sobie znanym sężeniu x 0. Tuaj wpisz warość x 0 swojej podgrupy, x 0 =...[%] b) Refrakomer pomiar współczynnika załamania świała przygoowanych rozworów cukru. Nanieść cienką warswę rozworu na szkiełko refrakomeru. Nasępnie za pomocą śruby obracającej pryzmay refrakomeru usawić ich położenie w en sposób, aby w polu widzenia rozgraniczenie pola jasnego i ciemnego wypadało na skrzyżowaniu nici pajęczych. Odczyujemy na skali warość współczynnika załamania świała w rozworze dla wszyskich przygoowanych rozworów i wody desylowanej, wyniki zapisujemy w abeli: Tabela 1. Wyniki pomiarów współczynnika załamania n świała dla różnych rozworów sacharozy Sężenie rozworu (%) 0 (woda desylowana) Warość współczynnika załamania n Na wykresie poniżej nanieś warości pomiarowe i wykreśl zależność współczynnika załamania świała od sężenia rozworu. 4

5 Wykres 1. Zależność współczynnika załamania od sężenia rozworu sacharozy 1,4 1,39 1,38 1,37 1,36 1,35 1,34 1, sężenie % Dla orzymanych warości współczynnika załamania świała w zależności od sężenia rozworu znajdujemy, z wykorzysaniem programu kompuerowego, zależność liniową (równanie prosej i współczynnik korelacji). Tuaj wpisz wyniki obliczeń z programu Excel: orzymane równanie: y =... warość współczynnika korelacji R 2 =... Nasępnie dokonujemy pomiaru warości współczynnika załamania świała rozworu przygoowanego przez drugą podgrupę. Tuaj wpisz zmierzoną warość współczynnika załamania świała rozworu nieznanego n =... Tuaj wpisz obliczenia sężenie rozworu x przygoowanego przez drugą podgrupę: Tuaj wpisz obliczona warość sężenia x =...[%] 5

6 c) Polarymer pomiar kąa skręcenia płaszczyzny polaryzacji świała. Napełniamy rozworem rurkę polarymeryczną badanym rozworem. Sprawdzamy zero polarymeru, j. znajdujemy punk na skali odpowiadający obrazowi o wszyskich elemenach w polu widzenia jednakowo zabarwionych odpowiada o położeniu skali w kórym warości 0 na obu skalach pokrywają się. Przy ym usawieniu płaszczyzny polaryzacji polaryzaora i analizaora pokrywają się. Umieszczamy rurkę polarymeryczną w ubusie polarymeru. Po włożeniu rurki z rozworem swierdzamy, że środkowa część pola widzenia zmieniła zabarwienie. Rozwór cukru zawary w rurce skręcił płaszczyznę polaryzacji świała o pewien ką i płaszczyzna a nie jes eraz równoległa do płaszczyzny polaryzacji analizaora. Szukamy nowego położenia na skali odpowiadającego obrazowi o wszyskich elemenach w polu widzenia jednakowo zabarwionych. Odczyujemy warość na skali, o jes właśnie ką skręcenia płaszczyzny polaryzacji. Odczyujemy na skali warość kąa skręcenia płaszczyzny polaryzacji świała w rozworze dla wszyskich przygoowanych rozworów, wyniki zapisujemy w abel Tabela 2. Wyniki pomiarów kąa skręcenia płaszczyzny polaryzacji dla różnych rozworów sacharozy Sężenie rozworu (%) Warość kąa skręcenia płaszczyzny polaryzacji 0 (woda desylowana) Na wykresie poniżej nanieś warości pomiarowe i wykreśl zależność kąa skręcenia płaszczyzny polaryzacji świała od sężenia rozworu. 6

7 Wykres 2. Zależność kąa skręcenia płaszczyzny polaryzacji świała od sężenia rozworu sężenie % Dla orzymanych warości kąa skręcenia płaszczyzny polaryzacji świała w zależności od sężenia rozworu znajdujemy, wykorzysując program kompuerowy, zależność liniową (równanie prosej i współczynnik korelacji). Tuaj wpisz wyniki obliczeń z programu Excel: orzymane równanie: y =... warość współczynnika korelacji R 2 =... Nasępnie dokonujemy pomiaru warości kąa skręcenia płaszczyzny polaryzacji świała w rozworze przygoowanym przez drugą podgrupę. Tuaj wpisz zmierzoną warość kąa skręcenia płaszczyzny polaryzacji =... Korzysając z orzymanej zależności warości kąa skręcenia płaszczyzny polaryzacji świała od sężenia rozworu obliczamy sężenie rozworu x przygoowanego przez drugą podgrupę. Tuaj wpisz obliczenia sężenie rozworu x przygoowanego przez drugą podgrupę: Tuaj wpisz: obliczona warość sężenia x =...[%] Daa Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia Punk dodakowy 7

8 ĆWICZENIE NR 1.6 Osłabienie wiązki świała laserowego przy przejściu przez ciała sałe. Wyznaczanie współczynnika eksynkcji. 1. W pierwszej części ćwiczenia badamy warość współczynnika α dla różnych subsancji. W ym celu należy: a. zmierzyć naężenie świała laserowego bez subsancji pochłaniającej, b. zmierzyć naężenie świała laserowego po włożeniu płyki pochłaniającej do saywu, c. zmierzyć grubość płyki i znając warości I i I o wyznaczyć warość α. Tabela 1. Warość współczynnika α dla różnych subsancji. maeriał d 10-3 [m] I 0 I lni/i 0 [m -1 ] 2. W drugiej części ćwiczenia badamy zależność naężenia świała przechodzącego przez układ od grubości warswy pochłaniającej. W ym celu należy: a. wybrać zesaw płyek sporządzonych z ego samego maeriału, grubość zmierzyć za pomocą mikromierza, b. zmierzyć naężenie świała laserowego bez subsancji pochłaniającej, c. umieszczając w saywie coraz większą liczbę płyek (1, 2, 3, 4 id.) odczyywać za każdym razem warość naężenia świała docierającego do deekora i wpisać do abelki, d. uzyskane wyniki zilusrować graficznie na dwóch wykresach: na pierwszym umieszczamy warości I i d, na drugim lni i d (równanie (1) po logarymowaniu przyjmuje posać lni = lni o - α d) Z wykresu drugiego odczyać warość α dla badanego maeriału (w jaki sposób?), porównać orzymaną warość z warością orzymaną w pierwszej części ćwiczenia Tabela 2. Zależność naężenia świała przechodzącego przez układ od grubości warswy pochłaniającej. Grubość warswy absorbena [10-3 m] Bez absorbena - 1 płyka 2 płyki 3 płyki 4 płyki 5 płyek 6 płyek 7 płyek 8 płyek 9 płyek Warość naężenia świała I ln I 8

