TLENEK WAPNIA JAKO KATALIZATOR W PROCESIE PIROLIZY OSADÓW ŚCIEKOWYCH



Podobne dokumenty
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

Odwracalność przemiany chemicznej

CHEMICZNA ANALIZA JAKOŚCI WYSUSZONYCH OSADÓW ŚCIEKOWYCH ORAZ STAŁYCH PRODUKTÓW ZGAZOWANIA

a) jeżeli przedstawiona reakcja jest reakcją egzotermiczną, to jej prawidłowy przebieg jest przedstawiony na wykresie za pomocą linii...

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!

podstawami stechiometrii, czyli działu chemii zajmującymi są obliczeniami jest prawo zachowania masy oraz prawo stałości składu

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Powstawanie żelazianu(vi) sodu przebiega zgodnie z równaniem: Ponieważ termiczny rozkład kwasu borowego(iii) zachodzi zgodnie z równaniem:

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Wpływ dodatku biowęgla na emisje w procesie kompostowania odpadów organicznych

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

r. GRANULACJA OSADÓW W TEMPERATURZE 140 O C

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

Badania pirolizy odpadów prowadzone w IChPW

WYDZIAŁ INŻYNIERII MATERIAŁOWEJ I METALURGII RECENZJA

SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 21/10. MARCIN ŚRODA, Kraków, PL

X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12

Utylizacja osadów ściekowych

Termograwimetryczne badanie dehydratacji pięciowodnego siarczanu (VI) miedzi (II)

ZASTOSOWANIE ANALIZY TERMICZNEJ DO SYMULACJI ZJAWISK W PROCESACH METALURGICZNYCH

Za poprawną metodę Za poprawne obliczenia wraz z podaniem zmiany ph

Energetyczne wykorzystanie odpadów z biogazowni

PL B1. EKOPROD SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Bytom, PL

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

WSTĘP DO ANALIZY TERMICZNEJ

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje wojewódzkie

Węglowodory poziom podstawowy

Gospodarka osadami ściekowymi Sewage sludge management

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Opracowała: mgr inż. Ewelina Nowak

Gospodarka osadami ściekowymi. Sewage sludge management

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

Spalanie i termiczna degradacja polimerów

Czy produkcja żywności to procesy fizyczne i reakcje chemiczne?

1. Podstawowe prawa i pojęcia chemiczne

BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW.

... imię i nazwisko,nazwa szkoły, miasto

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42

WPŁYW SPOSOBU PREPARATYKI NA AKTYWNOŚĆ UKŁADÓW La Mg O. THE EFFECT OF PREPARATION OF La Mg O CATALYSTS ON THEIR ACTIVITY

Ćwiczenie 26 KATALITYCZNE ODWODNIENIE HEPTANOLU

57 Zjazd PTChem i SITPChem Częstochowa, Promotowany miedzią niklowy katalizator do uwodornienia benzenu

TECHNIKI SEPARACYJNE ĆWICZENIE. Temat: Problemy identyfikacji lotnych kwasów tłuszczowych przy zastosowaniu układu GC-MS (SCAN, SIM, indeksy retencji)

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU Al-Si

VI Podkarpacki Konkurs Chemiczny 2013/2014

Test kompetencji z chemii do liceum. Grupa A.

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/13

Przedmiot: Ćwiczenia laboratoryjne z chemii budowlanej

WPŁYW TEMPERATURY NA LEPKOŚĆ KONDYCJONOWANYCH OSADÓW ŚCIEKOWYCH

TECHNOLOGICZNE ASPEKTY PRACY INSTALACJI HIGIENIZACJI OSADU NA OCZYSZCZALNI ŚCIEKÓW W KROŚNIE ODRZAŃSKIM

ZBUS-TKW Combustion Sp. z o. o.

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

NOWOCZESNE KOMORY SPALANIA BIOMASY - DREWNA DREWNO POLSKIE OZE 2016

Cz. I Stechiometria - Zadania do samodzielnego wykonania

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3.

Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU

KRUSZYWA WAPIENNE ZASTOSOWANIE W PRODUKCJI BETONU TOWAROWEGO I ELEMENTÓW PREFABRYKOWANYCH

Energetyczne zagospodarowanie osadów ściekowych w powiązaniu z produkcją energii elektrycznej. Maria Bałazińska, Sławomir Stelmach

BIOTECHNOLOGIA OGÓLNA

PROJEKT: Innowacyjna usługa zagospodarowania popiołu powstającego w procesie spalenia odpadów komunalnych w celu wdrożenia produkcji wypełniacza

Temat: Stacjonarny analizator gazu saturacyjnego MSMR-4 do pomiaru ciągłego

OKREŚLENIE TEMPERATURY I ENTALPII PRZEMIAN FAZOWYCH W STOPACH Al-Si

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

Instrukcja dla uczestnika

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

Zespół C: Spalanie osadów oraz oczyszczania spalin i powietrza

Woltamperometryczne oznaczenie paracetamolu w lekach i ściekach

Karta zgłoszenia tematu pracy dyplomowej

Zadanie: 2 (4 pkt) Napisz, uzgodnij i opisz równania reakcji, które zaszły w probówkach:

Zaawansowane techniki utleniania. Mokre utlenianie powietrzem Adriana Zaleska-Medynska. Wykład 9

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

CHEMICZNE KONDYCJONOWANIE OSADÓW ŚCIEKOWYCH

Pozyskiwanie biomasy z odpadów komunalnych

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie)

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 4 lutego 2016 r. zawody II stopnia (rejonowe)

XXI KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2013/2014

Zastosowanie metod termograwimetrycznych do oceny stabilności termicznej dodatków detergentowych do oleju napędowego

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów dotychczasowych gimnazjów województwa śląskiego w roku szkolnym 2017/2018

Materiały i tworzywa pochodzenia naturalnego

Wykład z Chemii Ogólnej i Nieorganicznej

TEST SPRAWDZAJĄCY Z CHEMII

DWICZENIE. Oznaczanie składu nanokompozytów metodą analizy termograwimetrycznej TGA

Analiza termiczna w ceramice możliwości i zastosowania. DTA

LABORATORIUM Z TECHNOLOGII CHEMICZNEJ

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Długoterminowa obserwacja betonu komórkowego wyprodukowanego z popiołu fluidalnego. Dr inż. Svetozár Balcovic PORFIX Słowacja

2.4. ZADANIA STECHIOMETRIA. 1. Ile moli stanowi:

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna.

Transkrypt:

Proceedings of ECOpole Vol. 1, No. 1/2 2007 Tomasz BEDYK 1, Lech NOWICKI 1, Paweł STOLAREK 1 i Stanisław LEDAKOWICZ 1 TLENEK WAPNIA JAKO KATALIZATOR W PROCESIE PIROLIZY OSADÓW ŚCIEKOWYCH CaO AS A CATALYST FOR PYROLYSIS OF SEWAGE SLUDGE Streszczenie: Tlenek wapnia CaO dodawany do osadów ściekowych ma korzystny wpływ na przebieg procesu pirolizy tych osadów. W pracy określono wpływ ilości dodanego CaO na wydajność procesu oraz ilość powstających produktów. Badania wykonano w termowadze sprzężonej ze spektrometrem masowym. Słowa kluczowe: osady ściekowe, piroliza, tlenek wapnia, analiza termiczna, spektrometria masowa Piroliza jest to proces termicznego rozkładu substancji w warunkach beztlenowych w temperaturach 250 1000ºC. W przypadku materii organicznej na ten proces składa się wiele reakcji chemicznych, które prowadzą do powstania produktów gazowych (H 2 O,, CO, H 2, C x H y ), ciekłych (smoły) oraz stałych (koksik pirolityczny oraz popiół). Procesy pirolizy węgla są znane i wykorzystywane od wielu lat. Jak wykazano w pracy [1], dodatek tlenku wapnia znacząco wpływa na jej przebieg. Wraz ze wzrostem ilości dodanego CaO obserwuje się wzrost ilości produktów gazowych kosztem ciekłych (smół) [2]. Ponadto obserwuje się katalityczne właściwości CaO, czyli obniżanie energii aktywacji reakcji chemicznych zachodzących podczas tego procesu. Wapń, w postaci tlenku lub wodorotlenku, wykorzystywany jest często w celu higienizacji osadów ściekowych. Czynnikami wpływającymi na biobójczość procesu wapnowania jest duża wartość odczynu ph wapnowanych osadów oraz podwyższona temperatura w wyniku egzotermicznej reakcji hydratacji tlenku wapnia [3]. Wapnowanie umożliwia również ustabilizowanie osadów oraz polepszenie ich zdolności do odwadniania [4]. Celem niniejszej pracy jest porównanie procesów pirolizy dla osadu bez i z dodatkiem tlenku wapnia oraz jakościowe opisanie zjawisk zachodzących podczas tego procesu. Część doświadczalna Do badań wykorzystano zsynchronizowany układ pomiarowy, składający się z termowagi (Mettler-Toledo TGA/SDTA851 LF) oraz spektrometru masowego (Balzers ThermoStar QMS 200). Układ ten pozwala na śledzenie zmian masy próbki w zależności od zadanego programu temperaturowego oraz rejestrację składu produktów gazowych zachodzących reakcji. Spektrometr został uprzednio skalibrowany ilościowo zgodnie z procedurą opisaną w osobnej pracy [5]. Próbkę wysuszonego (ok. 97% s.m.) i zmielonego osadu ściekowego z Grupowej Oczyszczalni Ścieków w Łodzi mieszano w różnych proporcjach z tlenkiem wapnia (cz.d.a., POCh SA, Gliwice) i ogrzewano ze stałą szybkością 20 C/min w termowadze w inertnej atmosferze argonu do 1000 C. Ponadto przeprowadzono doświadczenia dla 1 Wydział Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka, ul. Wólczańska 213, 90-924 Łódź, tel. 042 631 37 81, e-mail: tbedyk@wipos.p.lodz.pl

86 Tomasz Bedyk, Lech Nowicki, Paweł Stolarek i Stanisław Ledakowicz próbek czystego CaO w atmosferze argonu oraz ditlenku węgla. Pełną listę wykonanych doświadczeń przedstawiono w tabeli 1. Wykaz wykonanych doświadczeń Tabela 1 Nr Doświad. m osadu m CaO Gaz - - [mg] [cm 3 /min] 1 CaO - 75 Ar; 50 2 CaO_CO2-75 Ar: 1:1; 100 3 CaO50 37,5 37,5 Ar; 50 4 CaO25 56,2 18,8 Ar; 50 5 CaO10 67,5 7,5 Ar; 50 6 GOS 75 - Ar; 50 7 GOS_CO2 75 - Ar: 1:1; 100 Wyniki pomiarów i dyskusja W pierwszym doświadczeniu analizie termicznej poddano czysty tlenek wapnia. Substancja ta nie powinna wykazywać zmian masy. Jednak, jak wiadomo, w kontakcie z powietrzem pewna część CaO ulega reakcjom z parą wodną i ditlenkiem węgla, tworząc wodorotlenek i węglan wapnia. W wyższych temperaturach reakcje te biegną w odwrotnych kierunkach, tworząc z powrotem CaO oraz odpowiednio H 2 O i. Na rysunku 1 przedstawiono krzywą DTG (szybkość ubytku masy w zależności od temperatury) oraz wyniki analizy produktów gazowych ze spektrometru masowego dla tego procesu. Sygnały otrzymane z MS przeliczono na te same jednostki co krzywą DTG zgodnie z procedurą przedstawioną w pracy [5]. 0.035 0.030 0.025 Ca(OH) 2 CaO+H 2 O H2O DTG DTG, -dm/dt, %/K 0.020 0.015 0.010 CaCO 3 CaO+ 0.005 0.000 200 300 400 500 600 700 Temperatura [ o C] Rys. 1. Krzywa DTG oraz produkty gazowe dla procesu rozkładu termicznego próbki CaO W zakresie temperatur 300 450ºC (z maksimum szybkości dla 410ºC) następuje reakcja dehydratacji wodorotlenku wapnia, natomiast dla temperatur 500 670ºC (z maksimum dla 630ºC) reakcja dekarbonizacji. Całkowity ubytek masy wyniósł 2,3%. Na podstawie pól powierzchni pod odpowiednimi fragmentami krzywej DTG oraz

