HYDRODYNAMIC PRESSURE IN HUMAN HIP JOINT

Podobne dokumenty
A NEW METHOD OF MEASURING THE OPERATING PARAMETERS OF SLIDE JOURNAL BEARINGS BY USING ACOUSTIC EMISSION

PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH. Łódź, maja 1997 r.

CAPACITY ENHANCEMENT WITH FRICTION FORCE DIMINUTION IN HDD SPHERICAL MICRO-BEARING

Knovel Math: Jakość produktu

A NEW MEASUREMENT METHOD OF FRICTION FORCES REGARDING SLIDE JOURNAL BEARINGS BY ACOUSTIC EMISSION

Microsystems in Medical Applications Liquid Flow Sensors

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Hard-Margin Support Vector Machines

Lecture 18 Review for Exam 1

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

FLOW ON THE BIO-CELL SURFACES AS AN ELEMENT OF MICROBEARING TRIBOLOGY

INTEGRAL APPROACHES FOR THE PRESSURE DISTRIBUTION OF POWER-LAW FLUID IN A CURVILINEAR BEARINGWITH SQUEEZE FILM

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

THE PHENOMENON OF HIP JOINT ELLIPTICAL SURFACES

PEŁNA LISTA KSIĄŻEK I PUBLIKACJI Z ZAKRESU TRIBOLOGII I MATEMATYKI STOSOWANEJ Krzysztofa Wierzcholskiego

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

CIŚNIENIE I NOŚNOŚĆ WZDŁUŻNEGO ŁOŻYSKA ŚLIZGOWEGO SMAROWANEGO OLEJEM MIKROPOLARNYM

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

Łódź,15-16 maja 1997 r. THE INFLUENCE OF WALL'S POROSITYON THE PRESSURE DISTRIBUTION IN THE CURVILINEAR BEARING LUBRICATED BY POWER - LAW FLUID.

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Aerodynamics I Compressible flow past an airfoil

BADANIA MORFOLOGII POWIERZCHNI CHRZĄSTKI STAWOWEJ Z WYKORZYSTANIEM TECHNIKI KOMPUTEROWEJ

Convolution semigroups with linear Jacobi parameters

DEFORMACJE TERMICZNE WAHLIWYCH PŁYTEK W 5-SEGMENTOWYM ŚLIZGOWYM ŁOŻYSKU POPRZECZNYM THERMAL DEFORMATION OF PADS IN TILTING 5-PAD JOURNAL BEARING

OIL LEAKAGE IN A VARIABLE-HEIGHT GAP BETWEEN THE CYLINDER BLOCK AND THE VALVE PLATE IN A PISTON PUMP

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

The Lorenz System and Chaos in Nonlinear DEs

RACJONALIZACJA PROCESU EKSPLOATACYJNEGO SYSTEMÓW MONITORINGU WIZYJNEGO STOSOWANYCH NA PRZEJAZDACH KOLEJOWYCH

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Outline of a method for fatigue life determination for selected aircraft s elements

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

THE STUDY OF SLIDE BEARING PROPERTIES INCLUDING THE SURFACE TEXTURE GEOMETRY OF A JOURNAL

Grzegorz PONIEWAŻ Leszek KUŚMIERZ. 1. Wstęp. 1. Introduction

Badania doświadczalne wielkości pola powierzchni kontaktu opony z nawierzchnią w funkcji ciśnienia i obciążenia

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Optymalizacja konstrukcji wymiennika ciepła

Teoretyczny model panewki poprzecznego łożyska ślizgowego. Wpływ wartości parametru zużycia na nośność łożyska

PARAMETRY EKSPLOATACYJNE POPRZECZNYCH ŁOŻYSK ŚLIZGOWYCH SMAROWANYCH FERROCIECZĄ O RÓŻNYM STĘŻENIU CZĄSTEK MAGNETYCZNYCH

Zarządzanie sieciami telekomunikacyjnymi

Modelowanie zagadnień cieplnych: analiza porównawcza wyników programów ZSoil i AnsysFluent

Leszek KUŚMIERZ Grzegorz PONIEWAŻ. 1. Wstęp. 1. Introduction

INFLUENCE OF SELECTED METHOD TO ESTIMATE COMPOSITE MATERIAL ELASTICITY PROPERTIES ON RESULTS OF FINITE ELEMENT ANALYSIS

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

SHEAR LAG EFFECT IN THE NUMERICAL EXPERIMENT

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

PEŁNA LISTA KSIĄŻEK I PUBLIKACJI Z ZAKRESU TRIBOLOGII I MATEMATYKI STOSOWANEJ Krzysztofa Wierzcholskiego

TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH

WŁAŚCIWOŚCI TRIBOLOGICZNE ZWYRODNIAŁYCH STAWÓW SYNOWIALNYCH

Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation.