9 Wykres 1. Zależność naężenia promieniowania I od grubości absorbena I d [mm] Wykres 2. Zależność logarymu nauralnego naężenia świała laserowego po przejściu przez absorben od grubości warswy absorbena 1100 lni d [mm] 9

10 Dla orzymanych warości naężenia świała laserowego (I) po przejściu przez absorben od grubości warswy absorbena (d), wykorzysując program kompuerowy Excel, znajdź zależność (równanie krzywej logarymicznej i współczynnik korelacji). Tuaj wpisz wyniki obliczeń z programu Excel: orzymane równanie: y =... warość współczynnika korelacji R 2 =... Na podsawie wykresu 2 i równania krzywej wzorcowej wyznacz warość współczynnika. =...[m -1 ] Daa Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia Punk dodakowy 10

11 ELEKTROMEDYCYNA WYTYCZNE DO SPORZĄDZENIA RAPORTU Z CZĘŚCI ĆWICZENIOWEJ 1. Rapory z części ćwiczeniowej powinny mieć formę Zeszyu do Ćwiczeń z Biofizyki dosępnego na sronie inerneowej Zakładu Biofizyki hps:// 2. Zeszy do Ćwiczeń z Biofizyki należy wydrukować w formacie A4, spiąć, obłożyć (bindowanie lub skoroszy) i podpisać. 3. Rapor powinien być czyelny, bez skreśleń. 4. Wszelkie rysunki muszą być wykonywane ołówkiem. Obliczenia wraz z prawidłowymi jednoskami mogą być wykonywany długopisem lub ołówkiem. 5. W razie konieczności poprawy raporu, wszelkie koreky muszą być wykonane poniżej części zaznaczonej jako błędna (w miarę wolnego miejsca) lub na nowych karkach (doklejonych). 6. Dane do końcowej abeli: daa oraz imię i nazwisko wykonującego muszą być wypełnione długopisem. ZAGADNIENIA DO ĆWICZEŃ Z ELEKTROMEDYCYNY Ćwiczenie nr 2.1 Oscyloskop. 1. Elemeny elekrosayki: ładunek elekryczny, dipol elekryczny, pole elekryczne i jego własności, prawo Coulomba i warunki jego sosowalności ruch ładunku w polu elekrycznym, poencjał elekryczny, prąd (znać i rozumieć pojęcia), prawo Ohma, przewodniki I i II rodzaju, dielekryki i ich polaryzacja, pojemność, kondensaor, budowa aomu. 2. Budowa i zasada działania oscyloskopu. Zjawiska wykorzysywane w oscyloskopie. 3. Luminescencja (na czym polega zjawisko) i jej rodzaje (luminescencja w oscyloskopie) Ćwiczenie nr 2.5 Pomiar prędkości przepływu krwi za pomocą ulradźwięków. 1. Fala mechaniczna: podsawowe zjawiska ruchu falowego, odbicie, załamanie, rodzaje fal, rezonans, energia fali oraz podsawowe paramery długość, częsoliwość i naężenie). 2. Infradźwięki (źródła nauralne i szuczne; cechy, oddziaływanie infradźwięków z maerią). 3. Meody orzymywania ulradźwięków (źródła nauralne i szuczne). 4. Właściwości ulradźwięków (załamanie, odbicie, opór akusyczny). 5. Oddziaływanie ulradźwięków z maerią (skuki fizyczne, chemiczne i biologiczne). 6. Zasosowanie ulradźwięków w medycynie. 7. Zjawisko Dopplera wykorzysanie w pomiarze prędkości przepływu krwi. LITERATURA: Wybrane zagadnienia z biofizyki pod red. prof. S. Miękisza Biofizyka pod red. prof. F. Jaroszyka Elemeny fizyki, biofizyki i agrofizyki pod red. prof. S. Przesalskiego Podsawy biofizyki" pod red. prof. A. Pilawskiego 11

12 ĆWICZENIE NR 2.1 Oscyloskop Cele emau badawczego: Celem ćwiczenia jes zapoznanie się z oscyloskopem analogowym i cyfrowym oraz ich prakycznymi zasosowaniami. Rozwój wiedzy Samodzielne powórzenie wiadomości podsawowych z zakresu elekrosayki: ładunek elekryczny, zasada zachowania ładunku, prawo Coulomba i warunki jego sosowalności, dipol elekryczny, pole elekryczne i jego własności, ruch ładunku w polu elekrycznym, poencjał elekryczny, prąd, prawo Ohma, przewodniki I i II rodzaju, dielekryki i ich polaryzacja, pojemność, kondensaor, budowa aomu. Samodzielne przygoowanie wiadomości na ema: luminescencja i jej rodzaje, budowa i zasada działania oscyloskopu, zjawiska wykorzysywane w oscyloskopie. Odczyywanie i inerpreowanie wykresów, schemaów, rysunków. Przypomnienie wzorów maemaycznych opisujących zjawiska fizyczne. Przeliczanie jednosek, operowanie ułamkami, szacowanie niepewności pomiarowych i ich analiza. Wykorzysanie poznanej wiedzy. Rozwój umiejęności Sosowanie ze zrozumieniem pojęć fizycznych. Umiejęność fachowego wysławiania się i wyrażania swoich opinii. Przeliczanie jednosek, rozwiązywanie równań, wyznaczanie niepewności pomiarowych. Przewarzanie danych pomiarowych, worzenie wykresów oraz inerpreowanie wyników. Rozwój umiejęności manualnych związanych z obsługa urządzeń elekrycznych. Planowanie i przeprowadzanie eksperymenów i doświadczeń. Gromadzenie i analizowanie, wraz z szacowaniem niepewności pomiarowych, danych pomiarowych. Prezenacja i przewarzanie danych pomiarowych przedsawionych w formie abeli lub i wykresów. Analiza i omówienie wyników pomiaru, formułowanie wniosków. Poprawny opis i wyjaśnianie zjawisk fizycznych. Rozwój posaw Umiejęność przekonywania innych do swoich racji, prowadzenia rzeczowej dyskusji. Współpracy w grupie. Weryfikacji zdobyej wiedzy i umiejęności. Kulura echniczna. Przesrzeganie przepisów BHP. Rozwiązywania problemów. Szacunku dla pracy własnej i innych Podejmowania decyzji i kompromisu 12