Tlenek wapnia jako katalizator w procesie pirolizy osadów ściekowych 87 stechiometrii powyższych reakcji chemicznych oszacowano początkową ilość wodorotlenku wapnia w próbce na 4,2% masy, natomiast węglanu wapnia na 1,9% masy. Na rysunku 2 przedstawiono wyniki podobnego doświadczenia dla tej samej próbki, przeprowadzonego w reaktywnej atmosferze ditlenku węgla. W tych warunkach obserwujemy wzrost całkowitej masy próbki (maksymalnie o 34,5%) w temperaturach do 850ºC, co zgodnie ze stechiometrią reakcji oznacza, iż 43,9% początkowej masy tlenku wapnia uległo przemianie do węglanu wapnia. Powyżej tej temperatury następuje gwałtowny spadek masy próbki do poziomu 97,7% masy początkowej związany z uwalnianiem (rys. 2b). Obserwujemy zatem znaczne przesunięcie równowagi reakcji na skutek obecności w otoczeniu próbki ditlenku węgla - w poprzednim doświadczeniu proces ten zachodził w temperaturach 500 670ºC. Końcowy ubytek masy związany jest z obecnością w początkowej próbce niewielkich ilości wodorotlenku i węglanu wapnia, co wykazało poprzednie doświadczenie. W temperaturze ok. 400ºC, podobnie jak w poprzednim doświadczeniu, obserwujemy emisję pary wodnej, jednak zamiast ubytku masy obserwujemy jej wzrost oraz ubytek ditlenku węgla w otoczeniu próbki. W tym przypadku procesy uwalniania wody i absorpcji zachodzą jednocześnie. 135 0.6 130 (a) (b) CaCO 3 CaO+ 0.5 TG [%] 125 120 115 110 Ca(OH) 2 CaO+H 2 O + H 2 O DTG CaCO 3 CaO+ CaCO 3 0.4 0.3 0.2 0.1 DTG, -dm/dt, %/K 105 0.0 100-0.1 Temperatura [ o C] Temperatura [ o C] Rys. 2. Krzywa TG (a) oraz DTG i analiza powstających produktów gazowych (b) dla procesu rozkładu termicznego próbki CaO w atmosferze Na rysunku 3 przedstawiono porównanie krzywych TG (a) i DTG (b) dla doświadczeń nr 3-7. Dla próbek zawierających CaO za 100% początkowej masy próbki przyjęto masę początkową samego osadu ściekowego. Wyeliminowano również wpływ obecności wodorotlenku i węglanu wapnia w dodawanym do próbki osadu tlenku wapnia. Jak wynika z rysunku 3, najmniejszy ubytek masy (53,6%) zaobserwowano dla procesu pirolizy próbki osadu ściekowego bez domieszki CaO. Po tym procesie w próbce pozostaje oprócz popiołu również znaczna ilość koksiku pirolitycznego, który w gazowej atmosferze ulega zgazowaniu (patrz doświadczenie GOS_CO2, całkowity ubytek masy 62,8%). W pozostałych doświadczeniach następował wzrost całkowitego ubytku masy osadu wraz ze wzrostem ilości dodanego CaO. Przy mieszaninie CaO i osadu