BADANIA WŁASNOŚCI RUCHOWYCH ZDEGENEROWANYCH STAWÓW SYNOWIALNYCH

AN EFFECT OF FLOW NON-UNIFORMITY IN EARTH-TO-AIR MULTI-PIPE HEAT EXCHANGERS (EAHEs) ON THEIR THERMAL PERFORMANCE

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Monografie / Rozdziały w monografiach

PODATNOŚĆ DYNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM W RUCHU UNOSZENIA

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN

z. 112 Transport 2016 AVL dostarczono: czerwiec 2016

Patients price acceptance SELECTED FINDINGS

WZDŁUŻNE POLE MAGNETYCZNE W SZCZELINIE POPRZECZNEGO ŁOŻYSKA ŚLIZGOWEGO

THE INTELLIGENT OPERATION OF NANO-GROOVED MICROBEARING SURFACES IN COMPUTER HDDS

Mgr inż. Krzysztof KRAWIEC. Rozprawa doktorska. Streszczenie

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

CHARAKTERYSTYKA ROWKOWANEJ WARSTWY WIERZCHNIEJ MIKROŁOŻYSK KOMPUTERA

Linguistic and cross-cultural validation process of Polish version of HOOS is ongoing.

SYMULACJA ODDZIAŁYWAŃ DYNAMICZNYCH W STAWIE BIODROWYM ZE SZTUCZNĄ PANEWKĄ

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3

NOŚNOŚĆ I ODPORNOŚĆ NA ZUŻYCIE ŁOŻYSK ŚLIZGOWYCH ZE ŚRUBOWYM ROWKIEM NA CZOPIE

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

THE INFLUENCE OF THE ENGINE LOAD ON VALUE AND TEMPERATURE DISTRIBUTION IN THE VALVE SEATS OF TURBO DIESEL ENGINE

PRZEPISY RULES PUBLIKACJA NR 83/P PUBLICATION NO. 83/P


Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

PROJEKT MIKRO- I NANOTRIBOLOGICZNYCH BADAŃ CHRZĄSTKI STAWOWEJ

Few-fermion thermometry

Instrukcja obsługi User s manual

144 T R I B O L O G I A

Institute of Meteorology and Water Management, Wroclaw Branch PP 10. Wrocław, June 2007

Cracow University of Economics Poland

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Revenue Maximization. Sept. 25, 2018

OpenPoland.net API Documentation

CHARACTERISTICS OF FRACTIONAL RHEOLOGICAL MODELS OF ASPHALT-AGGREGATE MIXTURES

Camspot 4.4 Camspot 4.5

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

DOI: / /32/37

Transkrypt:

Journal of KONE Powertrain and Transport, Vol.4, No. 007 HYDODYNAMIC PEUE IN HUMAN HIP JOINT Krzysztof Wierzcholski Gdynia Maritime University Morska 83, 8-5 Gdynia, Poland tel.: +48 058 690348, 34766, fax: +48 058 690399 e-mail:wierzch@am.gdynia.pl Abstract This paper presents modelling and simulations for synovial fluid flow occurring in gap between two co-operating bone surfaces in human hip joint. The present consideration gives an analysis of solutions of systems of non-linear, partial, differential equations for synovial fluid flow in human joint gap. In the hip joint the spherical rotation bone and the pelvis bone create a spherical gap. In this gap between two co-operating bones synovial fluid flows, see Dowson [], Maquet [4], Mow [5], [6], [7], [8], [9], [0], Wierzcholski [], [3], Pytko et.al. []. The flow of this fluid is caused by the motion of the bone head. The theoretical considerations of the synovial non-newtonian fluid flow in thin joint gap, taking into account boundary layer simplifications, have practical applications in theory of lubrication in medicine, see Dowson et.al. [], [], Gruca [3]. The consideration given in the present section enables to find synovial fluid flow parameters and carrying capacity forces in human hip joint gap between two co-operating cartilage surfaces. Human hip joint and gap height for deformable cartilage and pressure distribution in normal and pathological spherical hip joint gap for hydrodynamic lubrication caused by rotation, cases of pressure distribution in pathological spherical hip joint gap for hydrodynamic lubrication caused by rotation, lubrication surface, area=0.38 cm, are presented in the paper. Keywords: normal, pathological hip, capacity, compressive stresses CINIENIE HYDODYNAMICZNE W BIODOWYM TAWIE CZOWIEKA treszczenie Praca przedstawia obliczenia numeryczne rozkadu cinienia hydrodynamicznego na sferycznej gowie kostnej stawu biodrowego wykonujcego ruch obrotowy. Uwzgldniona zostaa deformacja powierzchni chrzstki stawowej oraz brane s pod uwag wasnoci nie Newtonowskie cieczy synowialnej poprzez zmiany lepkoci dynamicznej wywoane zmianami prdkoci deformacji. Ponadto uwzgldnia si zarówno przypadek zdrowego jak i chorego stawu biodrowego. W tym stawie midzy dwoma wspópracujc koci przepywa pyn synowialny, patrz Dowson [], Maquet [4], kocie [5], [6], [7], [8], [9], [0], Wierzcholski [], [3], Pytko et.al. []. Przepyw tego pynu jest spowodowany przez rucch gówki koci. Teoretyczne rozwaania synowialnego nie-newtonowskiego przepyw pynu w cienkiej w cienkiej szczelinie stawu biorc pod uwag uproszczenia warstwy granicznej, maj zastosowania praktyczne teorii smarowania w medycynie, patrz Dowson et.al. [], [], Gruca [3]. ozwaanie podane w obecna artykule umoliwi znalezienie parametrów strumienia synowialnego pynui i zdolnoci do przenoszenia si w szczelinie stawu biodrowego czowieka midzy dwoma wspópracujcymi powierzchniami chrzstki. taw biodrowy czowieka oraz wysoko szczeliny dla odksztacalnej chrzstki oraz rozkad cinienia w szczelinie zdrowego i chorego stawu biodrowego przy hydrodynamicznym smarowaniu, przypadki rozkadów cinienia w chorej, sferycznej szczelinie biodra dla hydrodynamicznego,smarowania wywoanego ruchem obrotowym, przypadki rozkadów cinienia w zdrowej, sferycznej szczelinie biodra dla hydrodynamicznego smarowania wywoanego ruchem obrotowym sa przedstawione w artykule. owa kluczowe: Zdrowe i chore biodra,nono, naprenia ciskajce

K. Wierzcholski.Introduction We take into account equations of conservation of momentum and continuity equation for the non-stationary flow of synovial incompressible fluid between two rotational roughness cartilage surfaces in the spherical co-ordinates. Imposing the proper boundary conditions on the basic equations the pressure p we obtain from the following eynolds equation: p p 3 3 sin 6 sin sin, () in region: 0, /8/.We denote: -dynamic viscosity of synovial fluid, -angular velocity of bone head, -radius of bone head.. Deformable gap height The minimum gap height, see Dowson [], for spherical hip joint can be obtained from the formula []:, 0,6 0,4 5 min C p, E v E v E E C, () where: E, E,, the elastic module and Poisson ratios for bone head and cartilage, C load, and the quantities,, are as defined previously. elation for share rate min can be written in the following form:.,, 3 min 3 A E C o o o o p (3) By combining equations (), (3) we obtain the system of two equations for determination of two unknown quantities, namely the dynamic viscosity p of synovial fluid and the minimum value min of gap height, where elastic deformations of cartilage are taken into account. If we assume the following data: =.60 m, E=0 5 Pa, =30 m/s, =0.0 Pas, /C=30 4 m/n, o / 000, A=.88 s, C=544.6 N, then from Eqs. (), (3) we obtain: min =0.000008 m=0.88 m and p = 0.036 Pas. If we take in computations the following quantities: A=.88 s, o =00.00 Pas, =0.0 Pas, =0.00 m, C=544 N, 0.50 s 0.00 s, 0 5 PaE0 7 Pa, then we obtain the minimum value of gap height in the interval: 0.9 m min 9.90 m. 3. The gap height and primary calculations The gap height has the following form: 546

Hydrodynamic Pressure in Human Hip Joint = x cossin/+ y sinsin/ z cos/ +[( x cossin/+ y sinsin/ z cos/) +(+ min )(+D+ min )] 0.5. (4) Fig.. Human hip joint and gap height for deformable cartilage and pressure distribution in normal and pathological spherical hip joint gap for hydrodynamic lubrication caused by rotation ys.. taw biodrowy czowieka oraz wysoko szczeliny dla odksztacalnej chrzstki oraz rozkad cinienia w szczelinie zdrowego i chorego stawu biodrowego przy hydrodynamicznym smarowaniu The centre point of bone head (see Fig. ) can be written in the following form: O (x x, y y, z+ z ), while D is the distance between the centre of bone head and the acetabulum (sleeve) centre.we solve equation () for the region (,) resting on bone head and. 547