13 Część doświadczalna Niezbędne przyrządy i maeriały: oscyloskop, generaor badanych napięć. Wszelkie rysunki należy wykonywać ołówkiem. Wykonanie ćwiczenia WAŻNE 1. Rapor powinien być czyelny, bez skreśleń. 2. Wszelkie rysunki muszą być wykonywane ołówkiem. Obliczenia wraz z prawidłowymi jednoskami mogą być wykonywany długopisem lub ołówkiem. 3. W razie konieczności poprawy raporu, wszelkie koreky muszą być wykonane poniżej części zaznaczonej jako błędna (w miarę wolnego miejsca) lub na nowych karkach (doklejonych). 4. Dane do końcowej abeli: daa oraz imię i nazwisko wykonującego muszą być wypełnione długopisem. 1. Zapoznanie się z obsługą oscyloskopu a. Ekran lampy oscyloskopowej możemy rakować jak układ współrzędnych, w kórych porusza się plamka: X 1, X 2 - poencjały przyłożone do płyek odchylania poziomego, Y 1, Y 2 poencjały przyłożone do płyek odchylania pionowego. Aby na ekranie uzyskać obraz pojedynczej kreski na środku ekranu lampy oscyloskopowej do płyek Y 1, Y 2 należy przyłożyć napięcie okresowo zmienne (np. o przebiegu sinusoidalnym), a do płyek X 1, X 2 brak napięcia. Wysokość sygnału w osi Y zależy od ampliudy badanego sygnału oraz od czułości napięciowej kanału, kórym dokonujemy pomiaru. Czułość napięciową (współczynnik wzmocnienia) wyrażamy w wolach na działkę (z ang. V/div). Jeżeli chcemy uzyskać pełen obraz sygnału czyli rozciągnąć obserwowaną kreskę pionową w osi X należy doprowadzić do płyek X 1, X 2 napięcie narasającego liniowo w funkcji czasu. Ponieważ ekran ma skończone wymiary, plamka po dojściu do prawego skraju pola pomiarowego musi powrócić z powroem, a napięcie odchylające powinno zmaleć do swej warości począkowej. Wyworzony w en sposób sygnał jes piłokszałny, linia pozioma przez niego narysowana na ekranie jes nazywana liniową podsawą czasu lub rozciągiem linearnym. Jako jednoskę podsawy czasu przyjmujemy czas, kóry odpowiada przesunięciu się plamki na ekranie oscyloskopu w kierunku osi X o jedną działkę i wyrażamy w sekundach na działkę (z ang. s/div). b. Napisz wzór na obliczenie okresu (T) obserwowanego przebiegu na ekranie oscyloskopu.... Na panelu serowania oscyloskopu wskaż pokręło zmiany podsawy czasu. Odczyaj usawienie pokręła podsawy czasu, podaj odczyaną warość,... jednoska... Napisz, jakiej lierze z powyższego wzoru odpowiada odczyana warość pokręła?... c. Napisz wzór na obliczenie napięcia maksymalnego (U max ) przebiegu na ekranie oscyloskopu.... Na panelu serowania oscyloskopu wskaż pokręło wzmocnienia badanego sygnału (czułości napięciowej). Za pomocą pokręła dososuj warość wzmocnionego sygnału ak, aby cały obraz zmieścił się na ekranie oscyloskopu. Odczyaj usawienie pokręła wzmocnienia, podaj odczyaną warość... jednoska.. Napisz, jakiej lierze z powyższego wzoru odpowiada odczyana warość?... 13

14 d. Na panelu serowania oscyloskopu wskaż pokręło regulacji położenia w kierunku poziomym (na oscyloskopie: HORIZONTAL posiion lub symbol lub <>). Wyreguluj położenie wyświelanego przebiegu wzdłuż osi poziomej, żeby obraz zajmował cały ekran. e. Wskaż pokręło poencjomeru przesuwania poziomu zera - pozycjonowania w pionie (na oscyloskopie: VERTICAL posiion lub symbol ). Umożliwia on przesuwanie obrazu w pionie, ak, aby wybrane punky sygnału odpowiadały położeniom działek osi rzędnych na ekranie. Wyreguluj położenie wyświelanego przebiegu wzdłuż osi pionowej symerycznie względem osi X, ak aby cała ampliuda przebiegu była widoczna na całej wysokości pionowej ekranu f. Jeżeli obraz uzyskiwany na ekranie jes niesabilny, o znaczy, że okres sygnału podsawy czasu jes różny od całkowiej wielokroności sygnału wejściowego. Wówczas każdy począek pojedynczego okresu podsawy czasu przypadać będzie na inny punk począkowy przebiegu badanego. Skukuje o płynięciem obserwowanego sygnału. Mówimy wedy o braku synchronizacji podsawy czasu. Aby wyeliminować ę niedogodność, należy uzależnić przebieg podsawy czasu od przebiegu obserwowanego. Synchronizacji ej dokonuje się w układzie wyzwalania podsawy czasu (ang. rigger). 2. Zapoznać się z obsługą generaora funkcyjnego. Usawienie sygnału wyjściowego. a. Wskaż przycisk wyboru rodzaju fali (na generaorze: WAVE SELECT lub FUNCTION ). Sprawdź rodzaje generowanych przebiegów elekrycznych. Narysuj na ekranach poniżej różne kszały generowanego sygnału i podpisz je.... b. Znajdź przyciski lub pokręło usawiania częsoliwości. Znajdź przełącznik zakresu częsoliwości generaora (na generaorze: Frequency Range ). Zmiana częsoliwości wraz z przełącznikiem zakresu częsoliwości umożliwia usawienie żądanej częsoliwości. Usaw częsoliwość 800 Hz, a nasępnie 12,5 khz. Narysuj na ekranach poniżej uzyskane obrazy i podpisz je. c. Znajdź pokręło i przełącznik umożliwiające usawienie żądanej warości napięcia wyjściowego (ampliuda). Zmień usawienia napięcia wyjściowego ak, żeby ampliuda obserwowanego sygnału zmniejszyła się 2x. Narysuj na ekranie poniżej uzyskany obraz i podpisz go. 14