88 Tomasz Bedyk, Lech Nowicki, Paweł Stolarek i Stanisław Ledakowicz ściekowego w proporcji 1:1 cały węgiel zawarty w próbce zostaje utleniony (całkowity ubytek masy osadu 62,4%), a w fazie stałej pozostaje jedynie inertny popiół. TG, % 100 90 80 70 60 50 GOS CaO10 CaO25 CaO50 GOS_CO2 0.00-0.05-0.10-0.15 DTG, %/ o C 40 (a) (b) -0.20 Rys. 3. Porównanie krzywych TG (a) oraz DTG (b) dla doświadczeń nr 3-7 Dokonano dekonwolucji krzywych DTG otrzymanych dla osadu ściekowego oraz dla mieszaniny osadu i CaO. W każdym przypadku uzyskano cztery piki opisane równaniami Fraser-Suzuki. Pola powierzchni pod poszczególnymi pikami dla poszczególnych doświadczeń zestawiono w tabeli 2. Zaobserwowano wyraźny wzrost znaczenia pików 440 i 730 oraz spadek pola piku 350 wraz ze wzrostem ilości CaO w próbce. Pola powierzchni pod pikami dla próbek o różnej zawartości CaO Tabela 2 Próbka GOS CaO10 CaO25 CaO50 powierzchnia [%] Pik 290 6,9 1,8 3,5 2,9 Pik 350 64,6 51,2 38,1 33,4 Pik 440 20,6 28,6 30,3 34,5 Pik 730 7,9 18,5 28,1 29,2 Dla każdego z powyższych doświadczeń dokonano również ilościowej analizy produktów gazowych (rys. 4). Zestawienie całkowitej ilości produktów gazowych, ciekłych oraz stałych przedstawiono w tabeli 3. Zestawienie całkowitej ilości produktów gazowych, ciekłych i stałych Tabela 3 H 2 H 2O CO CH 4 C 2H 6 C 3H 8 C 4H 10 CH 3OH C 6H 6 SO 2 H 2S smoły stałe % początkowej masy próbki GOS 0,4 14,0 7,2 6,6 1,1 0,7 0,5 0,1 0,1 - - 0,2 22,8 46,4 CaO10 0,5 16,0 7,7 11,6 1,6 0,7 0,6 0,2 0,1-0,1 0,1 16,0 45,0 CaO25 0,6 16,8 6,3 16,2 1,8 0,7 0,7 0,2 0,1 0,1 0,1 0,1 16,6 39,8 CaO50 0,6 17,2 8,4 16,2 1,8 0,8 0,9 0,3 0,1 0,1 0,1 0,1 15,5 37,6

Tlenek wapnia jako katalizator w procesie pirolizy osadów ściekowych 89 Wykorzystując dane przedstawione na rysunku 4, porównano również szybkości powstawania najważniejszych produktów gazowych dla poszczególnych doświadczeń. Zwiększając udział CaO w początkowej masie próbki, obserwujemy nieznaczne zmniejszenie szybkości powstawania pary wodnej w zakresie temperatur 150 300ºC, spowodowane reakcją tlenku wapnia z powstającą w wyniku pirolizy parą wodną oraz gwałtowne zwiększenie tej szybkości w temperaturze ok. 450ºC wskutek desorpcji. Podobna sytuacja występuje dla ditlenku węgla. Praktycznie całość powstającego podczas pirolizy gazu zostaje wykorzystana w reakcji z CaO (250 500ºC), a następnie jest uwalniana w wyższych temperaturach (ok. 750ºC). Uwalniany w tych temperaturach powoduje zgazowanie koksiku pirolitycznego, w wyniku czego uzyskujemy gwałtowny wzrost szybkości powstawania tlenku węgla oraz dalszy spadek masy badanej próbki. Podobne procesy, chociaż w dużo mniejszej skali, obserwujemy dla próbki bez dodatku CaO. Dzieje się tak dlatego, iż w zasadzie w każdym osadzie ściekowym jest obecny CaO i może stanowić od 3 do nawet 15% suchej masy osadu [6]. 0.20 (a) (b) -dm/dt, %/ o C 0.16 0.12 0.08 0.04 H 2 H 2 O CO CH 4 inne DTG 0.00 0.20 (c) (d) 0.16 -dm/dt, %/ oc 0.12 0.08 0.04 0.00 Rys. 5. Analiza produktów gazowych dla próbek: GOS (a), CaO10 (b), CaO25 (c) oraz CaO50 (d) W doświadczeniu prowadzonym w atmosferze ditlenku węgla (GOS_CO2) nie obserwujemy charakterystycznego dla pozostałych doświadczeń piku na krzywej DTG w temperaturze 750ºC (rys. 3). Reakcja desorpcji zachodzi w tym przypadku, podobnie jak w doświadczeniu CaO_CO2 (rys. 2), w wyższych temperaturach. Również w wyższych temperaturach niż w pozostałych doświadczeniach zachodzą reakcje