K. Wierzcholski indicated in Fig.. We assume atmospheric pressure on a boundary of the region (, 3 ). The centre point of bone head (see Fig. ) can be written in the following form: O (x x, y y, z+ z ), while D is the distance between the centre of bone head and the acetabulum (sleeve) centre.we solve equation () for the region (,) resting on bone head and indicated in Fig. We assume atmospheric pressure on a boundary of the region (, 3 )For this region we calculate also the capacity values. In numerical calculations we assume the following values for joint gap: x =5 m, y =5 m, z =+5 m; the radius of bone head =0.06575 m. Now we calculate pressure distributions in normal and pathological hip joint. For the angular velocity of bone head =0. s, and the average value of synovial fluid dynamic viscosity =30.00 Pas for normal joint and =0.0 Pas for pathological joint, we obtain the smallest gap height min =3.3 m for normal joint and min =3.3 m for pathological joint. The hydrodynamic pressure p has its maximum value equal to 8.680 5 N/m 8.30 at for normal joint and 3.500 5 N/m for pathological joint, and the capacity C tot =63 N for normal joint and the capacity C tot =07 N for pathological joint, (C tot -total capacity,-gap height) see Fig.. For the angular velocity of bone head =.0 s and the average value of synovial fluid dynamic viscosity o =.00 Pas for normal joint and o =0.05 Pas for pathological joint, we obtain the smallest gap height min =3.3 m for normal joint and min =3.3 m for pathological joint. The hydrodynamic pressure p has its maximum value equal to.790 5 N/m.79 at for normal joint and 7.60 5 Pa for pathological joint, and the capacity C tot =775 N for normal joint and the capacity C tot =68 N for pathological joint. Lubrication surface area has the value cos/80.38 cm. Numerical calculations are performed by means of Mathcad Professional program with the help of the Method of Finite Differences. This method satisfies the requirement of stability of numerical solutions for the partial differential equation (). 4. Numerical calculations Now we calculate pressure distribution in pathological joint (see Fig..). For the angular velocity of bone head: =0.0 s, =7.5 s, =5.0 s, =.5 s, =.0 s, =0.75 s and the average value of synovial fluid dynamic viscosity: o =0.0584 Pas, o =0.0656 Pas o =0.074 Pas, o =0.00 Pas, o =0.59 Pas, o =0.359 Pas, we obtain the following maximum values of hydrodynamic pressure: p max =.383 at, p max =.3 at, p max =.4 at, p max =.64 at, p max =.08 at, p max =.067 at, and the carrying capacity: C tot =5.607 N, C tot =.97 N, C tot =5.94 N, C tot =0.77 N, C tot =5.44 N, C tot =4.393 N, respectively. Now we calculate pressure distribution in normal joint (see Fig. 3). For the angular velocity of bone head: =0.0 s ; =7.5 s, =5.0 s, =.5 s, =.0 s, =0.75 s and the average value of synovial fluid dynamic viscosity: o =6.83 Pas, o =9.6 Pas, o =3.08 Pas, o =3.63 Pas, o =4.987 Pas, o =50.8 Pas, we obtain the following maximum hydrodynamic pressure values: p max =45.630 5 Pa45.63 at, p max =46.500 5 Pa 46,50 at, p max =43.750 5 Pa 43.75 at, p max =39.00 5 Pa 39.0 at, p max =9.60 5 Pa 9.6 at, p max =5.60 5 Pa 5.6 at, and the carrying capacity: C tot =935.3 N, C tot =99.5 N, C tot =88. N, C tot =505.6 N, C tot =85.0 N, C tot =69.4 N, respectively. Lubrication surface area has the value cos/80.38 cm. 548

Hydrodynamic Pressure in Human Hip Joint Fig.. Cases of pressure distribution in pathological spherical hip joint gap for hydrodynamic lubrication caused by rotation, lubrication surface, area=0.38 cm ys.. Przypadki rozkadów cinienia w chorej, sferycznej szczelinie biodra dla hydrodynamicznego smarowania wywoanego ruchem obrotowym 549