15 2b... 2b.. 2c. 3. Wybierz kszał sygnału wyjściowego (do pk. 3a kszał sinusoidalny; do pk. 3b kszał piłokszałny) oraz zakres częsoliwości, aby uzyskać na ekranie oscyloskopu żądany przebieg sygnału wyjściowego. Dososuj ilość obserwowanych na ekranie przebiegów (1-2 pełne okresy) oraz ich ampliudę (2-4 kraek). W ym celu wykorzysaj regulację pokręeł podsawy czasu i wzmocnienia na oscyloskopie oraz regulację częsoliwości i ampliudy na generaorze funkcyjnym. Narysuj obserwowane przebiegi. 3a. napięcie sinusoidalne 3b.napięcie piłokszałne lub prosokąne c. Odczyaj i wpisz wskazania do abeli (wraz z prawidłowymi jednoskami) Napięcie pokręło zmiany podsawy czasu c pokręło wzmocnienia sygnału k odczyana z ekranu długość okresu L odczyaną z ekranu wysokość ampliudy d sinusoidalne piłokszałne d. Oblicz wielkości charakerysyczne obserwowanych i rysowanych przebiegów: okres drgań T, częsoliwość f, warość maksymalna napięcia U max (warość szczyowa = ampliudzie) i warość skueczną napięcia (Roo Mean Square, RMS). e. Warość skueczna prądu przemiennego (RMS) jes aką warością prądu U sałego, kóra w ciągu czasu równego okresowi prądu przemiennego max RMS = spowoduje en sam efek cieplny, co dany sygnał prądu przemiennego 2 (zmiennego). 15

16 Wykonaj prawidłowe obliczenia (oraz działania na jednoskach) Uzupełnij abelę, w nawiasy wpisz odpowiednie jednoski: Napięcie T [ ] f [ ] U max [ ] RMS [ ] sinusoidalne piłokszałne Daa Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia 16

17 ĆWICZENIE NR 2.5 Pomiar prędkości przepływu krwi za pomocą ulradźwięków. Cele emau badawczego: Celem ćwiczenia jes wyznaczenie częsoliwości dopplerowskiej i obliczenie prędkości przepływu krwi w ęnicy promieniowej i szyjnej każdego z ćwiczących. Rozwój wiedzy Powórzenie wiadomości podsawowych z zakresu zjawisk falowych: drgania, fala mechaniczna, długość i prędkość fali, okres i częsość drgań, ampliuda, zjawisko Dopplera. Dźwięk. Przewarzanie drgań akusycznych na elekryczne. Samodzielne przygoowanie wiadomości na ema: infradźwięki oraz ulradźwięki cechy, meody wywarzania. Opis oddziaływania ulradźwięków z maerią (skuki fizyczne, chemiczne i biologiczne) oraz zasosowanie ulradźwięków w medycynie. Wyjaśnienie wykorzysania zjawiska Dopplera w pomiarze prędkości przepływu krwi. Przypomnienie wzorów maemaycznych opisujących zjawiska fizyczne. Przeliczanie jednosek. Wykorzysanie poznanej wiedzy. Rozwój umiejęności Sosowanie pojęć i erminów fizycznych. Umiejęność fachowego wysławiania się. Planowanie i przeprowadzanie eksperymenów i doświadczeń. Gromadzenie i analizowanie, wraz z szacowaniem niepewności pomiarowych, danych pomiarowych. Przeliczanie jednosek. Opis fali mechanicznej wykorzysując akie pojęcia jak długość i prędkość fali, częsość i okres, ampliuda drgań. Prezenacja i przewarzanie danych pomiarowych przedsawionych w formie abel. Analiza i omówienie wyników pomiaru, formułowanie wniosków. Poprawny opis i wyjaśnianie zjawisk fizycznych. Rozwój posaw Umiejęność przekonywania innych do swoich racji, prowadzenia rzeczowej dyskusji. Współpracy w grupie. Weryfikacji zdobyej wiedzy i umiejęności. Kulura echniczna. Przesrzeganie przepisów BHP. Rozwiązywania problemów. Szacunku dla pracy własnej i innych 17

18 Część doświadczalna Ćwiczenie A Niezbędne przyrządy i maeriały: apara UDP-10, żel do ulrasonografii Wykonanie ćwiczenia 1. Zapoznać się z obsługą aparau. - włączony apara UDP 10 powinien mieć wskazówki mierników A i B w położeniu zerowym, brak sygnału akusycznego w głośniku. 2. Posmarować subsancją konakową (żelem) skórę w okolicy badanego naczynia. 3. Przyłożyć głowicę i operując jej usawieniem uzyskać charakerysyczny odgłos w głośniku, zaobserwować owarzysząca mu częsoliwość dopplerowską. 4. Wyznaczyć prędkość przepływu krwi w wybranych punkach żył i ęnic każdego z uczesników ćwiczenia. Miejsca badania ęna Tęnica promieniowa - w 1/3 dolnej części przedramienia leży powierzchownie, bocznie od ścięgna mięśnia zginacza nadgarska promieniowego, u zwykle można badać ęno Tęnice szyjne wspólne - ak lewą jak i prawą badamy ok 1,5 cm bocznie od górnego brzegu chrząski arczowej krani ( wyniosłość kraniowa lub "jabłko Adama u mężczyzn"). Tęnice szyjna wspólna dzieli się na wysokości górnego brzegu chrząski arczowej krani dzieli się na ęnicę szyjną zewnęrzną i ęnicę szyjna wewnęrzną. 18

19 Uzupełnij Częsoliwość nadawana Prędkość rozchodzenia się ulradźwięków we krwi Równanie pozwalające wyznaczyć prędkość przepływu krwi. Napisz obliczenia (wraz z jednoskami): Uzupełnij abelę: Miejsce pomiaru ęnica promieniowa ęnica szyjna wspólna Częsoliwość dopplerowska α cos α prędkość przepływu [cm/s] 19

20 Ćwiczenie B Celem ćwiczenia jes obserwacja chwilowych przebiegów prędkości przepływu krwi oraz wyznaczenie paramerów obserwowanych przebiegów. Niezbędne przyrządy i maeriały: apara UDP5-R, program do obsługi UDP wersja 1.29b, kompuer, żel do ulrasonografii. Do charakerysycznych paramerów krzywej prędkości przepływu krwi zaliczamy indeks pulsacji IP i indeks oporowy RI. Indeks pulsacji PI sosunek energii zawarej w składowych oscylacyjnych do średniej warości przepływu. υmax υmin PI υsr gdzie: max - maksymalna warość prędkości min - minimalna warość prędkości śr - uśredniona w czasie jednego cyklu pracy serca prędkość przepływu krwi Indeks oporowy RI ( indeks Planiola) RI gdzie: sk - prędkość maksymalna w czasie skurczu rozk - średnia prędkość w fazie rozkurczu (υ sk υ υ sk rozk ) Jak widać z ryciny 2, warość V rozk określa się jako średnią z odcinka czasu odpowiadającego końcowej fazie rozkurczu serca, uż przed wzrosem nasępnej fali. Samodzielne wyznaczanie V rozk jes obarczone dość dużym błędem, a program wyznacza ę warość auomaycznie. IR w zdrowej ęnicy szyjnej wspólnej przyjmuje warości od 0,55 do 0,75. Ryc. 1 Ilusracja meody obliczania wyrażenia (V max - V min ). Po lewej sronie pokazano przepływ jednokierunkowy, a po prawej - dwukierunkowy (z falą zwroną). Ryc.2. Ilusracja sposobu obliczania V sk i V rozk. Mała warość PI ( poniżej 1) świadczy o zwężeniu ęnicy szyjnej. 20