90 Tomasz Bedyk, Lech Nowicki, Paweł Stolarek i Stanisław Ledakowicz zgazowania koksiku pirolitycznego. CaO można więc uważać za katalizator reakcji zgazowania prowadzonej w atmosferze ditlenku węgla. Wnioski Tlenek wapnia dzięki swoim właściwościom okazuje się być nie tylko czynnikiem higienizującym osady ściekowe, ale również doskonałym katalizatorem w procesie ich pirolizy. Wraz ze wzrostem zawartości CaO w wejściowej mieszaninie uzyskujemy: większy całkowity ubytek masy osadu po procesie, większą ilość cennych z punktu widzenia produktu końcowego gazów: CO oraz H 2, zmniejszenie ilości niekorzystnych produktów ciekłych - smół. Rezultaty te uzyskiwane są dzięki: równowagowym reakcjom tlenku wapnia z parą wodną i ditlenkiem węgla, katalitycznym właściwościom CaO, które objawiają się m.in. w obniżeniu temperatury, w której może przebiegać reakcja zgazowania koksiku pirolitycznego ditlenkiem węgla. Stosując mieszaninę tlenku wapnia z osadami ściekowymi w odpowiednich proporcjach w procesie pirolizy, uzyskuje się wyniki podobne jak dla procesu zgazowania - cały węgiel organiczny ulega konwersji do fazy gazowej i ciekłej. Podziękowanie Pracę wykonano dzięki finansom przyznanym przez Ministerstwo Nauki i Szkolnictwa Wyższego w ramach grantu 3 T09C 026 27. Literatura [1] Tingyu Z., Shouyu Z., Jiejie H. i Yang W.: Effect of calcium oxide on pyrolysis of coal in a fluidized bed. Fuel Processing Technology, 2000, 64, 271-284. [2] Khan M.R.: Fuel. Sci. Technol. Int., 1987, 5(2), 185-231. [3] Bień J.B.: Osady ściekowe. Teoria i praktyka. Wyd. Politechniki Częstochowskiej, Częstochowa 2002. [4] Reimers R.S., Oleszkiewicz J.A. i Goldstein G.L.: Podstawy chemicznej higienizacji osadów. Mat. Międzynarodowego Seminarium Szkoleniowego nt. Podstawy oraz praktyka przeróbki i zagospodarowania osadów. LEM s.c., Kraków 1998. [5] Bedyk T., Nowicki L., Stolarek P. i Ledakowicz S.: Aplication of TG-MS system in studying of sewage sludge pyrolysis and gasification, zaakceptowane do publikacji w Chem. Process Eng. [6] Font R., Fullana A., Conesa J.A. i Llavador F.: Analysis of the pyrolysis and combustion of different sewage sludges by TG. J. Anal. Appl. Pyrolysis, 2001, 58-59, 927-941. CaO AS A CATALYST FOR PYROLYSIS OF SEWAGE SLUDGE Summary: Calcium oxide sometimes added to the sewage sludge has a advantageous effect on the pyrolysis of this waste.. In this work the relationship between the amount of CaO added to the sludge and the yield of the pyrolysis and amount of products was determined. Experiments were performed in thermobalance coupled with mass spectrometer. Keywords: sewage sludge, pyrolysis, calcium oxide, thermal analysis, mass spectroscopy