K. Wierzcholski Fig. 3. Cases of pressure distribution in normal spherical hip joint gap for hydrodynamic lubrication caused by rotation, lubrication surface area =0.38 cm ys. 3. Przypadki rozkadów cinienia w zdrowej, sferycznej szczelinie biodra dla hydrodynamicznego smarowania wywoanego ruchem obrotowym 550

Hydrodynamic Pressure in Human Hip Joint 5. Final comments For the above given capacities in normal joint we obtain the following compressive stresses: s = 935.3 N / 0.38 cm =.440N/mm =.440 MN/m, s =.468 MN/m, s =.383 MN/m, s =.9 MN/m, s = 0.908 MN/m, s = 0.795 MN/m. In pathological joint, the compressive stresses are as follows: s =5.6N/0.38cm =0.03 N/mm =0.03 MN/m, s =0.004 MN/m,. These stresses are smaller than the compressive strength MN/m of normal human cartilage. Compressive strength of pathological human cartilage has the value of about MPa [], [3]. The present paper shows the method of determination of approximate solutions of the partial non-linear differential equations of non-newtonian, asymmetrical synovial fluid flow in the thin gap occurring in human joint in curvilinear, orthogonal co-ordinates. The presented method enables to obtain solutions in the form of Taylor series with increasing powers of the small parameter A obtained in experimental way for synovial fluid. In the particular case of the symmetrical flow we can, by virtue of the presented theory, find analytical solutions in a simple form. The percentage corrections of pressure caused by the non- Newtonian properties of synovial fluid are examined numerically. For large shear rates within the range: 00 s 000 s, the viscosity of synovial fluid is small and has values: 0 Pas Pas. In this case we obtain small pressure changes from % to 4%. For small shear rates within the range: 0 s 0 s, when viscosity of synovial liquid is large, i.e. within the range: 0 Pas00 Pas, from Eq. (5) we obtain pressure changes from 7% to 5%. - Note : If Young Modulus of cartilage and bone decreases then the least value of joint gap height increases. - Note : If Young Modulus of cartilage decreases then viscosity of synovial fluid increases. Acknowledgement The present research is financially supported within the frame of the TOK FP6, MTKD-CT-004-576 5. eferences [] Dowson, D., Van Mow, C., atcliffe, A., Woo,. L. Y., Biomechanics of Diarthrodial Joint. pringer-verlag, Chap.9, New York-Berlin, 990. [] Dowson, D., Advances in Medical Tribology, Mech. Eng. Publ. Limited Bookcraft UK Limited Bath., 998. [3] Gruca, A., Chirurgia Ortopedyczna, (in Polish), PZWL, Warszawa, 993. [4] Maquet, P. G. J., Biomechanics of the knee, pringer-verlag, Berlin-Heidelberg- New York, 984. [5] Mow, V. C., atcliffe A., Woo., Biomechanics of Diarthrodial Joints, pringer-verlag, Berlin-Heidelberg-New York,990. [6] Mow, V. C., Guilak, F., Cell Mechanics and Cellular Engineering, pringer-verlag, Berlin- Heidelberg-New York, 994. [7] Mow, V. C., Foster. J., Tribology. (Chapter 5) In: The Adult Hip, edited by JJ Callaghan, osenberg AG, ubash HE; Lippincott-aven Publishers, Philadelphia, 998. [8] Mow, V. C., oslowsky L. J., Friction, lubrication and wear of diarthrodial joints. In: Mow V. C., Hayes W. C., Eds. Basic orthopedic biomechanics, aven Press; pp.54-9. New York, 99. [9] Mow, V. C., Holmes, M. H., Lai, W. M., Fluid transport and mechanical properties of articular cartilage, Journal of Biomechanics, Vol.7, pp.337-394, 984. 55

K. Wierzcholski [0] Mow, V. C., Wilson, C. Hayes, W. C., Biomechanics, Lippincott-Wiliams, Wilkins Publishers, Philadelphia-Baltimore-New York-London, 998. [] Pytko,., Wierzcholski, K., Analytical Biobearing Calculation for Experimental Dependencies Between hear ate and ynovial Fluid Viscosity, Proceedings of International Tribology Conference in Yokohama, 3, pp.975-980, Yokohama 995. [] Wierzcholski, K., The method of solutions for hydrodynamic lubrication by synovial fluid flow in human joint gap, Control and Cybernetics, Vol. 3 No., pp.9-6,warszawa 00. [3] Wierzcholski, K., ynovial fluid squeeze film flow in curvilinear biobearing human gap, Polish ociety of Medical Informatics, Computers in Medicine 5, Volume II pp. 5-56. ód 999. 55