21 Wykonanie ćwiczenia 1. Wyznaczyć maksymalną, minimalną warość prędkości przepływu krwi w wybranych punkach ciała każdego z uczesników ćwiczenia. Wyznaczyć współczynnik oporowy RI oraz indeks pulsacji PI miejsce pomiaru ęnica promieniowa ęnica szyjna wspólna maksymalna prędkość przepływu [cm s -1 ] minimalna prędkość przepływu [cm s -1 ] PI RI Daa Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia Punky z zaliczenia Punky dodakowe 21

22 APPENDIX 1 Kryeria oceny prezenacji: 1. Prezenacja przygoowana w programie PowerPoin lub kompaybilnym (OpenOffice) 2. Czas rwania prezenacji do 5 min. 3. Treść prezenacji czy zgodna z emaem, czy wyczerpuje ema. 4. Przejrzysość slajdów mało eksu na slajdzie, odpowiednia wielkość czcionki. 5. Mówienie, omawianie a nie czyanie. 6. Ciekawe podejście do emau. 7. Zaineresowanie słuchaczy, zachęa do dyskusji po prezenacji, prowadzenie dyskusji. Temay do prezenacji: Lab Prawo Coulomba i warunki jego sosowalności, pole elekryczne i elekro-magneyczne, i jego własności 2. Termoemisja w oscyloskopie 3. Ruch ładunku w polu elekrycznym (na przykładzie oscyloskopu) 4. Luminescencja (na czym polega zjawisko) i jej rodzaje (luminescencja w oscyloskopie) Lab Infradźwięki cechy, sposoby wywarzania. 2. Meody orzymywania ulradźwięków (źródła nauralne i szuczne). 3. Oddziaływanie ulradźwięków z maerią (skuki fizyczne). 4. Zjawisko Dopplera wykorzysanie w pomiarze prędkości przepływu krwi. 22

23 PROMIENIOTWÓRCZOŚĆ WYTYCZNE DO SPORZĄDZENIA RAPORTU Z CZĘŚCI ĆWICZENIOWEJ 1. Zeszy do Ćwiczeń z Biofizyki należy wydrukować w formacie A4, spiąć, obłożyć (bindowanie lub skoroszy) i podpisać. 2. Rapor powinien być czyelny, bez skreśleń. 3. Wszelkie rysunki muszą być wykonywane ołówkiem. Obliczenia wraz z prawidłowymi jednoskami mogą być wykonywany długopisem lub ołówkiem. 4. W razie konieczności poprawy raporu, wszelkie koreky muszą być wykonane poniżej części zaznaczonej jako błędna (w miarę wolnego miejsca) lub na nowych karkach (doklejonych). 5. Dane do końcowej abeli: daa oraz imię i nazwisko wykonującego muszą być wypełnione długopisem. ZAGADNIENIA DO ĆWICZEŃ Z PROMIENIOTWÓRCZOŚCI Ćwiczenie 3.1. Promieniowórczość. Podsawy dozymerii. 1. Aom i jego składniki. 2. Izoopy i radioizoopy - jak są wywarzane? 3. Przemiany jądrowe. 4. Prawo rozpadu promieniowórczego, posać analiyczna i graficzna (krzywa rozpadu). Sała rozpadu i czas połowicznego rozpadu. Efekywny czas połowicznego zaniku., 5. Akywność definicja i jednoski. 6. Rodzaje promieniowania jonizującego. 7. Podsawy dozymerii: ekspozycja (dawka ekspozycyjna), dawka zaabsorbowana, równoważnik dawki, dawka równoważna, dawka efekywna (skueczna). Dawka graniczna. Moc dawki. 8. Źródła narażenia na promieniowanie jonizujące. Ćwiczenie 3.2, 3.3. Oddziaływanie foonów i cząsek naładowanych z maerią. 1. Zjawisko fooelekryczne, efek Compona i kreacja par. 2. Prawo osłabienia. Krzywa osłabienia i grubość połowiąca. Liniowy i masowy współczynnik osłabienia. 3. LET - liniowe przekazywanie energii. Oddziaływanie cząsek z maerią. 4. Promieniowanie hamowania (Bremssrahlung). 5. Osłony przed promieniowaniem jonizującym: alfa, bea, gamma, X oraz neuronami. 6. Zasosowanie izoopów promieniowórczych w medycynie: - diagnosyka (badania czynnościowe, opograficzne, radioimmunologiczne), - erapia: - źródła zamknięe (eleradioerapia, brachyerapia, curieerapia) - źródła oware LITERATURA: Wybrane zagadnienia z biofizyki pod red. prof. S. Miękisza Biofizyka pod red. prof. F. Jaroszyka Elemeny fizyki, biofizyki i agrofizyki pod red. prof. S. Przesalskiego Podsawy biofizyki" pod red. prof. A. Pilawskiego 23

24 ĆWICZENIE NR 3.1 RADIOAKTYWNOŚĆ. PODSTAWY DOZYMETRII. 1. Włącz zesaw pomiarowy, sprawdź napięcie pracy licznika (pod konrolą asysena). Zmierz ło nauralne w czasie 5 minu, oblicz szybkość zliczeń pochodzących od ła. N imp N =...imp, I min 2. Dokonaj rzykronego pomiaru impulsów pochodzących od źródła wzorcowego w czasie wz = 1 minua i oblicz szybkość zliczeń bez ła oraz błąd szybkości zliczeń (wyniki pomiarów i wyniki obliczeń wpisz do abeli 1). Tabela 1 Ilość zliczeń N wz Warość średnia ilości zliczeń N I N II N N wz 3 III Szybkość zliczeń N wz I wz wz Szybkość zliczeń bez ła I wz - I Błąd szybkości zliczeń wzorca wz I wz wz I I II III [impulsy] [imp min -1 ] 3. Zmierz ilość impulsów pochodzących od źródeł o nieokreślonej akywności w czasie p =5 minu i oblicz szybkość zliczeń bez ła oraz błąd szybkości zliczeń. 4. Wyniki pomiarów i wyniki obliczeń wpisz do abeli 2. Tabela 2 Nr próbki Ilość zliczeń N p Szybkość zliczeń N p I p p Szybkość zliczeń bez ła I p - I [impulsy] [imp min -1 ] Błąd szybkości zliczeń Ip I p p 6. Oblicz akywność każdej próbki, błąd, z jakim zosała wyznaczona i błąd procenowy. Wyniki umieść w abeli 3. I p I A p A wz I I wz Akywność wzorca wynosi A wz = 4000 Bq A wz = 130 Bq 24

25 Błąd oznaczenia akywności próbki liczymy za pomocą wzoru: A Ip I wz Ap p A 2 wz I I I I Tabela 3 Nr próbki wz Szybkość zliczeń bez ła I p - I wz Akywność próbki I p I A p A wz I I wz wz I I Błąd akywności A p p wz I I A wz Błąd procenowy A p A p% 100% A [imp min -1 ] [Bq] [%] p 5. Oblicz liczbę aomów N cezu Cs-137 w próbce wzorcowej. A A N N 6. Oblicz masę cezu Cs-137 w próbce. Masę cezu Cs-137 w próbce wyznaczamy korzysając z zależności: m = n N A gdzie: n liczba moli N A = 6, [mol -1 ] liczba Avogadro jes liczbą aomów w molu. Półokres rozpadu Cs 137 wynosi 30,07 la, a sała rozpadu = 7, s -1. Jeżeli w próbce jes N aomów cezu, ich masa wynosi: 137 N mcs [g] NA 7. Wyniki obliczeń wpisz do abeli 4. Tabela 4 Nr próbki Akywność próbki [Bq] Liczba aomów (N) Cs 137 w próbce wzorzec Masa aomów Cs 137 w badanej próbce [g] 8. Oblicz wydajność pomiaru akywności. Daa I % 100[%] =...[%] A Imię i Nazwisko wykonującego Podpis prowadzącego ćwiczenia ćwiczenie Punk dodakowy 25

26 ĆWICZENIE NR 3.2, 3.3 Oddziaływanie foonów z maerią i cząsek naładowanych maerią. Wykonanie ćwiczenia część A 1. Włącz zesaw pomiarowy, sprawdź napięcie pracy licznika (pod konrolą asysena). 2. Zmierz ło w czasie 5 minu. Oblicz szybkość zliczeń impulsów pochodzących od ła. I N......[impulsów] N 5 impulsów......[ ] min 3. Umieść źródło promieniowania gamma w deekorze (zachowaj ę samą geomerię podczas wszyskich pomiarów). 4. Zmierz częsość zliczeń pochodzących od źródła nie przesłonięego w czasie 1 minuy (wykonaj rzy pomiary i oblicz średnią arymeyczną). Wyniki przedsaw w abeli Wyznacz ilość impulsów pochodzących od źródła przesłonięego, zwiększając liczbę krążków absorpcyjnych w kolejnych pomiarach. Każdy pomiar wykonaj rzykronie w czasie 1 minuy. Oblicz warości średnie częsości zliczeń i średnią częsość zliczeń bez ła. Oblicz procenowy spadek częsości zliczeń. Wyniki wpisz do abeli 1. Tabela 1 Grubość przesłony x [10-3 m] Częsość zliczeń I Pomiar 1 Pomiar 2 Pomiar 3 I 1 I 2 I 3 Średnia częsość zliczeń I1 I2 I3 Iśr 3 Średnia częsość zliczeń bez ła I I śr I Procenowa zmiana częsości zliczeń 0 I% = I/I o 100% [impmin -1 ] % 6. Przedsaw graficznie krzywą osłabienia I(%) = f(x) i wyznacz z wykresu grubość połowiącą d 1/2. 7. Wykonaj en sam wykres w skali półlogarymicznej używając programu EXCEL. 26

27 1100 I[%] x [mm] d 1/ 2...[m] 8. Oblicz współczynniki osłabienia i m cynku, (gęsość cynku = 7, kg m -3 ) ln [m ] d 1/ 2 m m...[ ] kg 9. Wyznacz ilość impulsów pochodzących od źródła przesłonięego różnymi absorbenami. Każdy pomiar wykonaj rzykronie w czasie 1 minuy. Wyniki wpisz do abeli 2. Oblicz warości średnie częsości zliczeń i średnią częsość zliczeń bez ła. 2 Tabela 2 Rodzaj absorbena Grubość przesłony x [10-3 m] Częsość zliczeń I Pomiar 1 Pomiar 2 Pomiar 3 I 1 I 2 I 3 Średnia częsość zliczeń I1 I2 I3 Iśr 3 Średnia częsość zliczeń bez ła I I śr I aluminium [impmin -1 ] ołów cynk plexi 27

28 10. Oblicz współczynniki osłabienia zmierzonych absorbenów (liniowe i masowe) oraz grubości połowiące. Wyniki obliczeń zamieść w abeli 3. Tabela 3 absorben gęsość [kg m -3 ] I I śr I [impmin -1 ] [m -1 ] m [m 2 kg -1 ] d 1/2 [m] aluminium 2, ołów 11, cynk plexi 1, Daa Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia Punky 28

29 Wykonanie ćwiczenia część B 1. Włącz zesaw pomiarowy w obecności asysena. 2. Zmierz ło nauralne w czasie 5 minu, oblicz szybkość zliczeń pochodzących od ła. N imp N =...imp, I min 3. Wykonaj pomiary (czas pomiaru 1 minua) liczby zliczeń przy nie przesłonięym źródle oraz źródle przesłonięym przez różne absorbeny wyniki wpisz do abeli 1. Tabela1 Rodzaj absorbena Brak przesłony Al Cu Celuloid Grubość przesłony Częsość zliczeń Pomiar 1 Pomiar 2 Pomiar 3 I 1 I 2 I 3 [10-3 m] [impmin -1 ] 0 Średnia częsość zliczeń I1 I2 I3 Iśr 3 Średnia częsość zliczeń bez ła I I śr I 1. Oblicz warości współczynnika absorpcji dla odpowiednich absorbenów w/g wzorów: I ln współczynnik liniowy: 1 I m Wyniki obliczeń przedsaw w abeli 2. d 0 współczynnik masowy: m 2 m kg Tabela 2 Rodzaj absorbena Gęsość absorbena Aluminium 2, Miedź 9, Celuloid 1, Liniowy współczynnik absorpcji Masowy współczynnik absorpcji [kg/m 3 ] [m -1 ] [m 2 kg -1 ] 29

30 2. Na podsawie wzoru Price'a (3) oblicz energię promieniowania emiowanego przez użye źródło. E 22 1 μ mśr E 3 [m 2 kg -1 ] [cm 2 g -1 ] [MeV] 1, 33 m mśr mal mcu mcel Daa Imię i Nazwisko wykonującego ćwiczenie Podpis prowadzącego ćwiczenia Punky 30

31 Masa spoczynkowa elekronu 31 m e 9,1110 kg MeV 0,000549u 0,51 2 c Jednoska masy aomowej 27 u 1,6610 kg MeV 931,5 2 c Ładunek elekronu 19 e 1,6 10 C Masa spoczynkowa proonu 27 m p 1,6710 kg MeV 1,007276u 938 c 2 Prędkość świała w próżni 8 m c s Liczba Avogadro 23 1 N A 6,02 10 mol Masa spoczynkowa neuronu 27 m p 1,6810 kg MeV 1,008665u 940 c 2 Sała Plancka 34 h 6,62 10 Js 31

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWCZEŃ Z BOFZYK mię i nazwisko:. Kierunek:.. Regulamin zajęć dydakycznych z biofizyki znajduje się na sronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydakyka/kierunki/zdrowie_publiczne/regulamin_zajec

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. Regulamin zajęć dydakycznych z biofizyki znajduje się na sronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydakyka/kierunki/fizjoerapia/regulamin_zajec

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWCZEŃ Z BOFZYK mię i nazwisko:. Kierunek:.. Regulamin zajęć dydakycznych z biofizyki znajduje się na sronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydakyka/kierunki/raownicwo_medyczne/regulamin_zajec

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWCZEŃ Z BOFZYK mię i nazwisko:. Kierunek:.. 1 Regulamin zajęć dydakycznych z biofizyki Wydział Nauk o Zdrowiu UMB, kierunek zdrowie publiczne Sprawy ogólne 1. Zajęcia dydakyczne z biofizyki

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. Grupa:. Regulamin zajęć dydakycznych z biofizyki znajduje się na sronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydakyka/kierunki/farmacja/regulamin_zajec

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. 1 Regulamin zajęć dydakycznych z biofizyki Wydział Farmacji UMB, kierunek farmacja Sprawy ogólne 1. Zajęcia dydakyczne z biofizyki odbywają się

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWCZEŃ Z BOFZYK mię i nazwisko:. Kierunek:.. Grupa:. Regulamin zajęć dydakycznych z biofizyki znajduje się na sronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydakyka/kierunki/ raownicwo_medyczne/

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. 1 Regulamin zajęć dydakycznych z biofizyki Wydział Nauk o Zdrowiu UMB, kierunek raownicwo Sprawy ogólne 1. Zajęcia dydakyczne z biofizyki odbywają

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. Regulamin zajęć dydaktycznych z biofizyki znajduje się na stronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydaktyka/kierunki/logopedia_z_fonoaudiologia/regulamin_zajec

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

... nazwisko i imię ucznia klasa data

... nazwisko i imię ucznia klasa data ... nazwisko i imię ucznia klasa daa Liczba uzyskanych punków Ocena TEST SPRAWDZAJĄCY Z PRZYRZĄDÓW POMIAROWYCH W dniu dzisiejszym przysąpisz do esu pisemnego, kóry ma na celu sprawdzenie Twoich umiejęności

Bardziej szczegółowo

Rozkład i Wymagania KLASA III

Rozkład i Wymagania KLASA III Rozkład i Wymagania KLASA III 10. Prąd Lp. Tema lekcji Wymagania konieczne 87 Prąd w mealach. Napięcie elekryczne opisuje przepływ w przewodnikach, jako ruch elekronów swobodnych posługuje się inuicyjnie

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. 1 Regulamin zajęć dydaktycznych z biofizyki Wydział Nauk o Zdrowiu UMB, kierunek fizjoterapia Sprawy ogólne 1. Zajęcia dydaktyczne z biofizyki

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. 1 Regulamin zajęć dydaktycznych z biofizyki Wydział Nauk o Zdrowiu UMB, kierunek logopedia z fonoaudiologią Sprawy ogólne 1. Zajęcia dydaktyczne

Bardziej szczegółowo

Temat: Wyznaczanie charakterystyk baterii słonecznej.

Temat: Wyznaczanie charakterystyk baterii słonecznej. Ćwiczenie Nr 356 Tema: Wyznaczanie charakerysyk baerii słonecznej. I. Lieraura. W. M. Lewandowski Proekologiczne odnawialne źródła energii, WNT, 007 (www.e-link.com.pl). Ćwiczenia laboraoryjne z fizyki

Bardziej szczegółowo

Ćwiczenie 133. Interferencja fal akustycznych - dudnienia. Wyznaczanie częstotliwości dudnień. Teoretyczna częstotliwość dudnienia dla danego pomiaru

Ćwiczenie 133. Interferencja fal akustycznych - dudnienia. Wyznaczanie częstotliwości dudnień. Teoretyczna częstotliwość dudnienia dla danego pomiaru Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ćwiczenie 33 Inererencja al akusycznych - dudnienia Tabela I. Wyznaczanie częsoliwości dudnień Pomiar Czas,

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie:

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie: Wydział EAIiIB Kaedra Merologii i Elekroniki Laboraorium Podsaw Elekroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw.. Wprowadzenie do obsługi przyrządów pomiarowych cz. Daa wykonania:

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę Klasa III 10. Prąd elekryczny Tema według 10.1. Prąd elekryczny w mealach. Napięcie elekryczne 10.. Źródła prądu. Obwód elekryczny Wymagania na poszczególne oceny przy realizacji i podręcznika Zrozumieć

Bardziej szczegółowo

Drgania elektromagnetyczne obwodu LCR

Drgania elektromagnetyczne obwodu LCR Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia

Bardziej szczegółowo

Sygnały zmienne w czasie

Sygnały zmienne w czasie Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza ĆWICZENIE 51 POMIARY OSCYLOSKOPOWE Instrukcja wykonawcza 1. Wykaz przyrządów a. Oscyloskop dwukanałowy b. Dwa generatory funkcyjne (jednym z nich może być generator zintegrowany z oscyloskopem) c. Przesuwnik

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek: LEKARSKO-DENTYSTYCZNY Grupa:. Regulamin zajęć dydaktycznych z biofizyki znajduje się na stronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydaktyka/kierunki/lekarsko-dentystyczny/regulamin_zajec

Bardziej szczegółowo

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich. Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy

Bardziej szczegółowo

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie

Bardziej szczegółowo

Ćwiczenie nr 28. Badanie oscyloskopu analogowego

Ćwiczenie nr 28. Badanie oscyloskopu analogowego Ćwiczenie nr 28 Badanie oscyloskopu analogowego 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania oraz nabycie umiejętności posługiwania się oscyloskopem analogowym. 2. Dane znamionowe

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. Grupa:. Regulamin zajęć dydaktycznych z biofizyki znajduje się na stronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydaktyka/kierunki/lekarski/regulamin_zajec

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2.

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2. POLIECHNIK WROCŁWSK, WYDZIŁ PP I- LBORORIUM Z PODSW ELEKROECHNIKI I ELEKRONIKI Ćwiczenie nr 9. Pomiary podsawowych paramerów przebiegów elekrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014)

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014) Wymagania przedmioowe z izyki - klasa III (obowiązujące w roku szkolnym 013/014) 8. Drgania i ale sprężyse!wskazuje w ooczeniu przykłady ciał wykonujących ruch drgający!podaje znaczenie pojęć: położenie

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA opracowanie: Wojciech Solarski Wprowadzenie Prawo podziału sformułowane przez Walera H. Nensa opisuje układ rójskładnikowy, z czego dwa składniki o rozpuszczalniki

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. Regulamin zajęć dydaktycznych z biofizyki znajduje się na stronie Zakładu Biofizyki www.umb.edu.pl/wl/zaklad-biofizyki/dydaktyka/kierunki/lekarski/regulamin_zajec

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWICZEŃ Z BIOFIZYKI Imię i nazwisko:. Kierunek:.. 1 Regulamin zajęć dydaktycznych z biofizyki Wydział Lekarski UMB, kierunek lekarsko-dentystyczny Sprawy ogólne 1. Zajęcia dydaktyczne z biofizyki

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

II PRACOWNIA FIZYCZNA część: Pracownia Jądrowa

II PRACOWNIA FIZYCZNA część: Pracownia Jądrowa II PRCOWI FIZYCZ część: Pracownia Jądrowa Ćwiczenie nr 2 Pomiar skażeń promieniowórczych ypu wody lub ierza Cel ćwiczenia, opis: Wyznaczenie akywności pierwiasków -promieniowórczych w środowisku nauralnym

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z FIZYKI w klasie III gimnazjum sr. 1 7. Przemiany energii w zjawiskach

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania

Bardziej szczegółowo

Wymagania przedmiotowe z fizyki - klasa II (obowiązujące w roku szkolnym 2013/2014)

Wymagania przedmiotowe z fizyki - klasa II (obowiązujące w roku szkolnym 2013/2014) Wymagania przedmioowe z fizyki - klasa II (obowiązujące w roku szkolnym 013/014) 6. Praca. Moc. Energia!oblicza moc na podsawie wzoru!podaje jednoski mocy i przelicza je W P =!podaje przykłady energii

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III 9. O elekryczności saycznej Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki Klasa III Tema według 9.1. Elekryzowanie przez arcie i zeknięcie z ciałem naelekryzowanym opisuje budowę

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki

Podstawy Elektroniki dla Elektrotechniki AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Klucze Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2015 r. 1 1. Wsęp. Celem ćwiczenia jes ugrunowanie

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Tema ćwiczenia: BADANIE MULTIWIBRATORA UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI. 2. 3. Imię i Nazwisko 4. Daa wykonania Daa oddania Ocena Kierunek Rok sudiów

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie sudenów z podsawowymi właściwościami ów przebiegów elekrycznych o jes źródeł małej mocy generujących przebiegi elekryczne. Przewidywane jes również (w miarę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z FIZYKI w klasie II gimnazjum sr. 1 4. Jak opisujemy ruch? oblicza średnią

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

4.1 Obsługa oscyloskopu(f10)

4.1 Obsługa oscyloskopu(f10) 164 Fale 4.1 Obsługa oscyloskopu(f10) Bezpośrednim celem ćwiczenia jes zapoznanie się z działaniem i obsługą oscyloskopuak,abywprzyszłościmożnabyłoprzyjegopomocywykonywaćpomiary.wym celu należy przeprowadzić

Bardziej szczegółowo

- ĆWICZENIA - Radioaktywność w środowisku naturalnym K. Sobianowska, A. Sobianowska-Turek,

- ĆWICZENIA - Radioaktywność w środowisku naturalnym K. Sobianowska, A. Sobianowska-Turek, Ćwiczenie A Wyznaczanie napięcia pracy licznika Ćwiczenie B Pomiary próbek naturalnych (gleby, wody) Ćwiczenie C Pomiary próbek żywności i leków - ĆWICZENIA - Radioaktywność w środowisku naturalnym K.

Bardziej szczegółowo

Przedmiotowy system nauczania z fizyki dla klasy II gimnazjum

Przedmiotowy system nauczania z fizyki dla klasy II gimnazjum Przedmioowy sysem nauczania z fizyki dla klasy II gimnazjum 7. Przemiany energii w zjawiskach cieplnych 7.1. Energia wewnęrzna i jej zmiany przez wykonanie pracy 7.2. Cieplny przepływ energii. Rola izolacji

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki Klasa 3 I semesr 10. Prąd elekryczny Tema według 10.1. Prąd elekryczny w mealach. Napięcie elekryczne podaje jednoskę napięcia

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE LABORATORIUM PROMIENIOWANIE W MEDYCYNIE Ćw nr 3 NATEŻENIE PROMIENIOWANIA γ A ODLEGŁOŚĆ OD ŹRÓDŁA PROMIENIOWANIA Nazwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa 1 Cel ćwiczenia Natężenie

Bardziej szczegółowo

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary ocena dopuszczająca Wymagania podsawowe ocena dosaeczna ocena dobra Wymagania dopełniające ocena bardzo dobra 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 Wielkości fizyczne, kóre mierzysz na co dzień wymienia

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z fizyki dla klas drugich i trzecich gimnazjum

Szczegółowe wymagania edukacyjne z fizyki dla klas drugich i trzecich gimnazjum Szczegółowe wymagania edukacyjne z fizyki dla klas drugich i rzecich gimnazjum 5. Siły w przyrodzie Lp. Tema lekcji Wymagania konieczne 44 Rodzaje i skuki oddziaływań wymienia różne rodzaje oddziaływania

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

Fale elektromagnetyczne spektrum

Fale elektromagnetyczne spektrum Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 54603

INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 54603 ZAŁĄCZNIK NR 1 INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 5463 Do rejesracji przebiegów czasowych i charakerysyk służy oscyloskop cyfrowy. Drukarka przyłączona do oscyloskopu umożliwia wydrukowanie zarejesrowanych

Bardziej szczegółowo

Fale mechaniczne i akustyczne

Fale mechaniczne i akustyczne Fale mechaniczne i akusyczne Zadania z rozwiązaniami Projek współfinansowany przez Unię uropejską w ramach uropejskiego Funduszu Społecznego Projek współfinansowany przez Unię uropejską w ramach uropejskiego

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników Insrukcja do ćwiczenia laboraoryjnego Badanie przerzuników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. 2. Właściwości, ablice sanów, paramery sayczne przerzuników RS, D, T, JK.

Bardziej szczegółowo